In Proceedings of the 2000 IEEE International Symposium on Performance Analysis of Systems and Software

(ISPASS-2000), pp.21-27, Austin, TX, 2000

Quantifying Instruction-Level Parallelism Limits on an EPIC Architecture

Hsien-Hsin Leett

tACAL, EECS Department
University of Michigan
Ann Arbor, MI 48105
{linear, tyson} @eecs.umich.edu

ABSTRACT

EPIC architectures heavily rely on state-of-the-art compiler
technology to deliver optimal performance while keeping hard-
ware design simple. It is generally believed that an opti-
mizing compiler has an enormous scheduling window to ex-
ploit instruction-level parallelism (ILP) since compiler or-
chestrates the entire program. Many state-of-the-art compil-
ers typically confine optimizations to loop boundaries (e.g.
software pipelining, trace scheduling, and loop unrolling) and
function boundaries (e.g. loop peeling, loop exchanges, in-
variant hoisting, and global optimizations). Although tech-
niques such as function inlining and interprocedural opti-
mizations can alleviate these constraints to a limited extent,
loop and function boundaries are often the real scopes to the
compiler scheduler. Several previous ILP studies have ex-
plored the limits in parallelism on dynamic superscalar ma-
chines; however, those results are not applicable to EPIC ar-
chitectures since they rely on dynamic scheduling, not static
code schedule by the compiler, to reorder instructions. In this
paper, we evaluate the limits in ILP obtained through com-
piler scheduling alone. We quantify these limits as more re-
strictive scheduling constraints are imposed — starting from
inter-procedural code scheduling, to intra-procedural and fi-
nally to loop-confined code scheduling.

I. INTRODUCTION

Supplying instructions and data in a timely manner are fun-
damental design issues in modern computer system. Many
computer architecture and compiler researchers are investi-
gating new techniques to enhancing the number of effective
instructions issued into the execution core as well as reduc-
ing delays of data delivery. New microarchitecture features
of superscalar processors, such as instruction prefetch, dy-
namic and speculative instruction issue, novel branch predic-
tion mechanisms, trace caches, data prefetching, etc., have
been proposed to address and/or resolve these issues, largely,
in a dynamic fashion. These techniques rely on intelligent
hardware designs to exploit the instruction-level parallelism
(ILP) and maximize instruction supply during program ex-
ecution. For a static implementation of the Intel/HP EPIC
architecture [7] (e.g. Itanium), compilers take a full respon-
sibility to exploit instruction level parallelism from a given
program. Innovative ISA features such as instruction pred-
ication and control speculation are also governed and gen-
erated by compilers to improve the execution efficiency. In
this way, the design complexity of dynamic scheduling via
hardware can be significantly reduced. This enables the pro-
cessor frequency to increase due to simplified control logic in

Youfeng Wu#

Gary Tysont

tMicroprocessor Research Labs
Intel Corporation

Santa Clara, CA 95052
youfeng.wu@intel.com

the hardware. It is generally believed that a large amount of
ILP can be made available by the compiler (except for the
dependencies posed by ambiguous memory addresses), since
the compiler manipulates the entire program.

However, existing compilers often limit instruction schedul-
ing to loop instances or function level (i.e. ”global” trans-
formations). Loop peeling and code hoisting can break the
constraints of intra-loop instruction scheduling, while func-
tion inlining can enlarge the scheduling window by merg-
ing instructions from the inlined function with the calling
function. However, these optimization techniques are only
applicable to a limited extent. For example, loop peeling
and function inlining often significantly expand the code size
increasing pressure on the I-cache. In this study, we inves-
tigate the ILP limits using IA64 code compiled by the Intel
TA-64 research compiler. Under perfect microarchitecture as-
sumptions, we will show the ILP upper bounds constrained
only by true data dependency for SPECint95 benchmarks as
scheduling constraints are gradually imposed — starting from
inter-procedural code scheduling, to intra-procedural and fi-
nally to intra-loop code scheduling. Using this approach,
we increase our understanding of how and where the ILP de-
creases as more compiler scheduling constraints are imposed.

This paper is organized as follows. Section II gives back-
ground information on the relationship between language,
compiler and instruction-level parallelism. Section IIT de-
fines our technique of capturing ILP with different instruc-
tion scheduling windows. Section IV describes our simulation
infrastructure. We discuss our results in Section V. Finally,
we conclude this work in Section VI.

II. COMPILER SUPPORT FOR EXPLOITING ILP
A compiler translates the algorithm represented by a high-
level language into a specific machine code. The performance
of the compiler and the architecture of the target machine
have a significant impact on the performance of the program
(second only to the programmer). For a conventional dy-
namic superscalar machine, the processor has the capability
to narrow performance gap of different compilers by reorder-
ing instructions on the fly to improve execution performance.
The philosophy of the EPIC architecture is to reduce the
complexity of the processor implementation by relying on a
sophisticated compiler to exploit an enormous amount of in-
struction level parallelism by scheduling instructions across
the entire program.

In this research, we investigate the ILP of ordinary programs
in a processor design relying on a compiler to perform all
instruction scheduling. Prior ILP studies [1] [4] [5] [9] are
not applicable to an architecture like EPIC in which com-
piler’s capability is crucial. Therefore, we propose new per-
formance analysis techniques to model the ILP seen from a
compiler’s scheduling window. The new techniques impose
extra scheduling constraints to prevent reordering across func-
tion and/or loop boundaries. This analysis is performed by
simulating the binary after appropriately applying optimiza-
tion techniques such as loop peeling, code hoisting and func-
tion inlining. We believe that the ILP measurements in this
study more closely approximate the parallelism that a real
EPIC compiler can achieve.

11l. TOP-DOWN APPROACH TO INSTRUCTION
SCHEDULING

We present three techniques to examine the limits in ILP
obtained through compiler scheduling. In a top-down fash-
ion, we quantify these limits as more restrictive compiler
scheduling constraints are imposed — starting from inter-
procedural code scheduling, to intra-procedural and finally
to loop-confined code scheduling.

A Interprocedural Scheduling Without Limitation
Given a program, we would like to understand its limit in
ILP using the whole program as a single scheduling window.
Similar to the methodology adopted in [6], this technique ex-
ploits the ILP limits of an ideal code schedule based on an
execution-driven, functional simulation. To accomplish this,
resource hazards are eliminated and instruction and memory
latencies are reduced to one cycle. The machine model sim-
ulated will be described in Section IV. Our analysis tracks
flow, output and anti-dependencies by examining the defini-
tion and use of each physical register and each memory loca-
tion. Due to the enormous number of memory locations (2%4
addresses in IA64 architecture), a four-level indirect hash ta-
ble was implemented to reduce the memory space consumed.
Each level contains 64k entries (16-bit) and each of them
points to a 64k-entry table of the next level. We dynam-
ically allocate space for each new memory accessed, in the
granularity of 64KB. The fundamental data structures shown
as follows are used for tracking dependencies.

¢ DEF[REG] = Reg_Def_TimeStamp[physical register ID]
e USE[REG] = Reg-_Use_TimeStamp|[physical register ID]
e DEF]MEM] = Mem Def_TimeStamp[address]
e USE[MEM] = Mem_Use_TimeStamp[address]

To determine the earliest scheduling/issueable clock cycle of
an instruction, the dependencies from all the source and des-
tination operands of that instruction must be determined.
Each operand of an instruction is checked against its most
recently defined and used timestamps. The final scheduling
timestamp is designated according to the dependence types
and lengths. Flow-dependency (RAW), output-dependency
(WAW) and anti-dependency (WAR) are all detected by check-
ing the registers and memory addresses accessed by each in-
struction in order to maintain a legitimate instruction execu-
tion sequence. These dependencies are calculated as follows.

e RAW = max{DEF[REG] | REG € src operands }
¢ WAW = max{DEF[REG] | REG € dest operands }

e WAR = max{USE[REG] | REG € dest operands }

¢ MRAW = max{DEF[MEM] | MEM € src operands }
e MWAW = max{DEF[MEM] | MEM € dest operands }
e MWAR = max{USE[MEM] | MEM € dest operands }

After all the dependency types of each operand are resolved,
the earliest scheduled issue cycle of the target instruction can
be calculated by taking the maximum dependency as shown
below.

e Issue_Cycle = max(RAW, WAW, WAR, MRAW, MWAW,
MWAR)

Even though the technique can optimally place and issue
each instruction at the earliest possible cycle, it does not
represent the upper bound that a given program can achieve.
In theory, more parallelism will be available if false depen-
dencies are eliminated. Due to the finite number of archi-
tectural registers manipulated by a compiler, the compiler
must reuse registers during register allocation phase and as
a result create false register dependencies. Perfect dynamic
register renaming or an infinite architectural register file can
increase ILP by removing the components of register false
dependencies, i.e. setting WAW and WAR to zeros from our
last equation. Hence, after registers are renamed, the last
equation becomes

e Issue_Cycle = max(RAW, MRAW, MWAW, MWAR)

Similarly, memory false dependencies can theoretically be
avoided. Tyson and Austin proposed a hardware-based mem-
ory renaming technique in [8] in which a store/load cache and
value file determines the producer and consumer relationship
between memory operations, translating those references to
register-like accesses in the value file. Standard register re-
naming techniques can then be applied to the value file items
to remove false memory dependencies. Assuming memory
false dependencies can also be completely eliminated, i.e.
setting MWAW and MWAR to zeros, the earliest scheduled
issue cycle of an instruction is now only constrained by flow
dependencies. The new scheduling cycle is computed by

e Issue_Cycle = max(RAW, MRAW)

Even this equation does not calculate a lower bound on ex-
ecution time if more aggressive microarchitecture enhance-
ments such as value prediction and/or dynamic instruction
reuse are considered. However, performing perfect value pre-
diction would result in a meaningless limit of zero cycles to
execute any program.

B Function-confined (Intra-procedural) Scheduling

The equations presented in previous section assume com-
pilers not only perfectly schedule instructions across basic
blocks with perfect branch information, but can schedule in-
structions across function boundaries without limit. In order
to reach a more realistic ILP, a function-confined instruction
window is introduced to limit the scheduling of instructions
from different functions. First, each function is considered as
an atomic scheduling region. Instructions from different re-
gions cannot be issued at the same time. We use call and its
corresponding return instructions as the head and tail delim-
iters for each atomic scheduling region. All instructions other

than head and tail delimiters should be scheduled no earlier
than their head delimiter and no later than their tail delim-
iter of their corresponding atomic scheduling region. The
following notations are defined to illustrate our technique.

e T(inst, n): scheduled or issueable cycle (i.e. timestamp) of
inst at call depth n.

e RUSE(n): set of all the resources used at call depth n.

¢ RDEF(n): set of all the resources defined at call depth n.

An integer n representing call depth is assigned for each func-
tion starting from main() with n = 1. For each function
call instance during the execution, n is incremented and as-
sociated with the new function. It is decremented when a
function is returned. Note that n is not unique and can be
associated with different functions at different time. The
issue cycle of an instruction, inst, at call depth n is rep-
resented by T(inst, n). We also keep the list of resources
used and defined at call depth n represented by RUSE(n)
and RDEF(n), respectively. Besides register and memory
dependencies described in prior section, another component
called function control dependency, FCTRL, was incorpo-
rated into the calculation of the issue cycle. FCTRL asso-
ciated with each resource is used to track the dependency
resulted from the limitation of a function boundary. Similar
to DEF[r] and USE[r], FCTRL of a resource r are denoted
by DEF[r].FCTRL and USE[r].FCTRL. Upon the return in-
struction being evaluated of a function, the critical path of
the function, i.e. the latest issued instruction, is used as
the issue cycle of the return instruction and later used to
update the FCTRL cycles of all the resources used and/or
defined inside this function. Subsequent instructions outside
this function check both the resource dependencies and its
corresponding FCTRL to determine their final issue cycles.
These constraints are formulated as follows:

e T(ret,n) = max{T(i, n) | where i € instructions executed
at call depth n }

e USE[r].FCTRL = T(ret, n) if r € RUSE(n), otherwise 0.
e DEF[r].FCTRL = T(ret, n) if r € RDEF(n), otherwise 0.
e RAW_FCTRL = max{DEF[REG].FCTRL | REG € src
operands }

e WAW_FCTRL = max{DEF[REG].FCTRL | REG € dest

operands }
e WAR_FCTRL = max{USE[REG].FCTRL | REG € dest
operands }
e MRAW FCTRL = max{DEF[MEM].FCTRL | MEM € src
operands }

o MWAW_FCTRL = max{DEF[MEM].FCTRL | MEM €
dest operands }

e MWAR_FCTRL = max{USE[MEM].FCTRL | MEM € dest
operands }

In essence, once a program is compiled, it is impractical for
a static machine to lift and schedule instructions in a func-
tion before the function is called and executed. Based on
this rationale, all instructions internal to a particular func-
tion must be scheduled and issued no earlier than their corre-
sponding function call instruction. To satisfy this constraint,
LAST_CALL is introduced into the calculation of issue cycle.
This variable precludes future instructions inside the callee
function from being scheduled ahead of the call.

Call Depthn

A
br.call G)—

Call Depth (n+1)

T(B1,n+1) >T(ALn)

P T(B4,n+1) = max{T(ig, n+1)}
T(A4 n) > T(B4, n+1)

T(A5|n) > T(AO, n), A5 not bound by B

br.call) 2 T(B4, n+1)
@ | T

™

—— Control Flow Edge
...... % Data Dependency

Figure 1: Function-confined Instruction Window

It is also impossible to overlap two atomic scheduling re-
gions in compiler scheduling for a static machine, although
it is possible if dynamic instruction scheduling by hardware is
allowed. Therefore, for two consecutive function calls, these
two atomic scheduling regions are serialized as seen in the
original program order. This is satisfied by the definition
of LAST RET, which impedes a subsequent call instruction
to be scheduled ahead of the most recent return instruction.
Under such circumstances, function calls are always sched-
uled in the original program order.

e LAST_CALL = T(call, n-1) for a call depth n.

e LAST RET — { T(retm+1) for call instr. at call depth n;
0 otherwise

Finally, the definition of max.FCTRL assembles all the function-
boundary-related control dependencies generated and the is-
sue cycle is computed with one more function control depen-
dency considered in the original Issue_cycle equation.

e max.FCTRL = max(LAST_CALL, LAST RET, RAW _FCTRL,

WAW _FCTRL, WAR_FCTRL, MRAW _FCTRL, MWAW _FCTRL,

MWAR_FCTRL)

e Issue_Cycle = max(RAW, WAW, WAR, MRAW, MWAW,
MWAR, max.FCTRL)

Figure 1 illustrates a simple example to show how this tech-
nique works. In this code sequence, function A calls function
B and C. Each node inside each function represents one in-
struction, e.g. Al is a call instruction that calls function
B. The fundamental goal is to restrict instructions of each
function into an atomic scheduling region. If the caller has a
dependency from the callee, the dependent instructions from
the caller can only be scheduled after the last issued instruc-
tion (return) of the callee. In Figure 1, instruction B1 cannot
be scheduled earlier than its corresponding call instruction,
A1l. The return instruction, B4, is scheduled as the last in-
struction issued in B. Since A4 is dependent of B2, A4 is
only scheduled after B4 is scheduled. Conversely, A5, inde-
pendent of function B and A4, can be scheduled as early as
the issue timestamp of A0, the first instruction of function

| Symbol | Purpose | Size |
sip Starting chunk IP 8 Bytes
n A chunk size 4 Bytes
) Complementary loop ID | 4 Bytes

Table 1: Chunk Information for Identifying Loops

[rm -
Chunk 1
\A

Loop_I D = 0x402000

Chunk1:

sip = 0x402000
n 112

i 0x0

Chunk 2

Chunk2:

sip = 0x403000
n 16

i 0x1000

N=16

N=112

Figure 2: A Loop Composed of 2 Chunks

A. The second call instruction A6 of function A and its entire
code body function C are scheduled after function B.

C Loop-confined (Intra-loop) Scheduling

As aforementioned, compilers are unlikely to schedule in-
structions from distinct loop bodies. In other words, instruc-
tions in a loop are considered to be within an atomic schedul-
ing region and are not scheduled concurrently with instruc-
tions from other loops unless high-level code transformation
techniques such as loop fusion are performed. In order to ap-
proximate this constraint and investigate its impact to our
ILP study, we introduce a loop-confined scheduling window
as an additional instruction scheduling limiter on top of the
function-confined scheduling window.

It is difficult to identify all the complex loop structures in-
side a program through a single-pass execution driven simula-
tion. Hence, we acquire this information during compilation-
linking time. To provide this information, the IA64 research
compiler was instrumented for generating an extra section of
binaries where loop structures are encoded into a designated
representation as shown in Table 1.

In this representation, a loop is broken down to one to sev-
eral chunks, each represents a sequence of consecutive blocks
after compiler’s block ordering optimization. A chunk can
consist of several basic blocks and basic blocks of different
chunks do not overlap. A unique loop ID (a unique address
for an instruction in the loop) is assigned by the compiler
for those chunks which compose a loop. To reduce the size
of the loop structure information, we store the complemen-
tary loop ID, i (4 bytes), instead of the unique loop ID (8
bytes). For each chunk of a loop, its complementary loop
ID is computed by subtracting the unique loop ID from its
starting chunk IP (instruction pointer) address, i.e. 1 = (sip
- unique loop_ID). In later ILP simulations, the unique loop
ID of each chunk is then inverted from the prior formula on-
the- fly to determine if instructions are in the same loop.
Note that outer loop has a different loop ID from their inner
loops for multi-level nested loops and unique loop IDs are

Loop

Issue
Order

44— ——

» Control
Dependency

Figure 3: Example of a Nested Loop

also assigned for basic blocks outside loops for identifying in-
structions entering or exiting from loops. Exceptions of our
study are those precompiled libraries which will be only be
limited by function-confined scheduling window. Therefore,
our simulated ILP numbers for loop-confined scheduling win-
dow will be somewhat optimistic if loops are present inside
the precompiled library code.

Figure 2 shows a simple loop with a conditional branch. Each
node of the loop represents a basic block. The number shown
inside each node indicates the size in bytes of the instructions
for the basic block. Two sequences of consecutive blocks (two
chunks) are shown inside this loop. Total instruction size n
for a chunk is obtained by summing the instruction sizes of
the basic blocks of a chunk. In this example, the sizes (i.e.
n’s) for chunkl and chunk2 are 112 bytes and 16 bytes respec-
tively. The starting chunk IP, sip, is the beginning IP address
of the first instruction of a chunk’s entry basic block. Since
chunk1 and chunk2 are in the same loop structure, their loop
ID must be identical and are equal to their respective sip’s
minus their complementary loop IDs (i). Before any instruc-
tion is fetched and executed, the ILP simulator will read in
the loop identification information generated by compiler and
build up a loop structure table accordingly. The IP address
of each instruction being executed is then tested against the
loop structure table by the following condition, IP > sip,
&& IP < (8ips +ns). If two instructions own the same loop
ID, they are in the same loop. If a subsequent instruction
has a different loop ID from its preceding instruction, then
this instruction either has exited from a loop or entered into a
new nested loop. We use Figure 3 as an example to elucidate
our technique. There are three loops in this example. Loop
A is an inner loop of Loop B which is encompassed by an-
other outer loop, Loop C. To enable loop-confined scheduling
window, the basic criterion is to schedule instructions in loop
A as an atomic scheduling region, as well as Loop B and C.
Therefore, instructions in block B1 cannot be scheduled until
all the instructions in Loop A are scheduled. However, there
exists some flexibility in scheduling instructions between two
atomic instruction sequences. For example, instructions in
block C2 can be scheduled into block C1 as long as there is
no data dependency between C2 and Loop A or between C2
and Loop B.

/* Instruction Loop at call depth n */
{
if (inst—loopID != last_loopID) {
max issue_clk[last_loopID] = max_issue;
latest_loop_blk_issue_clk = max_issue;
max_.issue = 0;

/* After issue_cycle computed by
function-confined scheduling window */

if (issue_cycle > max_issue_clk[inst—loopID]) {
issue_cycle = latest_loop_blk_issue_clk + 1;

maxissue = MAX(issue_cycle, max_issue);
last_loopID = inst—loopID;

}

Figure 4: Loop-confined Scheduling Algorithm

Figure 4 illustrates the algorithm of our intra-loop scheduling
technique. In addition to loop ID used for identifying the
transition when an instruction enters or leaves a loop, the
following timestamps are also maintained and processed on
each instruction’s basis at a particular call depth.

e max_issue_clk(n, LID) : updated with the latest/maximum
instruction issue cycle of a loop identified by LID, when ex-
iting from this loop.

e latest loop_blk_issue_clk(n) : keep track of the latest/maximum

issue cycle of the latest loop region traversed.

The first variable, max_issue_clk(n, LID), keeps track of the
maximum issue cycle among issued instructions of a loop at
call depth n. This is used to check whether subsequent in-
structions of the same loop, e.g. instructions in region C2 of
Figure 3, can be scheduled within the critical path of previ-
ously scheduled code of the same loop, e.g. C1. If they can-
not, then the earliest cycle these instructions can be sched-
uled is right after latest_loop_blk_issue_clk(n) which accounts
for the critical path of the latest loop code traversed.

D Semantic-only Dependency

In the IA64 instruction set architecture specification [2], ar-
chitectural registers such as application registers and regis-
ter stack engine (RSE) are handled by the machine itself
and are not exposed to compilers. These registers can cause
true dependencies that are implicit to IA64 instructions. For
instance, when a function is called, the call-type branch in-
struction copies CFM (current frame marker) register to the
PFM (previous frame marker), then restore the CFM from
PFM as well as renamed registers back to the caller’s configu-
ration at return. Another example, a register spill (st8.spill)
copies the NaT bit corresponding to the register to the com-
mon User NAT collection application register (AR36) which
is read when a register fill (1d8.fill) restores the data. How-
ever, these dependencies can possibly be eliminated if a dif-
ferent hardware implementation is opted or more sophisti-
cated compiler optimization techniques such as function in-
lining are invoked. We refer to a machine model without
these implicit dependencies as a model with semantic-only
dependencies, and a machine model with these dependencies

as a baseline machine model.

IV. SIMULATION MODEL
A Machine Model

This research is intended to be independent of the microar-
chitectural impacts from a specific machine implementation.
Therefore in our simulation environment, similar to most of
the limit studies, we assume an ideal machine with perfect
caches, infinite fetch width, and infinite number of issue ports
and functional units, and instructions in each single issue
can be arbitrarily bundled. All the instruction latencies are
assumed to be one cycle, namely, a unit-latency machine
model. In addition, the compiler has perfect knowledge of
control flow during execution. The IA64 binaries were there-
fore compiled with predications and speculative loads turned
off. Function inlining was enabled whenever appropriate to
enlarge function sizes and number of instructions available
to the compiler. Moreover, all nop instructions are excluded
from ILP computation.

B ILP simulator

Our ILP simulator, ILPsim based on the algorithm presented
in Section III, is built on top of an execution- driven IA64
simulator which can fetch, decode, execute and retire TIA64
instruction bundles in program sequence and provide sim-
ulation options in both functional and micro-architectural
modes. The simulator translates each architectural regis-
ter ID in the decode stage into a physical register ID for
both explicit and implicit registers in order to establish pre-
cise resource dependencies during function calls and software
pipelining loops.

V. SIMULATION RESULTS

Several studies [5] [6] [9] had shown that both theoretical and
sustainable ILP in floating point applications are typically
higher than those in integer applications, primarily due to the
nature of more computational parallelism found in floating-
point algorithms. Hence, researchers typically do not worry
too much about the ILP in floating-point applications. For
this study, we only concentrate on the available ILP in integer
applications using SPECint95 as our benchmark suite.

A Metrics for Parallelism

Instruction per cycle (IPC) is used as the metric for mea-
suring the parallelism of each compiled benchmark. When
unit-latency is assumed for all the instructions, IPC is equiv-
alent to ILP, instruction level parallelism. The final IPC
(ILP) of an entire application is calculated by dividing the
issue cycle of the critical path of the entire application by
the total number of instructions issued. Since our control
speculation is 100% accurate, so the number of instructions
issued is equivalent to the number of instructions executed.

B Result Analysis

The SPECint95 benchmarks were compiled using the Intel
TA-64 research compiler. All the simulations run up to 300
million instructions using tailored input sets® except for perl.
perl was executed up to 80 million instructions because the
function-confined algorithm could not manipulate longjmp

!The input set is partly from training and partly from refer-
ence set.

go gce compress vortex ~ m8sksim perl iipeg li Ave

[m Baseline - No Renaming O Semantic only - No Renaming & Baseline - Renaming Bl Semantic only - Renaming|

go gocc compress vortex mgsksm perl ijpeg li Ave

[mNo Limit O Functions & Loops)]

Figure 5: ILP with No Limit Scheduling

o gce compress vortex ~ m8sksim perl ijpeg i Ave

[m Bassline - No Renaming OO Semantic only - No Renaming & Baseline - Renaming B Semantic only - Renaming |

Figure 6: ILP with Function-confined Scheduling

at this time. Compared to the number of instructions of
prior studies in [1] [6], we believe 80 million instructions can
well address the goal of our study.

B.1 ILP from Top-down

Figure 5 shows the ILP results with and without resource re-
naming for baseline and semantic-only dependency models.
Without any renaming, the average ILP of baseline model is
6.8 even when a large register file used in the IA64. How-
ever, if full resource renaming techniques including register
and memory are applied, the ILP increases to an encouraging
number of 32.9 for baseline model and 72.6 for semantic-only
dependency model. The ILP results with function-confined
scheduling window are considered in Figure 6. The high aver-
aged ILP numbers with full renaming from Figure 5 are dra-
matically reduced by 5.3 times down to 13.7 for the semantic-
only model and by 2.7 times to 12.2 for the baseline model.
This implies that benefits from renaming are significantly
diminished when we limit register allocation scope to call
depths. Even so, intra-procedural resource renaming is still
capable of delivering almost 2 times improvement (6.2 to 12.2
for baseline model and 6.9 to 13.7 for semantic-only model)
over the ILP of the original compiled code. More resource
renaming effects will be discussed in next section. Further-
more, the observation of ILP deviations from no limit on
instruction scheduling window to function-confined schedul-
ing window suggests that an opportunity to improve ILP
does exist inter-procedurally. This suggests that a specula-
tive multi-threaded architecture [3] that supports multiple
thread units, each with their own register files can exploit a
greater amount of parallelism. A speculative independent
thread, identified either by compiler or hardware, can be
spawned as a separate light-weight execution thread to exe-

Figure 7: Comparison of Scheduling Windows

“lalal ol Fir

go g compress vortex m8sksim perl iipeg

jcc li

[No Renaming 0 Reg Renamed B Reg/Mem Renamed |

Figure 8: Performance of Different Resource Re-
named, No Limit

cute on one of the thread units.

B.2 Performance effect with different scheduling windows
Following a baseline machine model with no resource re-
naming, Figure 7 shows the ILP with different instruction
scheduling windows perceived by a compiler. By using the
architecturally available resources allocated, the average ILP
is 6.8.This ILP drops 10% to 6.2 when the scheduling window
is limited to function boundaries and drops 33% to 5.1 when
the scheduling scope is further limited to loop boundaries.
The ILP values for compress and ijpeg show little change from
no limit on scheduling window to function-confined. This is
due to the fact that intra-functional dependencies exist and
these dependencies dominate critical paths of execution.

B.3 Performance with resource renaming

Register renaming can significantly improve instruction level
parallelism by removing all the false dependencies created
by register reuse. Memory renaming requiring extra hard-
ware support as proposed in [8] can further improve ILP by
removing false memory dependencies. The effect of elimi-
nating false dependencies on ILP is illustrated in Figure 8 to
Figure 10. With resource renaming, the ILP while schedul-
ing across the entire program is increased close to five times.

When the scheduling windows constrained by functions and
loops, the ILP are increased by 97% and 63% respectively.
Once register renaming is applied, adding memory renaming
support only renders marginal extra performance. For in-
struction scheduling limited by function boundaries, the ILP
does not benefit from memory renaming at all. This is be-

go gcc compress vortex m8sksim perl ijpeg li Ave

[mNo Renaming Ol Reg Renamed & Reg/Mem Renamed |

Figure 9: Performance of Different Resource Re-
named, Function-confined window

go gec compress vortex msgksm perl iipeg li Ave

[No Renaming O Reg Renamed & Reg/Mem Renamed |

Figure 10: Performance of Different Resource Re-
named, Loop-confined window

cause much of the benefit of memory renaming is avoiding
anti- dependencies between stack frame references which are
deallocated, then immediately reallocated for the next func-
tion call; since our simulation does not permit overlapping
the execution of functions in the loop constrained or function
constrained experiments, much of the benefit of memory re-
naming is lost. Also note that the ILP constrained by loops
with all false dependencies removed is 8.3 on average. It is
generally agreed that effective ILP continues to shrink with
the higher latencies on real machine implementations, exac-
erbating the difficulty of the compiler in filling instructions
slots as latencies increase.

VI. CONCLUSIONS

In this paper, we propose a new performance analysis tech-

nique to be used to more closely predict and evaluate instruction-

level parallelism for static machines such as EPIC. This tech-
nique is simple, useful, and effective in evaluating future mi-
croarchitecture designs. From the observations of using this
technique, we reach the following conclusions on the compil-
ers ability to extract parallelism on an EPIC architecture:

o A significant amount of parallelism exists in the bench-
marks studied when instruction scheduling is not constrained
and all false dependencies are removed. An average of 72.6
IPC is achieved for SPECint95 for a unit-latency machine
model. When the implicit machine dependencies of current
hardware implementation are taken into account, the IPC
drops down to 32.9.

e The elimination of dynamic resource renaming reduces

available ILP down to 6.8, 6.2 and 5.1, respectively, for an
instruction scheduling with no limit, function-confined and
loop-confined windows. These results point to the need for
future research in compiler analysis and transformation tech-
niques, and in microarchitectural enhancements to achieve
higher degrees of ILP and break loop and function level con-
straints on compilers.

e When local register renaming within loops is performed,
ILP improves by 63% (IPC is increased from 5.1 to 8.3).
This is primarily because the binaries used in the experiment
are compiled for a particular IA-64 processor. The register
allocation algorithm tries to minimize the number of registers
used as long as the performance for that processor is not
impacted.

e Finally, ILP can escalate from 6.8 to 32.9 when no instruc-
tion window restrictions are imposed and all false dependen-
cies are lifted. This indicates performance opportunity for
exploiting speculative thread-level parallelism (TLP) to im-
prove single integer program performance.

VIl. ACKNOWLEDGEMENT
The authors would like to thank Jesse Fang for his support
on this research, Hong Wang for his technical assistance of
the TA64 simulator infrastructure, and Yong-Fong Lee for
his review of this paper. This research has been sponsored
by the National Science Foundation CAREER award under
number C036835 and Intel Corporation.

VIll. REFERENCES
[1] M. Butler, T-Y. Yeh, Y. Patt, M. Alsup, H. Scales, and
M. Shebanow. Single instruction stream parallelism is
greater than two. In ISCA-18, 1991.

[2] Intel Corporation. Ia-64 application developer’s
architecture guide. Intel Literature Centers, 1999.

[3] P. Dubey, K. O’Brien, K. O’Brien, and C. Barton.
Single-program speculative multithreading (spsm)
architecture: Compipler assisted fine-grained
multithreading. In PACT-95, 1995.

[4] N. Jouppi and D. Wall. Available instruction-level
parallelism for superscalar and superpipelined machines.
In ASPLOS-III, 1989.

[6] M. Lam and R. Wilson. Limits of control-flow on
parallelism. In ISCA-19, 1992.

[6] M. Postiff, D. Greene, G. Tyson, and T. Mudge. The
limits of instruction level parallelism in spec95
applications. In INTERACT-8 at ASPLOS-VIII, 1998.

[7] M. S. Schlansker and B. R. Rau. Epic: An archtecture
for instruction-level parallelism. Technical Report
HPL-1999-111, Hewlett-Packard Labs, 2000.

[8] G. Tyson and T. Austin. Memory renaming: Fast, early
and accurate processing of memory communication.
IJPP, 1999.

[9] David Wall. Limits of instruction-level parallelism.
Technical Report DEC WRL 93.6, Compaq Corp., 1993.

