
Characterization of MPC-based Private Inference
for Transformer-based Models

Yongqin Wang∗
University of Southern California

yongqin@usc.edu

G. Edward Suh
Meta AI

edsuh@fb.com

Wenjie Xiong
Meta AI

wenjiex@fb.com

Benjamin Lefaudeux
Meta AI

lefaudeux@fb.com

Brian Knott
Meta AI

brianknott@fb.com

Murali Annavaram
University of Southern California

annavara@usc.edu

Hsien-Hsin S. Lee
Meta AI

leehs@fb.com

Abstract—In this work, we provide an in-depth characteri-
zation study of the performance overhead for running Trans-
former models with secure multi-party computation (MPC). MPC
is a cryptographic framework for protecting both the model
and input data privacy in the presence of untrusted compute
nodes. Our characterization study shows that Transformers
introduce several performance challenges for MPC-based private
machine learning inference. First, Transformers rely extensively
on “softmax” functions. While softmax functions are relatively
cheap in a non-private execution, softmax dominates the MPC
inference runtime, consuming up to 50% of the total inference
runtime. Further investigation shows that computing the max-
imum, needed for providing numerical stability to softmax, is
a key culprit for the increase in latency. Second, MPC relies
on approximating non-linear functions that are part of the
softmax computations, and the narrow dynamic ranges make
optimizing softmax while maintaining accuracy quite difficult.
Finally, unlike CNNs, Transformer-based NLP models use large
embedding tables to convert input words into embedding vectors.
Accesses to these embedding tables can disclose inputs; hence,
additional obfuscation for embedding access patterns is required
for guaranteeing the input privacy. One approach to hide
address accesses is to convert an embedding table lookup into a
matrix multiplication. However, this naive approach increases
MPC inference runtime significantly. We then apply tensor-
train (TT) decomposition, a lossy compression technique for
representing embedding tables, and evaluate its performance on
embedding lookups. We show the trade-off between performance
improvements and the corresponding impact on model accuracy
using detailed experiments.

Index Terms—MPC, Transformer, BERT, XLM, secret sharing,
binary share, arithmetic share

I. INTRODUCTION

Given the resource management benefits such as elasticity,
availability, and cost-effectiveness offered by cloud service
providers, a growing number of machine learning workloads
are migrated to the cloud for operations. Under this modern
compute paradigm, confidential data and models can be leaked
to unwanted parties if the service providers are curious,
malicious, or compromised. Transformer-based models are
commonly used for natural language processing (NLP) today.

∗This work was performed during the period when Yongqin Wang was
employed as a research intern at Meta AI.

But their usage has also broadened to other application do-
mains such as computer vision [6]. These models take natural
languages, images, or videos as inputs for inference. However,
these inputs may contain sensitive private information about
the users and require rigorous protection. In other words, data
privacy has become a pressing concern for transformer-based
machine learning models deployed in the cloud.

To address the security and privacy challenge, secure
computation techniques such as homomorphic encryption
(HE) [24], trusted execution environments (TEE) [9], [13],
[18], [21], [27], [28], and secure multi-party computation
(MPC) [8] have been applied to support privacy-preserving
machine learning (PPML). TEEs use secure hardware to
protect against malicious OS and physical attacks. However,
TEEs assume the hardware vendor is trusted and the hardware
implementation is bug-free, whereas MPC and HE are based
on modern cryptography with strong mathematical security
guarantees. In addition, MPC protocols can still provide strong
security even when a subset of parties are compromised [8].
In this paper, we focus on using MPC to protect transformer-
based models. HE, which also provides defense against a
strong threat model, incurs significantly higher performance
overhead, and is outside the scope of this paper’s characteri-
zation focus.

This paper provides the first in-depth study on MPC-based
private inference of Transformer-based models. Although there
are previous studies on MPC-based private inference, they
focused primarily on convolution neural networks (CNNs) [3],
[7], [12], [15], [30]. In our characterization study, we found
that Transformer-based models introduce new performance
challenges to MPC:

1) Overhead of softmax.
2) Overhead of securing embedding table accesses.
3) Limited dynamic ranges of approximated complex non-

linear functions.

A. Softmax Runtime Overhead

While non-linear activation functions such as ReLU are
known to be a major source of performance overhead for
running CNNs in MPC, softmax accounts for an even larger

portion of the MPC execution time for Transformers. Trans-
formers use softmax in each layer. Hence, the performance
penalty in executing softmax function in MPC gets amplified
due to the repeated use of this function.

Further investigation showed that the softmax function
relies on computing the max for achieving numerical stability.
However, computing the max in MPC setting is the primary
source for this overhead.

B. Secure Accesses to Embedding Tables

Unlike CNNs whose main computation components are
activation functions, convolutions and fully-connected oper-
ations, Transformed-based NLP models use embedding tables
to convert word IDs (a type of categorical data) into a
more meaningful representation format. Categorical data are
typically sparse and are difficult for machine learning systems
to handle because semantically similar items, in most cases,
are not close in the form of sparse vectors. During training,
embedding tables will learn to map semantically similar inputs
closer in the embedding space. An embedding table lookup is
defined as

R = A×W (1)

where W is the embedding table and A = [e1, e2, ..., et]. Each
ei is a one-hot vector corresponding to the embedding table
entry being accessed. Embedding tables can be as large as 1GB
for NLP models, and embedding table look-ups are commonly
implemented as row selection operations. However, accesses
to embedding tables leak private information of the user, even
if the embedding table data is encrypted. Hence, embedding
table accesses must be made oblivious to input values in
private inference. To implement embedding tables securely
and privately in the MPC setting, one can obfuscate embedding
table lookups by turning them into matrix multiplications. Our
characterization study shows that replacing an embedding table
lookup with a matrix multiplication significantly increases the
execution time of embedding table operations.

One approach to reduce this cost is to decompose a large
matrix into multiple smaller matrices, using a technique known
as tensor train (TT) decomposition [11], [33]. However, TT
decomposition is a lossy compression and hence using com-
pressed tables to perform inference lookups may impact ac-
curacy. We experimentally demonstrate the trade-off between
inference runtime and model accuracy.

C. MPC dynamic range issue

Besides the model inference runtime, we also identified a
key challenge to MPC inference of Transformer-based models,
that is, the approximated complex functions lead to narrow
dynamic ranges, which can affect model accuracy. While
ReLU, commonly used in CNNs, can be precisely evaluated in
the standard MPC protocols with reasonable overhead, more
complex non-linear functions are often approximated as a
polynomial function. The accuracy of this approximation is
acceptable when the inputs fall within a specified range, often
referred to as “dynamic range”. Inputs outside the dynamic

range cause substantial numerical error which in turn hurt
model accuracy. Our study sheds light on this hurdle and
informs the practitioners to pay close attention to the dynamic
range of inputs to the approximated polynomial which is used
as a substitute for the non-linear operation in MPC. When
the dynamic range of the approximated non-linear functions
is expected to be narrow, using MPC may be impractical since
approximating such functions leads to substantial accuracy
loss. Besides impacts on the model accuracy, narrow dynamic
ranges also make optimizations to softmax very challenging
due to the small dynamic ranges of reciprocal and exponential
functions.

The rest of the paper is organized as follows: Section II
provides necessary background information about both MPC
and Transformer-based models. Those are key bedrocks of
this paper. Without understanding those concepts, one will
find this paper difficult to understand. Section III presents
our characterization study results for private inference of
Transformer-based models and discusses the key findings we
listed above.

II. BACKGROUNDS

A. Secure Multi-Party Computation

This section provides a brief overview of how MPC proto-
cols compute some of the common operations in Transformer
models. The MPC protocol allows a client to distribute its
operands (a vector, a matrix, etc.) as secret shares among “mul-
tiple untrusted parties” (MPC servers) such that each share
does not leak any information about the original operands.
After receiving their respective secret share, each MPC server
can only see and manipulate its own secret share. When local
MPC computations are completed, the MPC servers will return
the results to the client. The client then combines the results
from multiple MPC servers to decode the final plaintext result
(using operations such as summation or XORing). Figure 1
shows an example of a 2-PC, where a client wishes to
compute Y = W × X , where W ∈ R2×2 and X ∈ R2.
The client distributes the respective secret share of operands
W and X to the two MPC servers, and retrieves Y after
the MPC servers finish the operations of their local shares.
We adopt semi-honest threat model for MPC in our work,
where the MPC servers will exactly follow the predetermined
protocols, but curious about the data MPC clients provided to
them. For simplicity of explanation, assume MPC parties to
be non-colluding, although all MPC protocols can tolerate a
predefined amount of collusion.

1) Secret sharing formats: There are two major secret
sharing formats to share an operand x in the MPC: 1) additive
sharing [xi], 2) binary sharing ⟨xi⟩. For example, [x1] = r
and [x2] = x− r can be x’s two additive secret shares where
x = [x1] + [x2], and r is sampled from a uniform random
variable. Practically, x and r are commonly implemented using
fixed point because x and r can be in the same integer ring
achieving perfect secrecy. On the other hand, ⟨x1⟩ = r and
⟨x2⟩ = x ⊕ r can be x’s two binary secret shares such that
x = ⟨x1⟩ ⊕ ⟨x2⟩, and r is also sampled from a uniform

Fig. 1: 2-PC system example.

random variable. Generally speaking, additive shares are used
for additions and multiplications; binary shares are used for
bit-wise operations. In Figure 1, both the matrix W and the
vector X are in additive sharing format.

2) MPC Multiplications: For MPC servers to compute their
share of z ([z] s.t. z = x× y), a Beaver triple ([a], [b], [c]) s.t.
c = a× b can facilitate the multiplication. The Beaver triples
are distributed among MPC servers during an off-line phase.
Algorithm 1 shows the detailed algorithm to compute MPC
multiplications.

Algorithm 1 Beaver Triple Assisted MPC Multiplication

Input: n MPC servers;
each party has [xi], [yi], [ai], [bi] and [ci] s.t. c = a · b
for i = 1 to n do

computes [xi]− [ai] and [yi]− [bi]
broadcast local [xi]− [ai] and [yi]− [bi]
wait until other [xi]−[ai] and [yi]−[bi] has been received
computes x− a =

∑n
i=1[xi]− [ai]

computes y − b =
∑n

i=1[yi]− [bi]
end for
for i = 2 to n do

computes [zi] = [ci] + (x− a)[bi] + (y − b)[ai]
end for
Party # 1 computes [z1] = [c1]+ (x−a)[b1]+ (y− b)[a1]+
(x− a)(y − b)

MPC client can retrieve z = xy by summing the [zi] from
all MPC servers.

n∑
i=1

[zi] =

n∑
i=1

[ci] + (x− a)[bi] + (y − b)[ai]

+ (x− a)(y − b)

=c+ xb− ab+ ya− ba+ xy

− xb− ya+ ab = xy = z (2)

3) MPC comparisons: To produce [xi < yi] in MPC
settings when x and y are in additive sharing format, MPC
parties will first obtain [di] = [xi]− [yi], and convert additive
shares [di] to binary share ⟨di⟩. Then, obtain the sign bit
(shifting the sign bit to the LSB): ⟨si⟩ = sgn(⟨di⟩). Finally,
convert the sign bit ⟨si⟩ to an additive sharing format will
produce [xi < yi]. Other comparison results can be derived
from x < y. Comparisons are seemingly efficient. However,
conversions between additive and binary shares require a round
of communications which will add significant performance
overhead. The detailed conversion algorithms are presented
below.

Algorithm 2 Additive Share to Binary Share Conversion

Input: n MPC servers; each party has [xi]
for i = 1 to n do

generate binary shares ⟨[xi]⟩j : [xi] =
⊕n

j=1⟨[xi]⟩j
send ⟨[xi]⟩j to party j
wait until all ⟨[xj]⟩i are received
compute ⟨xi⟩ = ⟨

∑n
j=1[xj]⟩i

Note: that one can only use bit-wise operations to com-
pute summation of binary shares (eg: using Ripple-carry
adder logics).

end for

Algorithm 3 Binary Share to Additive Share Conversion

Input: n MPC servers;
each party has ⟨xi⟩, [ri], ⟨ri⟩, where r is a random mask;
r(b) and x(b) are the bth bit of r and x
for i = 1 to n do

compute ⟨zi⟩ = ⟨xi⟩ ⊕ ⟨ri⟩
broadcast ⟨zi⟩ to retrieve z = x⊕ r

compute [⟨xi⟩(b)] = [r
(b)
i] + z(b) − 2[r

(b)
i]z(b)

compute [xi] =
∑

b 2
b[⟨xi⟩(b)]

end for

4) MPC ReLU: ReLU in plaintext is defined as
ReLU(x) = x × (x > 0). However, in MPC protocols,
the comparison operations use the algorithm defined in Sec-
tion II-A3 requiring two rounds of communication. Thus,
ReLU, an inexpensive operation in the plaintext, can be very
expensive in the MPC protocols due to communication latency.

5) Approximated MPC operations: MPC protocols allow
us to retrieve exact additions, multiplication, comparisons and
ReLU results. However, some non-linear operations need to
be approximated using additions and multiplications.

MPC Exponential: Exponential functions are commonly
used for softmax. In MPC settings, the exponential function
is generally implemented as

ex = lim
n→∞

(1 +
x

2n
)2

n

(3)

where n is the total number of approximation iterations.
In our implementation, we choose n to be 8. Polynomial
approximations such as Taylor Series are not used because
exponential functions grow much faster than polynomials [14].

Fig. 2: Transformer-based model computation graph decomposition: (a) General structure of XLM; (b) General structure of a
ViT; (c) A Transformer; (d) Multi-headed attention; (e) Scaled dot-product attention.

MPC Reciprocal: Finding the reciprocal is important
for division in the MPC protocols. One can use recipro-
cal+multiplication to compute division operations. Like expo-
nential functions, reciprocals are also approximated. Generally,
in MPC protocols, the Newton-Raphson iteration is used to
approximate reciprocal:

1

x
= lim

n→∞
yn = yn−1(2− xyn−1) (4)

where y0(x) = 3e0.5−x + 0.003 which makes the approxima-
tion work for a large input domain [14].

MPC GELU: GELU [10] is a novel activation function
based on Gaussian error functions. GELU in plaintext is
defined as:

GELU(x) = x · 1
2
[1 + erf(

x√
2
)] (5)

where x is standard Gaussian Distribution, and erf is the
Gaussian error function. The error function is defined as:

erf(x) =
2√
π

∫ x

0

e−t2dt (6)

In MPC, erf can be approximated using Taylor approxima-
tion or tanh functions.

B. Transformer-based Models

Transformers can be used to encode dependence of input
tokens [32]. Transformers are gaining popularity among NLP
and image processing. Modern language pre-processors such
as BERT [5], Roberta [19], XLM [16], and XLM-R [4] are
Transformer-based. These models consist of an input embed-
ding layer followed by multiple layers of Transformers [29].
ViT [6], an emerging vision model, consists of multiple layers
of transformers and a fully connected classifier. Different mod-
els’ input processing layers are different, but their Transformer
layers have the same structure. Figure 2 shows the computation
decomposition of two Transformer-based models (XLM and
ViT). Figure 2(c) shows a computation graph of a Transformer
encoder. There are two major computation blocks: multi-head

attention and feed forward. Figure 2(d) shows the detailed
computation breakdown of a multi-head attention layer, and
the feed forward layer in Figure 2(c) is defined as:

FFN(x) = Linear{Act[Linear(x)]} (7)

where “Act” can be ReLU or GeLU. Our characterization
study found that the softmax function inside the scaled dot-
product attention is the main performance bottleneck of MPC-
based private inference.

C. Other Transformer Architectures

Figure 2(e) shows that the complexity of self-attention is
quadratic with the input size due to the matrix multiplications
among Q, K, and V . The complexity of the input dimension to
the softmax function is also quadratic. As we show later in our
characterization data, the cost of softmax is significant in MPC
setting. Hence, Transformers’ quadratic complexity restricts
applications using long sentences, even for plaintext. And
in an MPC setting, these costs will only get worse. Several
proposals try to reduce the Transformer complexity. In this
paper, we mainly look into Linformer [31] and Nystromformer
[32] as two alternative Transformer implementations that are
likely to be more amenable in an MPC setting. These novel
transformers modify structures of multi-head attention layers
to reduce softmax complexity.

Linformer introduces extra projection operations prior to
the scaled dot-product attention for V and K inputs. A
projection operator is essentially a rectangular linear layer that
projects long V and K into shorter sequences, thus reducing
the cost of Softmax(QKT).

Nystromformer uses the well-known Nystrom method [1]
to approximate the Transformer attention using O(n) com-
plexity algorithm. The scaled dot-product layer in Figure 2(d)
can be written as

Attention(V,K,Q) = Softmax(
QKT

s
)V (8)

where s is a constant scale factor. If the sequence length of
Q and K is N , the sequence length of QKT will be N2.
Nystromformer uses Nystrom algorithm to approximate the
original attention layer:

NystromAttention(V,K,Q)

= Softmax(
QK̃T

s
) Z∗Softmax(

Q̃KT

s
) (9)

where Z∗ = Softmax(Q̃K̃T

s)+, and K̃ = AvgPooling(K).
Nystromformer approximates the full attention matrix compu-
tation by focusing on a selection of landmarks within the in-
puts. These landmarks first lead to K̃ and Q̃ approximations of
K and Q, which are then used to compute Softmax(QK̃T),
Softmax(Q̃KT) and Softmax(Q̃K̃T), whose dimensions
are greatly reduced when compared to the original scaled dot
product attention. The matrix product of these intermediates
provides the final attention matrix, with a complexity of
O(n) while maintaining a good approximation of the original
softmax function.

D. Tensor-Train (TT) Decomposition.

The basic idea of TT decomposition is to represent a big
matrix using tensor products of several smaller matrices.

RM1×M2...×Mk

⊗
RN1×N2...×Nk

−→ RM1·N1×M2·N2...×Mk·Nk (10)

Generalizing TT decomposition to an embedding matrix W ∈
RM×N , W can be decomposed into d smaller matrices wk ∈
RRk−1×mk×nk×Rk , where M =

∏d
k=1 mk, N =

∏d
k=1 nk,

and R0 = Rd = 1. We refer Rk as the ranks of decomposed
matrices. For example, if d is 2, an embedding size of
[250002×1024] can be decomposed into two smaller matrices
of [1×500×32×rank] and [rank×502×32×1]. Note that
502× 500 > 250002 and 32× 32 = 1024. If the rank of the
all decomposed matrices is 4, the original matrix with 24M
parameters can be decomposed into two smaller 64K-element
matrices. When accessing certain locations in the original
embedding table, an entry in every decomposed matrix is
fetched (this fetching is implemented as dense one-hot matrix
multiplications). Algorithm 4 shows the algorithm that recon-
structs an embedding table entry from decomposed matrices.
One hot function in Algorithm 4 converts an index into a
one-hot vector. Results from one-hot index can be supplied by
an MPC client. TT decomposition can compress embedding
tables significantly. However, the TT decomposition introduces
additional computations to reconstruct the embedding (the
second for loop in Algorithm 4). Later sections demonstrate
the trade-off between the model accuracy and the inference
runtime.

III. TRANSFORMER-BASED MODEL MPC INFERENCE

In this section, we present the MPC inference characteri-
zation results and analyses. In Section III-B, we first present
the runtime analysis for XLM [16] (a state-of-the-art NLP

Algorithm 4 TT Reconstruction

Input: an index e,
d decomposed matrices wk ∈ RRk−1×mk×nk×Rk

fetchedLines = []
for i = 1 to d do

line = one hot(e mod mk)
fetchedLines.append(line×wk)

end for
res =fetchedLines[0]
for i = 1 to d− 1 do

res = res ×fetchedLines[i]
end for
Return res

model) and ViT (vision model using layers of Transformer)
[6]. The runtime analysis identities the key components of
MPC inference. In Section III-C, we discuss a numerical
challenge when using Transformer-based models with MPC
protocols. Finally, in Section III-D and Section III-E, we
present an in-depth analysis of softmax and embedding table
accesses and key challenges in optimizing their runtime.

A. Experimental Setup

We implemented MPC-based execution of several Trans-
former models using CrypTen MPC framework [14]. Each
MPC server has an NVIDIA Tesla V100 Volta GPU, and they
are connected by a 100Gb/s Ethernet cable. CrypTen employs
64-bit fixed-point numbers and uses 16 bits as the precision
bits [14]. CrypTen supports additive and binary secret sharing
formats to enable a wide range of operators implemented in
MPC. CrypTen also implements more functions using generic
MPC protocols than other known frameworks [15], [30]. Given
the optimized implementation and at-scale usage of CrypTen
in the MPC systems, we believe that the data we collected
and characterized in this paper are a reflection of MPC’s
algorithmic limitations, not CrypTen-specific observations.

B. Performance Breakdowns

Table I breaks down the MPC inference runtime for XLM
(left) and ViT (right) into multiple components. “ReLU” is
the activation function inside the feed forward layer. The
execution times of all fully-connected layers and matrix mul-
tiplications inside the Transformer are listed under “MatMul”.
“Embedding” is the embedding table access runtime. The first
column shows the model inference runtime in plaintext 32-
bit floating point divided into the core operations performed
in each model; the second column shows the time spent for
additional communications introduced by the MPC protocols;
the third column shows the total MPC inference runtime for
each operation type; the fourth column shows each operation’s
runtime percentage. For both XLM and ViT, softmax in the
MPC setting makes up about 50% of the total inference
runtime, while in plaintext the execution time of softmax is
very small. Note that the XLM model uses an embedding
table lookup to convert words into a dense representation.

TABLE I: Transformer-based model MPC runtime decomposition in seconds.

12-layer XLM 12-layer ViT
Plaintext MPC Comm MPC Total MPC breakdown % Plaintext MPC Comm MPC Total MPC breakdown %

Embedding 1.75E-5 3.72 11.81 20.37% N/A N/A N/A N/A
Norm 1.30E-3 0.3 0.43 0.74% 8.03E-4 0.22 0.35 1.23%

MatMul 4.24 1.88 8.22 14.17% 1.08 1.36 5.06 17.99%
ReLU 6.15E-4 8.28 8.59 14.82% 3.76E-4 5.76 5.99 21.29%

Softmax 6.61E-4 25.46 28.93 49.90% 3.77E-4 13.69 16.74 59.49%
Total 4.25 39.63 57.98 100% 1.09 21.03 28.14 100%

The embedding table size is [250002 × 1024]. MPC secure
embedding table lookups also make up a significant portion
of MPC total inference runtime. However, ViT which consists
of 12 Transformer-only layers does not use embedding table
and hence there is no runtime associated with the embedding
lookup in ViT.

1) MPC vs. Plaintext Inference: Comparing with their
plaintext FP32 counterparts, all operations become slower
with MPC. For the plaintext inference, majority of the infer-
ence runtime is spent on computing linear operations. ReLU,
embedding table accesses, and softmax become extremely
expensive in MPC. Softmax and ReLU become more time-
consuming due to the cost of communication imposed by
MPC protocols. In the background section, we described that
to perform comparisons, two rounds of communications are
needed. These additional communication rounds made ReLU
and softmax quite expensive. Embedding table accesses are
obfuscated using matrix multiplication operations, and hence
embedding table lookups become time-consuming, and this
aspect will be elaborated in Section III-E.

2) Sequence Length on Inference Runtime: Figure 3 shows
the inference runtime of a single Transformer layer in the
XLM model as a function of the input sequence length. We
show how the runtime scales with different input sequence
lengths using a single Transformer layer for clarity; similar
trends can be observed for the entire XLM model’s inference
runtime as well. We show the runtime growth of MatMul
(labeled as Linear), ReLU, and Softmax w.r.t the input length.
We ignore the ”Norm” computations because they account for
a tiny fraction of the total computation time. Softmax runtime
grows quadratically and dominates inference runtime since
input dimensions to softmax function grow quadratically with
input length. ReLU runtime grows only linearly because the
input dimension to the ReLU function grow linearly.

3) Speedups when Model Weights are Public: When model
parameters are non-sensitive or publicly available, model pa-
rameters can be distributed to MPC servers in plaintext while
still allowing user input data to be private with MPC. In this
setting, multiplications and additions will be the same as their
plaintext counterparts. To compute z = xy, where y is public,
each MPC party i only needs to compute one multiplication
on its own secret share [zi] = [xi]y, and it is easy to see∑

i

zi =
∑
i

[xi]y = xy = z. (11)

Multiplications with one public operand and one secret
operand only involve computations on MPC servers’ local

Fig. 3: GPU 2-PC Transformer inference runtime w/ different
sequence lengths.

shares and avoid broadcasting communications.
To understand how these observations impact inference

runtime, we experimented with two setups: (1) a public model
setting where the model is in plaintext but the user input is
private, and (2) a private model setting where both the model
and the input are private.

Figure 4 compares the MPC runtimes for a public model
and a private model, assuming the model input is private.
The models shown are VGG19 and a 12-layer Transformer
from XLM. VGG19’s major computation components are
categorized into two classes: linear operations (convolution
layers and dense layers), and non-linear operations (ReLU and
Maxpooling). The Transformer model’s major component can
also be categorized as linear (matrix multiplications) and non-
linear (Softmax, Activation, and Normalization). For VGG19,
the runtime of non-linear operations (ReLU and Maxpooling)
remain unchanged whether using a plaintext or private model
for inference. However, the public model can cut the cost of
linear operations significantly. Thus for CNN models such as
VGG19, using a public model can reduce the overall inference
runtime while still protecting the user input.

When using MPC on Transformer-based models, however,
there is only a small performance improvement in linear
operations even when a model is public. The reason is that
transformers’ linear operations are mostly matrix multiplica-
tions between user inputs (see Figure 2(d)), and softmax in
the multi-head attention directly operates on a function of user
inputs. All of their operands are still in the additive sharing

format, and making the model weights public does not reduce
their inference runtime. With the major operator runtime
unaffected by public weights, Transformer-based models show
smaller speedups (6%) compared to CNN models when using
public model as opposed to a private model.

Fig. 4: MPC public model vs. private model.

4) Alternative Transformer Architectures for Reducing Non-
linear MPC Overheads: The versatility of the original Trans-
former architecture [29], combined with a wide variety of
use cases that exposed some limitations, gave birth over the
last couple of years to a vibrant ecosystem. A taxonomy of
Transformer architectures proposed by Tay et al. consists of
5 overlapping categories: low rank approximations, memory,
non-learnable pattern, learnable pattern and recurrence [26].
Not all of these alterations are applicable to all problems, and
choosing them will often imply some knowledge over the input
distribution, or some prior training with a Transformer which
exposes specific attention patterns.

In this study, we focus on Transformer models that are
more suited for the MPC setting. Given that Softmax is a
significant bottleneck, we selected two Transformer models,
Linformer [31] and Nystromformer [32] from a modelling
library [17]. Linformer and Nystromformer are part of the
low rank approximations, and as such are best suited to
cases where the input elements have a distribution which is
inherently of a lower dimension than what their raw sequence
would suggest. The Linformer puts projection operators prior
to scaled dot-product attention to project K and V into
shorter sequences, effectively reducing the input dimension
to the softmax function. In our experiments, we choose 4
as the Linformer projection ratio. Nystromformer uses the
well know Nystrom algorithm to construct a lower dimension
approximation of the K and Q matrices, and decomposes
the canonical attention matrix computation (which includes
a softmax) into three smaller operations.

We can see from Figure 5, Linformer and Nystromformer’s
softmax runtime in 2-PC setting is reduced by 3.8x and 7x
compared to the basic Transformer. For this experiment we
used 4 times longer input sequences than what we used in
evaluating the baseline Transformer model results shown in
Table I. Hence, even with much longer inputs the reduc-
tion of softmax usage through reduced tensor dimensionality
helps Linformer and Nystromformer. Although these new

Transformers improve runtime, we observe that non-linear
operations and softmax are still persistent bottlenecks (see
Figure 5).

Fig. 5: 2-Party inference runtime comparison among Trans-
former, Linformer, and Nystromformer.

C. Dynamic Range Issues from Approximations

In Section II-A5, we discussed how certain operations in
MPC protocols are approximated. However, those approx-
imations will only produce a negligible error for inputs
within a certain range. We refer to this range as a dy-
namic range. If an input to an approximated operation falls
outside its dynamic range, the model output can become
useless, resulting in low accuracy, comparable to random
guesses. Figure 6a and 6b show the percentage of error
(ABS[(MPC −Actual)/Actual]%) for MPC reciprocal and
exponential functions, which are used within softmax. For
the reciprocal, the approximated error is less than 10% when
inputs are between −18 and 85. We can see that the error
for the approximated reciprocal increases when the input gets
bigger. For the exponential function, the approximation for
inputs less than −10 result in 100% error which in turn
will eventually cause significant accuracy degradation. MPC
exponential functions introduce less than 10% of error for
inputs between −8 and 8. Thus depending on the input value,
the approximation of non-linear operations necessitated by
MPC cause significant losses in accuracy.

For CNNs, the dynamic range is not a major problem
because operations for CNNs can be exactly computed using
MPC protocols (multiplications, ReLUs, comparisons, etc.).
On the other hand, Transformer-based models require more
complex non-linear operations that need to be approximated
(GELU and Softmax). As a result, we found that a designer
needs to pay far more attention to the dynamic range in
order to get accurate prediction results for Transformer-based
models in MPC. For example, the GELU function can be
approximated using either Taylor approximation or tanh func-
tions. However, those approximations are unstable when input
values are large. Falling outside GELU’s dynamic range will
destroy model accuracy leading to a random guess.

(a) Reciprocal (b) Exponential

Fig. 6: MPC approximated function percentage of error.

D. Analysis of Softmax in MPC

In this section, we perform a deeper analysis of why softmax
operations are exceedingly slow in MPC. This slowdown is
mainly due to the maximum function used in softmax for
numerical stability. Softmax functions for the ith element in
a vector size of n is defined as

Softmax(xi) =
exi∑n

k=1 e
xk

(12)

The exponential function is approximated using the limit
approximation (Section II-A5). The exponential function can
explode quickly even in plaintext, causing numerical overflow
when some input values are large. To achieve numerical
stability, softmax is practically implemented as

Softmax(xi) =
exi−xmax∑n

k=1 e
xk−xmax

(13)

where xmax is the maximum value in the given vector. The
subtraction of the maximum value does not change the final
value of the softmax function, but it greatly improves the
numerical stability since the largest input to the exponential
function becomes 0. The “maximum” function is typically
cheap in plaintext. However, in the context of MPC, the
maximum function can account for the majority of inference
runtime.

1) Maximum in MPC: When using MPC, inputs are addi-
tively shared among multiple parties. To obtain the maximum
value from a vector with N elements, we need to perform
O(log(N)) comparison/maximum operations. The maximum
between two numbers x and y can be calculated as

Max(x, y) = sign(y − x) · x+ sign(y − x) · y (14)

where sign function extracts the sign bit. We describe how the
sign bit can be computed with the MPC comparison algorithm
in Section II-A5. To extract the sign bit of an additive
share, two rounds of communication between MPC servers are
required, which makes the maximum function quite expensive.
Our experiments show the maximum function can make up
to 88% of the total softmax runtime. The communication
in the maximum function accounts for 80% of the softmax
communication time.

TABLE II: Densified embedding table access runtime.

of accesses Communication Time Total Runtime
32 3.53 6.42
64 3.59 6.38

128 3.35 6.47
512 3.46 9.08
1024 3.72 11.81

2) Difficulties in Replacing the Maximum: The maximum
function in softmax acts as a stabilizer for the exponential
function. A reciprocal function follows exponential functions
to compute the softmax. As we mentioned earlier, the re-
ciprocal function in MPC has a small dynamic range, and
input values outside this range can break the model accuracy.
The subtraction of the maximum makes the output of an
exponential function at most 1, helping ensure the inputs to
the exponential and the reciprocal can fall into their dynamic
range. One may want to replace the maximum function with
other stabilizers that are faster to compute in MPC. However,
such optimizations are non-trivial due to the challenges related
to the dynamic range: 1) exponential grows rapidly, and 2)
narrow exponential & reciprocal dynamic range. If the
stabilizer is too large, the exponential functions are approxi-
mated to be zeros, resulting in model accuracy loss. On the
other hand, if the stabilizer is not big enough, the output of
the exponential function will fall outside the dynamic range
of the approximated reciprocal function. Thus, finding a faster
yet effective stabilizer for exponential functions is challenging.

E. Analysis of the Embedding Table Lookups

Finally, we turn our attention to embedding table lookups.
Transformer-based NLP models use embedding tables to
process categorical language tokens. As discussed earlier,
embedding table lookups are implemented as row selection
operations in plaintext. Thus, even when inputs to embedding
tables are encrypted, memory accesses to embedding tables
are correlated with inputs themselves. Consequently, failing
to protect embedding table memory access patterns from
adversaries (MPC servers) will compromise input confiden-
tiality. One way to protect memory accesses to embedding
tables is to implement embedding table lookups as one-
hot matrix multiplications. However, our study shows that
densified embedding table lookups impose serious overhead
in an MPC setting. One way to reduce this overhead is to
use matrix decomposition techniques to speedup embedding
table accesses, with the potential for some negative impact on
model inference accuracy.

1) Densified Operations: We firstly show densified em-
bedding table inference runtime (one-hot vector & matrix
multiplications) in Table II.

We measure the average time to compute a AT×W in MPC,
where AT is [batch × 250002] and W is [250002 × 1024].
Batch for AT is equal to the total number of accesses. With
more batched accesses, the communication does not change
when the number of accesses is below 512. Communication
costs consist of two parts: transmission delays (data size /

TABLE III: Matrix dimensions using TT decomposition.

3/ranks 4/ranks 5/ranks

1× 50× 8× ranks 1× 20× 4× ranks 1× 10× 4× ranks
ranks× 65× 8× ranks ranks× 24× 4× ranks ranks× 10× 4× ranks
ranks× 80× 16× 1 ranks× 25× 8× ranks ranks× 10× 4× ranks

- ranks× 25× 8× 1 ranks× 13× 4× ranks
- - ranks× 20× 4× 1

TABLE IV: TT decomposition inference runtime improvement & MaskedLM Perplexity (PPL); Baseline PPL without TT
decomposition is 12.8.

Number of Matrices 3 4 5
Ranks 64 128 196 64 128 196 64 128 196

MaskedLM PPL 17.0 15.17 14.04 18.25 16.47 14.41 17.82 16.09 14.83
Batch=32 Speedup 110.02 46.70 19.58 112.12 38.19 22.51 120.20 41.04 19.56
Batch=64 Speedup 96.07 30.96 16.80 74.70 25.38 10.78 64.48 27.35 11.61
Batch=128 Speedup 64.45 21.63 8.82 47.21 14.80 6.58 51.99 13.27 6.57
Batch=256 Speedup 43.42 11.83 5.94 30.93 9.34 4.23 26.24 9.18 4.33
Batch=512 Speedup 31.47 7.57 3.56 18.93 5.88 2.54 15.88 6.05 2.57

bandwidth) and propagation delay (network propagation time).
Though there are more bytes communicated with bigger batch
sizes, the number of communication rounds for each batch
size is the same. For a high-bandwidth interconnect (100Gbs),
the number of rounds of communications has more impact
on communication runtime. Typically, in MPC, larger batches
can benefit from amortized rounds of communication, resulting
better throughput.

Although communication costs are similar, our results show
that computation costs grow from 6.47s to 11.81s when
the number of accesses increases. The computation runtime
increase comes from more multiplications when more accesses
are needed.

2) TT Decomposition on Embedding Tables: Besides naive
densified one-hot vector multiplications, one can use matrix
decomposition to help reduce embedding table lookups. TT
decomposition is one such method [11], [33]. TT decom-
position can be applied to the embedding table to reduce
the overhead, enabling a trade-off between performance and
model accuracy. Here, we present the embedding table query
runtime and model accuracy using different configurations
of TT decomposition. We use d/ranks to represent TT
decomposition configurations. d represents the number of
smaller decomposed matrices, and ranks represents the rank
of each decomposed matrix. Configuration 3/64 means that the
original embedding table is decomposed into 3 smaller 64-rank
matrices. Throughout our experiments, the original embedding
table size is still [250002× 1024]. The dimensions of smaller
matrices using different configurations of TT decomposition
are shown in Table III. In Table III, we can see that with
more decomposed tables and fewer ranks, the compression
ratio will be higher. 3/128’s table compression ratio is 30x
whereas the compression ratio of 3/64 and 4/128 is 115x and
208x respectively. However, this compression ratio is not free,
as we show later in our accuracy study.

Table IV demonstrates embedding table inference speedups
using different TT decomposition configurations with batch
sizes. The baseline is the densified matrix multiplication we

mentioned in the earlier section. The batch size represents
the number of embedding table accesses that are performed
together. When the number of batches is small, most con-
figurations demonstrate speedups more than 15x. However,
with more batched accesses, the speedups provided by TT
decomposition decreases. The reason is that when there are
more batched accesses, computations needed to reconstruct
the original embedding indices increase with batch size (see
Algorithm 4). On the contrary, the baseline’s one-hot matrix
multiplication’s runtime does not grow linearly as we can see
in Table II. The communication cost for the densified baseline
does not increase linearly when the number of accesses are
small, and its computation runtime increase is not apparent.
Thus, the linearly increasing runtime of TT decomposition
embedding accesses shows less speedups compared with the
densified matrix multiplications.

The speedups and compression come with a cost. In addition
to inference runtime, we also measured the TT decomposi-
tion’s impact on model accuracy. We ran a masked language
model on WikiText-103 [20]. The resulting perplexity scores
are present in the third row of Table IV. The Transformer
configuration we used is (L = 24, H = 1024, A = 16), and
the token embedding table size is [250002×1024]. We trained
the model for ten epochs and reported the best perplexity
score. When not using TT decomposition, the perplexity score
is 12.8 (the lower the better). The higher the compression
ratio is, the more perplexity loss there will be since more
compression ratio may result in a loss in information. Thus, in
our results, perplexity scores are better for configurations with
more ranks. Configuration 3/196 achieves a runtime speedup
of 19.58x, while incurring a 1.19 loss in perplexity score. If
applications tolerate higher loss in perplexity scores, using TT
decomposition configurations such as (3/64, 3/128, 4/64) can
achieve even more aggressive speedups.

IV. RELATED WORK

There is a large body of previous work on MPC-based pri-
vacy preserving machine learning (PPML). For example, Astra

[2], Blaze [22], Falcon [30], CrypTFlow [15] and CrypTen
[14] provide frameworks for MPC-based machine learning.
In this study, we leverage CrypTen as the MPC framework.
For performance, most of MPC-based PPML frameworks use
the arithmetic secret sharing used in CrypTen. In that sense,
we believe that the findings in this study applies to a broad
class of MPC frameworks in general. Previous work including
Sphynx [3], DeepReduce [12], AriaNN [23], and Circa [7] also
proposed optimizations to improve the performance of MPC-
based inference.

However, the previous studies focus on CNN vision models
and optimizations on ReLU (bottleneck for CNNs). On the
contrary, this paper characterizes Transformed-based models
in the MPC setting.

CryptGPU [25] is another MPC framework based on
CrypTen. Its main focus is a special family of 3-PC using
2-out-of-3 sharing, that does not scale to more parties. Our
work primarily focuses on N-out-of-N sharing that can scale
to more parties providing stronger security.

TT-Rec [33] uses Tensor Train decomposition to support
large embedding tables size and uses a decomposed em-
bedding cache to speed up DLRM training. Another work
[11] applies Tensor Train decomposition to token embedding
tables. Both of them focus on training efficiencies in plaintext,
while this paper focuses on Transformer-based models in the
MPC settings. Linformer [31] and Nystromformer [32] pro-
pose novel Transformer architectures that reduce Transformer
computation complexity, whereas this paper studies their po-
tential in privacy-preserving MPC protocols. This paper also
demonstrates that they can achieve much higher speedups in
MPC than in plaintext.

V. CONCLUSION

Transformer-based models are gaining popularity across a
wide range of tasks from natural language processing to vision
classification tasks. Given the nature of inputs processed, these
models will likely represent an important privacy preserving
machine learning workloads of the future. This paper presents
a detailed study of the challenges in supporting Transformer-
based models with MPC protocols. The study shows three
new research challenges that do not exist in the private
inference of CNNs: 1) significant softmax overhead, 2) secure
accesses to embedding tables, and 3) limited dynamic ranges
of approximated non-linear operations.

Our characterization study shows that the maximum func-
tion used for numerical stability is the main runtime bottleneck
in softmax. Computing maximum in MPC requires compar-
isons of secret shares, which in turn require data sharing
format conversion. These conversions induce a large amount
of communications among MPC parties. Our studies also show
that secure accesses to embedding tables using densified ma-
trix multiplications add significant runtime overhead. However,
one can use tensor-train decomposition to significantly reduce
the runtime with a certain loss in the model accuracy. Finally,
our paper also shows that approximated complex non-linear
functions have a dynamic range. Inputs outside that range can

significantly degrade model accuracy if model designers are
not careful when applying MPC protocols to their models.

REFERENCES

[1] D. W. Arthur, “C. T. H. Baker, The Numerical Treatment of Integral
Equations (Clarendon Press; Oxford University Press, 1978), xiv 1034
pp., £22–50.” Proceedings of the Edinburgh Mathematical Society,
vol. 22, no. 1, p. 67–67, 1979.

[2] H. Chaudhari, A. Choudhury, A. Patra, and A. Suresh, “ASTRA: high
throughput 3pc over rings with application to secure prediction,” in
Proceedings of the 2019 ACM SIGSAC Conference on Cloud Computing
Security Workshop, CCSW@CCS 2019, London, UK, November 11,
2019, R. Sion and C. Papamanthou, Eds. ACM, 2019, pp. 81–92.
[Online]. Available: https://doi.org/10.1145/3338466.3358922

[3] M. Cho, Z. Ghodsi, B. Reagen, S. Garg, and C. Hegde, “SPHYNX:
Relu-efficient network design for private inference,” 2021.

[4] A. Conneau and K. Khandelwal, “Unsupervised cross-lingual represen-
tation learning at scale,” Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, 2020.

[5] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-
training of deep bidirectional transformers for language understanding,”
Proceedings of NAACL-HLT 2019, 2018.

[6] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. G. andJakob
Uszkoreit, and N. Houlsby, “An image is worth 16x16 words: Trans-
formers for image recognition at scale,” Proceedings of Ninth ICLR,
2021.

[7] Z. Ghodsi, N. K. Jha, B. Reagen, and S. Garg, “Circa: Stochastic relus
for private deep learning,” arXiv preprint arXiv:2106.08475, 2021.

[8] O. Goldreich, “Secure multi-party computation,” 1998.
[9] H. Hashemi, Y. Wang, and M. Annavaram, “Darknight: A data privacy

scheme for training and inference of deep neural networks,” Proceedings
on the 54th International Symposium on Microarchitecture, 2021.

[10] D. Hendrycks and K. Gimpel, “Gaussian error linear units (gelus),” 2020.
[11] O. Hrinchuk, V. Khrulkov, L. Mirvakhabova, E. Orlova, and I. Oseledets,

“Tensorized embedding layers for efficient model compression,” Pro-
ceedings of Ninth ICLR, 2021.

[12] N. K. Jha, Z. Ghodsi, S. Garg, and B. Reagen, “DeepReDuce: Relu re-
duction for fast private inference,” Proceedings of the 38 th International
Conference on Machine Learning, 2021.

[13] S. Johnson, V. Scarlata, C. Rozas, E. Brickell, and F. Mckeen, “Intel
software guard extensions: Epid provisioning and attestation services,”
2016.

[14] B. Knott, S. Venkataraman, A. Hannun, S. Sengupta, M. Ibrahim, and
L. van der Maaten, “Crypten: Secure multi-party computation meets
machine learning,” in arXiv 2109.00984, 2021.

[15] N. Kumar, M. Rathee, N. Chandran, D. Gupta, A. Rastogi,
and R. Sharma, “CrypTFlow: Secure tensorflow inference,”
in IEEE Symposium on Security and Privacy. IEEE,
May 2020. [Online]. Available: https://www.microsoft.com/en-
us/research/publication/cryptflow-secure-tensorflow-inference/

[16] G. Lample and A. Conneau, “Cross-lingual language model pretraining,”
33rd Conference on Neural Information Processing Systems (NeurIPS
2019), Vancouver, Canada., 2019.

[17] B. Lefaudeux, F. Massa, D. Liskovich, W. Xiong, V. Caggiano,
S. Naren, M. Xu, J. Hu, M. Tintore, and S. Zhang, “xForm-
ers: A modular and hackable Transformer modelling library,”
https://github.com/facebookresearch/xformers, 2021.

[18] A. Limted, “Arm security technology building a secure system using
trustzone technology,” 2016.

[19] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,
L. Zettlemoyer, and V. Stoyanov, “RoBERTa: A robustly optimized bert
pretraining approach,” arXiv preprint arXiv:1907.11692, 2019.

[20] S. Merity, C. Xiong, J. Bradbury, and R. Socher, “Pointer sentinel
mixture models,” arXiv preprint arXiv:1609.07843, 2016.

[21] K. G. Narra, Z. Lin, Y. Wang, K. Balasubramaniam, and M. Annavaram,
“Privacy-preserving inference in machine learning services using trusted
execution environments,” IEEE International Conference on Cloud Com-
puting, 2021.

[22] A. Patra and A. Suresh, “BLAZE: blazing fast privacy-preserving
machine learning,” CoRR, vol. abs/2005.09042, 2020. [Online].
Available: https://arxiv.org/abs/2005.09042

[23] T. Ryffel, P. Tholoniat, D. Pointcheval, and F. Bach, “Ariann:
Low-interaction privacy-preserving deep learning via function secret
sharing,” 2020. [Online]. Available: https://arxiv.org/abs/2006.04593

[24] X. Sun, P. Zhang, J. K. Liu, J. Yu, and W. Xie, “Private machine
learning classification based on fully homomorphic encryption,” IEEE
Transactions on Emerging Topics in Computing, vol. 8, no. 2, pp. 352–
364, 2020.

[25] S. Tan, B. Knott, Y. Tian, and D. J. Wu, “Cryptgpu: Fast privacy-
preserving machine learning on the gpu,” 2021. [Online]. Available:
https://arxiv.org/abs/2104.10949

[26] Y. Tay, M. Dehghani, D. Bahri, and D. Metzler, “Efficient
transformers: A survey,” 2020, cite arxiv:2009.06732. [Online].
Available: http://arxiv.org/abs/2009.06732

[27] D. L. C. Thekkath, M. Mitchell, P. Lincoln, D. Boneh, J. Mitchell,
and M. Horowitz, “Architectural support for copy and tamper resistant
software,” ACM SIGARCH Computer Architecture News, 2000.

[28] F. Tramèr and D. Boneh, “Slalom: Fast, verifiable and private ex-
ecution of neural networks in trusted hardware,” arXiv preprint
arXiv:1806.03287, 2019.

[29] A. Vaswani and N. Shazeer, “Attention is all you need,” 31st Conference
on Neural Information Processing Systems (NIPS 2017), Long Beach,
CA, USA., 2017.

[30] S. Wagh, S. Tople, F. Benhamouda, E. Kushilevitz, P. Mittal, and
T. Rabin, “FALCON: Honest-majority maliciously secure framework for
private deep learning,” Proceedings on Privacy Enhancing Technologies,
2020.

[31] S. Wang, B. Z. Li, M. Khabsa, H. Fang, and H. Ma, “Linformer:
Self-attention with linear complexity,” arXiv preprint arXiv:2006.04768,
2020.

[32] Y. Xiong, Z. Zeng, R. Chakraborty, M. Tan, G. Fung, Y. Li, and V. Singh,
“Nyströmformer: A nyström-based algorithm for approximating self-
attention,” Association for the Advancement of Artificial Intelligence,
2021.

[33] C. Yin, B. Acun, X. Liu, and C.-J. Wu, “TT-REC: Tensor train
compression for deep learning recommendation model embeddings,”
arXiv preprint arXiv:2101.11714, 2021.

