
Architecture of a 3D Software Stack for Peak Pentium® III Processor Performance 1

Architecture of a 3D Software Stack for Peak Pentium® III
Processor Performance

Paul M. Zagacki, Deep Buch,
Emile Hsieh, Daniel Melaku, Vladimir Pentkovski, Microprocessor Products Group, Intel Corp.

Hsien-Hsin Lee, EECS-ACAL, University of Michigan, Ann Arbor

Index words: 3D, Graphics, Performance, Pentium® III, Driver

ABSTRACT
In this paper, we analyze the benefits of key architectural
modifications to a conventional 3D graphics software
stack (application, library, and graphics driver). We do
not propose a new 3D pipeline architecture; rather, we
focus on improving the efficiency with which it is
practically implemented. It is certainly possible to target
specific layers of a 3D software stack for optimization and
to realize significant performance gains with the Pentium®
III processor and Internet Streaming SIMD Extensions.
However, we will show that optimizing the kernel layers of
the 3D software stack enables the user to take maximum
advantage of the latent capabilities of the Pentium III
processor. We use, as a case study, a geometry pipeline
implementation, the Architecture Geometry Engine,
developed by the Pentium III Architecture team (referred
to as ArchGE) and a 3D scene manager. In this paper, we
present performance data, based on our measurements, to
demonstrate the benefit of the architectural enhancements.

INTRODUCTION
The prohibitive cost of applying the algorithms necessary
to compute geometry and lighting in a conventional 3D
pipeline has long kept 3D in the realm of high-end
workstations. Figure 1 illustrates the classic 3D pipeline
structure, which consists of several key components.
First, the geometry and lighting calculations are performed
on the system’s host processor.1 The application’s 3D
models are transformed into their virtual worlds, and
lighting information is generated. These calculations are
done in either a popular 3D library (OpenGL* or

1This paper assumes a basic understanding of 3D
graphics. For an in-depth review of this material refer to
[1].

Microsoft’s Direct3D* for example) or by the application.
The generated information is then handed to another
component, a 3D graphics controller, for rasterization
(conversion into a 2D pixel representation of the image) on
the computer screen. Keeping these two components in
balance is one of the fundamental challenges that high-
performance 3D engine development must address.

 Figure 1: Typical 3D pipeline structure and its
associated application-level components

An increase in graphics’ controller performance means the
3D libraries built to deliver the geometry information to the
cards must also increase in performance to keep the
division of work in balance. The Internet Streaming SIMD
Extensions were developed, in part, to increase the
efficiency and throughput of the geometry and lighting
calculations thus realizing higher system performance.
However, to achieve peak 3D performance with the
Pentium® III processor, components beyond the kernel
level should also be optimized.

App. Level
Components:

3D Object Data

Geometry
Xform

Lighting

Rasterization

3D Application

3D Library

Graphics Card

API

Pipeline
Structure:

Intel Technology Journal Q2, 1999

Architecture of a 3D Software Stack for Peak Pentium® III Processor Performance 2

In order to demonstrate the peak 3D performance and
usage models for the Pentium III processor, we developed
the Architecture Geometry Engine (ArchGE) to fit into the
3D library layer (Figure 1). ArchGE incorporates the
Internet Streaming SIMD Extensions to boost the
geometry and lighting performance, but also adds two new
architectural extensions to a general purpose 3D library:

1. MultiPrimitive API extension

2. “Online” driver model

The exact kernel-level speedup achieved with Internet
Streaming SIMD Extensions over x87 code varies
depending on the type and number of lights (infinite, local,
specular, etc.), amount of clipping, primitive type, and
other content variables.2 When used in typical
transformation and lighting kernels, we expect to see 1.4-
2.0x the kernel-level performance over optimized x87
floating-point code for single light workloads. Workloads
with multiple lights and larger primitive sizes are expected
to see in excess of 2.0x the performance over optimized x87
implementations. Additionally, we have measured highly
tuned, custom engines that see 2.5x–2.75x kernel-level
performance. However, only a percentage of this kernel-
level performance translates into application-level
performance, the important measure for the consumer.
The application performance increase is governed by
Amdahl’s Law and is typically less at the application level
than at the kernel level unless additional optimizations to
the software stack are made [2].

The MultiPrimitive API extension allows an application to
gather all the primitives (e.g., strips, fans, vertex buffers)
that share identical render state information and submit
them in a single API call to the library. The MultiPrimitive
optimization has been shown to provide 17%-40% of
additional performance over conventional (single primitive
per call) methods for drawing primitives. The additional
performance is a result of the amortization of call overhead
and vertex prefetch costs over a greater number of vertices
being processed. The reduction of time spent in “startup”
cost translates to more time spent in useful geometry and
lighting computations that are accelerated by Streaming
SIMD Extensions.

The second key extension introduced in ArchGE is an
“online” driver (OLD). The OLD mechanism allows the
graphics controller’s driver to present the final destination

2Kernel-level performance for our study is defined as
including transformation, culling, specular lighting,
transposition into graphics controller vertex order from a
SIMD format, and storing the processed vertices to AGP
memory.

buffer for the transformed and lit vertices directly to the
geometry pipeline. Typically, in a general purpose API, all
the vertices are transformed and lit, then placed in a buffer
controlled by the library. The library signals the graphics
controller when it is safe to take the buffer and render the
information. When the buffer is ready, the device driver
must copy the data from the library’s buffer into the
controller’s memory (typically allocated in AGP memory).
There are three issues with this methodology. First,
moving large batches of transformed and lit vertices
between library and graphics memory exercises the
processor bus but not its computational throughput, thus
leading to inefficient use of available resources. Second,
this process typically generates excessive cache write-
back activity (moving modified lines from a smaller, faster
cache level to a larger and slower cache level or memory).
This tends to aggravate the loading of the processor
buses, reduce the efficiency of the cache hierarchy and
prefetch instructions, and reduce the throughput of
geometry computations. Third, the additional copy and
formatting of the data by a typical device driver can
increase driver execution times by up to 10x that of an
OLD approach. This time spent in additional data
movement is not time spent doing meaningful
computations. OLD solves each of these issues by
allowing the graphics pipeline to deposit transformed and
lit vertices into the graphics controller’s local memory, as
they are calculated. The “direct deposit” of vertex
information increases the concurrency between the
geometry and lighting computations (computation
intensive) with the storage of the results (bus intensive).
This increased concurrency has been demonstrated to
provide an additional application-level performance
speedup of 30%-80% relative to a typical offline driver
implementation.

The remainder of this paper discusses the following
methods of 3D software stack optimizations (see Figure 1)
and how these optimizations affect application-level
performance:

• 3D Library/API Layer: batch multiple primitives per
drawing command, single pass vs. multiple pass
geometry pipeline

• Device Driver/Graphics Controller Layer: online
driver delivery of processed vertices

• 3D Application Layer: object-level clipping and
render state sorting

With all of these optimizations in place, ArchGE is able to
display nearly 2x the peak application-level speedups of
optimized x87 floating-point pipelines on similarly
configured machines running identical workloads. While
existing 3D libraries and device drivers are able to perform

Intel Technology Journal Q2, 1999

Architecture of a 3D Software Stack for Peak Pentium® III Processor Performance 3

the computations necessary for real-time 3D graphics, the
techniques described in this paper add significantly to the
overall performance for such implementations.

AMDAHL’S LAW
Amdahl’s Law governs how much kernel-level speedup
translates into application-level performance. Simply
stated (using a 3D pipeline as an example), Amdahl’s Law
states that the amount of application-level speedup that
optimizing transformation and lighting produces is limited
to the percentage of time the software spends in this
optimized code.

The example in Figure 2 shows an application of Amdahl’s
Law to 3D. Here we apply the Pentium® III Internet
Streaming SIMD Extension instructions to transformation
and lighting within a 3D application stack. We show a 2x
kernel-level speedup and spend 50% of our time in these
3D geometry routines.

Speedup33.1

0.2
5.)5.1(

1

)1(

1

x

Speedup
Fraction

Fraction

imeExecutionT
imeExecutionT

Speedup

enhanced

enhanced
enhanced

new

old
overall

=
+−

=

+−
=

=

Figure 2: Amdahl’s Law for predicting application-level
performance applied to sample Xform and lighting

optimizations

Based on Figure 2, if the performance of transform and
lighting (3D library layer in Figure 1) increases 2x, yet only
50% of the total time is spent in this code, this translates
to an overall application speedup of 1.33x. While a 1.33x
performance increase is impressive, it is not quite the 2x
we saw at the kernel level. It is clear, that in addition to
porting transform and lighting routines to Internet
Streaming SIMD Extensions, it may also pay off
significantly to optimize other portions of the application
stack to achieve peak Pentium III processor performance.

Many of the optimization techniques described in the
following sections of this paper are designed to help
defeat the performance-limiting affects of Amdahl’s Law
by increasing the time spent in the “enhanced” code
segments.

3D LIBRARY AND API OPTIMIZATIONS
There are several popular 3D libraries and countless
custom engines available to handle most of the details
behind manipulating objects in three dimensions and
displaying them on a 2D monitor. Existing 3D libraries
typically have architectures that may potentially limit the
performance an application can realize on a processor like
the Pentium® III processor.

Multi-Pass Vertex Processing
Current 3D libraries normally have a multiple-pass
structure for operating on input vertex information. In a
multi-pass geometry pipeline, the vertices are processed
through several individual loops. Each loop processes all
the vertices submitted to the pipeline through
transformation, backfaced culling (removal of non-forward
facing triangles) and then lighting (MP half of Figure 3).
There are two issues with this approach:

1. Complicated cache management code

2. Small basic code block sizes with which to interleave
memory and computation instructions

Multi-pass processing is heavily dependent on cache
management and potentially breaking vertex blocks,
submitted for transformation and lighting, into cache sized
increments. After absorbing all of the cache misses
incurred during the transformation phase, the pipeline
should not also have to service misses during the culling
and lighting portions (even if the data stays in the L2
cache, there is still a small penalty to access it).

In addition to the extra programming efforts to directly
manage cache usage for a multi-pass implementation, a
small basic code block size makes it difficult to effectively
interleave memory accesses and computation. Ideally, the
memory leadoff/latency times for a loop should be
balanced by the computation time within that loop. In a
multi-pass pipe there is rarely enough computation per
loop iteration to balance the load/store requirements. This
makes our critical code sections memory bound and not
very scalable as processor core frequency increases.
(System memory performance historically lags behind
processor performance.)

Intel Technology Journal Q2, 1999

Architecture of a 3D Software Stack for Peak Pentium® III Processor Performance 4

Figure 3: Multi-pass (MP) vs. single-pass (SP) geometry
pipe (T = transform, C = backface cull,

L = light, n= number of iterations,
N = number of vertices)

Single-Pass Vertex Processing
In order to address the issues of a multi-pass pipeline
structure, ArchGE implements the single-pass (SP)
methodology shown in Figure 3. The key difference in
this approach is that a few vertices are processed through
transform, culling, lighting, and writing to the graphics
controller’s memory in a single loop.3 This eliminates the
need to add code to carefully manage cache utilization and
also increases the basic block size significantly. The
Internet Streaming SIMD Extension PREFETCH
instruction is used to hide memory latency behind the
computation performed in the pipe. Data, which will be
transformed (x, y, z coordinate information) during the next
iteration of the loop, is brought into the cache while
transforming the current vertex. The same methodology
applies to normals and texture coordinate(s) values during
lighting computation.

By using PREFETCH instructions and implementing a
large basic block, ArchGE is able to significantly increase
the concurrency between the memory and computation.
Our studies have shown that, as a result of this increase in
coherency, a single-pass pipeline is 20%-30% faster then
an optimized multi-pass pipeline. Since the ArchGE pipe
tends to be more compute bound than its multi-pass

3In the case of ArchGE a few vertices is actually four,
which nicely correlates to the Pentium® III processor’s
internet S.S.E. register width.

counterpart, it should also scale more effectively with
processor frequency.

MultiPrimitive API Extension
How vertices are submitted to a geometry pipe is almost as
important as how they are processed. Most 3D libraries
support many different ways to pass the application vertex
information through the application programmer interface
(API4). Vertices are grouped together into primitives
(typically triangle-based) by the application and then
passed to the library for transformation, lighting, and then
rasterization by the graphics controller. OpenGL*, for
instance, supports ten types of these primitives ranging in
complexity from individual points to quadrilateral strips
[4]. Since most graphics controllers accept information in
triangle-based format, these are currently the most popular
primitive types. Figure 4 demonstrates three such
primitives.

Figure 4: Different triangle primitive types and the
vertices necessary to draw them

Most existing graphics libraries allow an application to
submit only one primitive at a time for processing. This
means that an application can only process one triangle
strip, one triangle fan, or one indexed list of vertices per
function call (or whatever primitives are supported by the
library). Since most primitives are comprised of relatively
few vertices, the overhead involved in just making the
function call to process each individual primitive becomes
significant.5

4 The API is the set of function calls a program can make
to interact with a library.
5 This observation is based on a study of several current
games and benchmarks. A similar observation was made

T

L

C

T

C

SPMP

L

n = N n = 1

n = N

n = N

1

3

2

1

5

4

3

2

5

4

3

2

1

3

2

1

3

2

1

5

4

1

3

2

Discrete Triangles: 3 Tris = 9 Verts

Triangle Strip: 3 Tris = 5 Verts Triangle Fan: 3 Tris = 5 Verts

Intel Technology Journal Q2, 1999

Architecture of a 3D Software Stack for Peak Pentium® III Processor Performance 5

The overhead for processing a single primitive can be
broken into two parts: additional instructions outside of
geometry computations and memory de-pipelining. The
obvious source of additional work is the added
instructions and cycles necessary to push and pop
parameters, set up transform matrices and lighting
information, validate parameters, etc. This was measured
to be on the order of a thousand cycles per call in some
popular libraries. This is a very significant amount of time
if the application is submitting a small number of vertices
per call.

In the ideal case, the Pentium III processor with Internet
Streaming SIMD Extensions allows for almost complete
overlap of memory accesses and computation. This is
achieved by fully pipelining memory accesses using the
PREFETCH instruction (lower portion of Figure 5).

Figure 5: Ideal picture of increased memory and
computational concurrency within a 3D pipeline

Each box in Figure 5 represents a block of processing time
in a simplified 3D pipeline. The top portion of the figure is
a conventional pipe, with serial memory and computation
(a simplification since even older processor families allow
for a small amount of concurrency between memory and
computation). The bottom portion of Figure 5 shows what
can be achieved by utilizing the PREFETCH and streaming
store features of the Pentium III processor. Practically,
however, an effect we refer to as "memory de-pipelining"
occurs at primitive boundaries causing the total time in our
ideal case to stretch somewhat [8]. For example, there can
be "startup costs" associated with prefetching the first
several vertices of a primitive during which computation is
effectively stalled waiting for the data. For nested loops,
memory de-pipelining can occur during the interval
between the last iteration of an inner loop and the next
iteration of its associated outer loop.

by [11] regarding some of the ViewPerf benchmark
datasets.

Figure 6: Memory de-pipelining between two short
primitives

Figure 6 shows a graphical example of the effects of
memory de-pipelining. In the figure, the large boxes
represent the amount of time to do normal computation
plus the time spent waiting for initial PREFETCH
instructions to return data to the cache (which delays
completion for several of the initial iterations of geometry
processing). The smaller boxes represent the amount of
time necessary to complete computation in the steady-
state.

The recommended technique to alleviate the performance
issue of memory de-pipelining is "prefetch
concatenation." Concatenation can bridge the execution
pipeline bubbles between the boundary of an inner loop
and its associated outer loop by using the PREFETCH
instruction to “look ahead” to the next outer loop iteration.
In the example outlined in Figure 6, the geometry pipeline
“looks ahead” across primitive boundaries. It is clear that
if an API only allows an application to submit a single
primitive per call, this technique cannot be used at
primitive boundaries to amortize the memory start-up costs
for each primitive submitted for processing. This is
especially important when dealing with primitives
containing relatively few vertices (less then 100).

In order to reduce both the impact of an application calling
through the API layer for every primitive and the memory
de-pipelining effects, ArchGE implements a MultiPrimitive
method for passing primitives to the geometry engine.
This allows an application to pass a list of primitives and a
corresponding list of primitive lengths to ArchGE with one
call. MultiPrimitive generates a 40% increase in
application-level performance for the ArchGE/Scene
Manager software stack. Figure 7 shows details of the
sensitivity of MultiPrimitive to primitive size and the
number of primitives in a batch. In the best case of small
primitives with many primitives in each call, MultiPrimitive
achieves over 400% the performance of a single primitive
API. At the low end of the spectrum, very large primitives
(65 – 120 vertices per primitive) with only two per call,
MultiPrimitive is still able to achieve a 20% increase in
application-level performance. Based on studies of
existing games and benchmarks, we anticipate that this
feature could potentially generate a 30%-40% application-
level speedup for typical workloads.

Xform Lighting

Fetch vertices Xform Lighting Driver Loop

Write cmdsPrefetch vertexes

Tread Txform

Tlit

Twrite

Tread

Tlit

Twrite

Memory pipe

Txform

SIMD-FP pipe

= Startup Cost + Computation Cost

= Computation Cost
}

Memory de-pipelining
affect after second

iteration

Without PREFETCH Concatenation

With PREFETCH Concatenation

Intel Technology Journal Q2, 1999

Architecture of a 3D Software Stack for Peak Pentium® III Processor Performance 6

The results in Figure 7 were generated by varying two
variables: the maximum vertices per primitive and the
number of primitives per batch. As we increase the
maximum number of vertices allowed per primitive, the
average number of vertices per primitive does not
necessarily increase in a linear fashion (along the x-axis).
The scene used for the experiment documented by Figure
7 had an original structure of 66 vertices per primitive on
average. As we get closer to the original maximum
average primitive size, moving right along the x-axis in
Figure 7, a compression in the x-axis result occurs because
additional vertices on a per-primitive basis do not affect
the end average to any great extent.

DEVICE DRIVER OPTIMIZATION
Some conventional 3D libraries implement an offline driver
model. Vertices are transformed, lit, and then stored in a
temporary location within cacheable memory. The
geometry engine then signals the graphics controller’s
driver that the buffer is ready, and the device driver begins
to move the information from the temporary, cacheable
memory to local memory controller memory (typically in a
write-combinable and uncacheable memory range6).
Looking back at the top portion of Figure 5, we can easily
see that this will hurt the concurrency we are trying to

6 See [9] for more information on Pentium® III processor
memory type definitions.

build between memory access and computations. The
conventional driver portion of the time is indicated by the
“Driver Loop” time bar.

In addition to reduced concurrency within a typical
geometry pipeline, offline driver models also have a
tendency to upset the utilization of the external bus (the
bus between any CPU core and memory). Many cache
lines are modified in the process of storing all of the
command and vertex information for a primitive (post
transform and lighting information). This can easily
evaporate all the careful cache utilization work done in the
application and the transform and lighting routines by
writing unanticipated data to the caches. Quickly, the
application finds itself faced with modified cache lines that
need eviction prior to pulling fresh cache lines that
contain the current data necessary for computation. The
modified line evictions cause an unnecessary load on
internal and external busses and can significantly hurt
algorithm performance.

ArchGE solved both the problem of decreased
concurrency between memory and computation and the
issue of inefficient cache management by implementing a
different driver model. OLD differs from a conventional
driver model in one simple area: a large temporary buffer
for transformed and lit vertex information is not required.
With OLD, vertices are transformed and lit (four at a time
in our single pass implementation) and then stored
immediately to memory presented by the graphics

MultiPrimitive Application Speedup vs. Primitive Length

1.000

2.000

3.000

4.000

4

11
.20

17
.80

23
.81

31
.17

39
.06

53
.17

53
.17

56
.94

56
.94

56
.94

59
.11

60
.28

60
.28

60
.28

60
.28

60
.28

65
.46

Average Verts/Primitive

S
pe

ed
up

No MultiPrimitive
2 Prims/MultiPrimitive
3 Prims/MultiPrimitive
4 Prims/MultiPrimitive
5 Prims/MultiPrimitive
6 Prims/MultiPrimitive
7 Prims/MultiPrimitive
8 Prims/MultiPrimitive
9 Prims/MultiPrimitive
10 Prims/MultiPrimitive
Default Prims/MultiPrimitive

Best Case Speedup with high number
of small primitives per MP Call

Typical Speedup in range of 1.20x -
1.40x

Figure 7: MultiPrimitive speedup sensitivity to primitive size and the number of primitives batched with each call (x-axis is non-
linear)

Intel Technology Journal Q2, 1999

Architecture of a 3D Software Stack for Peak Pentium® III Processor Performance 7

controller. ArchGE implemented an OLD mechanism for a
commercially available high-performance graphics
controller. In the ArchGE geometry pipeline, four vertices
are transformed, lit (if visible), and deposited directly in
the graphics controller’s memory. Since only small blocks
of vertex and command information are stored directly to
memory, we have increased the concurrency between the
computation in transform and lighting and have also
decreased the effects of excessive cacheable writes.

Figure 8: Application-level performance achievable with
online vs. conventional driver models

Two very significant results were achieved with the
implementation of an OLD in ArchGE. The first was the
level of application speedup shown by this device driver
model. Figure 8 demonstrates some of the possibilities of
the online driver methodology. We measured three
different scenes of varying complexity. The first scene in
the chart, Scene 1, generates a 1.8x speedup over the same
scene run with an offline driver in ArchGE. The high level
of performance increase is attributable to the fact that the
scene is very geometry intensive (approximately 82,000
vertices submitted per frame for processing) and is not
bound by graphics controller fill rates (mostly small
triangles). Thus, Scene 1 is more sensitive to processor
capabilities and available bus bandwidth. With no
external limitations on the performance of this workload,
OLD is able to show close to peak performance.

The second scene in the chart, labeled Scene 2, is a close-
up view of the first one and is much more sensitive to
graphics controller fill rates. The somewhat lower
speedup, 1.30x over a conventional driver model (vs. 1.8x
for Scene 1) reflects the scene’s sensitivity to fill rate.
Finally, the third scene measured, Scene 3, shows a 1.17x
performance delta over an offline driver. The third scene
represents what we feel to be the worst-case content for
ArchGE, since the geometric complexity of the content is

relatively low, and the fill rate requirements are quite high,
which make the graphics controller the performance
bottleneck.

Figure 8 shows the large range of performance that is
possible by implementing an online driver model. Our
studies on the content of current games and benchmarks
have indicated that results achievable fall between the
peak of 1.8x and 1.3x. Tuning of the content for the third
scene should yield results that fall into this range.

Increasing the amount of time spent transforming and
lighting vertices is an additional effect of an online driver.
With all of the additional time spent in code optimized with
the Pentium® III processor’s Internet Streaming SIMD
Extension instructions, we are able to get much closer to
the theoretical speedup generated by kernel-level
optimizations of transformation and lighting (according to
Amdahl’s Law described previously). Figure 9 clearly
displays the additional amount of time spent in meaningful
computation in the case of the online driver. The pie-chart
on the left of Figure 9 shows that 90% of our time is spent
in the ArchGE library transforming and lighting vertices.
In contrast, the pie-chart on the right of Figure 9 shows
only 50% of our time in transformation and lighting, while
we spend 46% of our time in device driver code (copying
vertices to the graphics controller’s local memory). Both
of the profiles shown were generated using ArchGE on a
very complex scene, which is not limited by graphics card
fill rates.

The online driver feature translates into more time spent
transforming and lighting vertices and less time moving
data in and out of the cache hierarchy. The increase in
focus on transformation and lighting (coupled with the
optimizations possible with the Pentium III processor)
allows an application to increase the level of content and
generate a more realistic user experience. Our
measurements have shown realistic speedups in the range
of 1.8x to 1.3x with an online driver.

3D APPLICATION LAYER
OPTIMIZATIONS
Optimizing a 3D application stack starts at the very top,
with the application code and the content itself. The
structure of the content (type of primitive, number of
vertices per scene, amount of textures, etc.) has a huge
impact on the performance of an application. The manner
with which this content is presented to the 3D library layer
is also very important. The scene manager used in our
study implements a few key optimizations that generate
significant benefits.

Application Level Speedup w/Online Driver

1.85

1.30

1.17
1.0
1.1

1.2
1.3
1.4

1.5
1.6
1.7

1.8
1.9

Scene 1 Scene 2 Scene 3

Scene

S
p

ee
d

u
p

Intel Technology Journal Q2, 1999

Architecture of a 3D Software Stack for Peak Pentium® III Processor Performance 8

Render State Sorting
In order to convert the scene manager’s 3D models into
pictures on the screen, they must maintain a render state.
The render state is a collection of information that tells the
geometry engine and the graphics controller how to
process incoming information (and display it on the
screen). A render state contains information ranging from
various transform matrix values to texture map addresses,
which should be selected by the graphics card for
rasterization.7 Switching any portion of the render state,
within a standard 3D library, is very expensive for the
application.

The first cost associated with render state changes is in
the 3D library itself. For the most part, a call into the 3D
library to alter the current state involves a large number of
processor cycles. Some of this time is spent in the library
routine validating the new state and manipulating state
variables. Another chunk of time goes to the device
driver, where it typically goes through its own process of
validation and setup.

The second cost of frequent render state changes is
exhibited by the 3D graphics card. As graphics card
frequencies and performance increase, so do the depths of
their rasterization pipelines. It is typically necessary to
flush the raster pipe of existing primitives and only restart
after this has completed. This flushing leads to excessive
bubbles in the rasterization pipeline and a less than
effective utilization of precious pixel fill and triangle setup
rate bandwidth.

7Rasterization is the process by which a graphics
controller converts geometry information into pixel
position and color information on a computer monitor.

By identifying the types of render states utilized and
grouping primitives by distinct state setting at the time of
the creation of the model/scene graph, our application was
able to eliminate much of this overhead.

Object-Level Clipping
There are various ways a 3D application can avoid
processing non-visible geometry. Our application uses
bounding boxes around portions of the scene being
processed to trivially accept or reject the primitives for
further processing. The scene manager compares the
points, which define the corners of the bounding box, with
the dimensions of the viewport. There are three possible
results of this comparison:

1. Completely outside of the viewing frustum; reject
from further processing

2. Completely inside of the viewing frustum; submit for
processing and indicate that no clipping is necessary

3. Points on the bounding box straddle the viewing
frustum; submit for processing and indicate that
clipping may be necessary8

8 For more information regarding clipping primitives,
please see [5] and [6].

CPU Time - Online Driver Model

ArchGE
90%

Application
3%

API Layer
3%

Driver
4%

CPU Time - Conventional Driver Model

ArchGE
50%

Driver
46%

API Layer
2%

Application
2%

Figure 9: Effects of an online driver model to time spent in computation vs. data formating and movement

Intel Technology Journal Q2, 1999

Architecture of a 3D Software Stack for Peak Pentium® III Processor Performance 9

Figure 10: Application-level performance difference with
bounding boxes turned on

Using a bounding box with eight corner points for this
comparison can save much processing time. The
comparison involves transforming all the vertices for the
primitive from their own object space into world or screen
space. With a bounding box, only the eight corner points
need to be checked. To check an individual point against
an arbitrary bounding plane requires a minimum of four
multiplication and three addition operations. These
operations need to happen for the top, bottom, right, left,
front, and back planes on the viewing frustum (a total of
six planes). This becomes a total of 24 multiplication and
18 addition operations per point to account for each plane
[3].

Implementing bounding boxes around 3D models
minimizes the amount of computation necessary to trivially
accept or reject vertices for further processing. Examples
of the application-level performance impact of this
optimization can be seen in Figure 10. This chart
demonstrates a significant, application-level performance
impact with bounding boxes enabled for object-level
clipping. This effect was measured by turning the feature
on or off within the application on three different scenes
of varying geometric complexity. (Scene 1 contains the
greatest number of vertices and Scene 3 the least.)

During our study on bounding box usage, we discovered
that you can actually use too many bounding boxes
around elements of a scene. The minimum number of
vertices to include in a bounding box depends on many
different factors and should be experimented with to

determine what will work most effectively in any particular
3D software stack.

Implementing render state sorting and object-level
clipping in our application layer has the potential to
significantly boost the performance of the optimized
ArchGE engine. The object-level clipping shows a 16%-
35% application-level performance increase, and it brings
ArchGE closer to peak Pentium® III processor
performance by at least that much.

CONCLUSION
Software applications are exploiting more 3D graphics than
ever before. The Pentium® III processor, with its Internet
Streaming SIMD Extension instructions, can boost
performance on 3D transformation and lighting over 2x
that of optimized floating-point instructions. However, as
shown in this paper, all of this kernel-level performance
does not translate directly into application-level
performance.

What we have outlined in this paper is a series of
architectural optimizations for various levels of the 3D
application software stack. Such optimizations can bring
applications closer to realizing peak Pentium III
performance for typical 3D graphics workloads. Utilizing a
tuned scene manager and our ArchGE geometry engine,
we are able to demonstrate close to 2x the application-level
speedup of the Pentium® II processor at the same
frequency on the Pentium III processor on a general
purpose 3D software stack.

ACKNOWLEDGMENTS
All of the work and results outlined in this paper could not
have been achieved without the significant help of the
following people and organizations:

• BMD Architecture: We acknowledge Ken Castro for
keeping our development and measurement process
smooth with outstanding lab support.

• MAP-PBA: We acknowledge Shervin Kheradpir and
Jeff Ma for developing the scene management
software to support ArchGE and various experiments.

• PMD Architecture: We acknowledge Tom Huff for
participating in discussions on ArchGE features, code
reviews, and recommended improvements.

• GCD: We acknowledge Peter Doyle for his work on
the definition of the i740™ definition of the online
driver.

• PDD: We acknowledge Gerry Blank and Brandon
Fliflet for prototyping and implementing the i740™
version of the online driver.

Scene Name Perf. Diff. FPS w/BBoxes FPS wout/BBoxes
Scene 1 1.35 43.6 32.19
Scene 2 1.30 47.6 36.71
Scene 3 1.16 38 32.86

1.35

1.30

1.16

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

Scene 1 Scene 2 Scene 3

Scene Name

A
p

p
. L

ev
el

 D
if

fe
re

n
ce

Intel Technology Journal Q2, 1999

Architecture of a 3D Software Stack for Peak Pentium® III Processor Performance 10

• 3dfx Interactive, Inc.: We acknowledge Colyn Case
and Andrew Hanson for helping to define and
develop a Voodoo2TM* version of the online driver for
ArchGE that was used to generate much of the
experimental data in this paper.

REFERENCES
[1] James D Foley, Andries van Dam, Steven K. Feiner,

and John F. Hughes, Computer Graphics: Principles
and Practice, Morgan Kaufmann, San Francisco, CA,
pp. 29-31.

[2] David A. Patterson and John L. Hennessy, Computer
Architecture: A Quantitative Approach, Addison-
Wesley, Menlo Park, CA, pp. 201-283.

[3] David A. Patterson and John L. Hennessy, Computer
Architecture: A Quantitative Approach, Addison-
Wesley, Menlo Park, CA, pp. 868.

[4] Mason Woo, Jackie Neider, and Tom Davis, OpenGL®
Programming Guide: Second Edition, Addison-
Wesley, Menlo Park, CA, pp. 42-45.

[5] Jim F. Blinn. and Martin E. Newell, “Clipping Using
Homogeneous Coordinates,” SigGraph 1978
Proceedings, pp. 245-251.

[6] Jim F. Blinn, Jim Blinn’s Corner: A Trip Down the
Graphics Pipeline, Morgan Kaufmann, San Francisco,
CA, pp. 122-134.

[7] Intel® Architecture Optimization Reference Manual,
available at
http://developer.intel.com/design/PentiumIII/manuals/

[8] Intel® Architecture Optimization Reference Manual,
pp. 6-13 – 6-15.

[9] Intel® Architecture Software Developer’s Manual,
Volume 3: System Programming Guide, pp. 9-4 – 9-13.
Available at
http://developer.intel.com/design/PentiumIII/manuals/

[10] Intel® Architecture Optimization Reference Manual,
pp. 6-6 – 6-9.

[11] Chia-Lin Yang, Barton Sano, and Alvin R. Lebeck,
“Exploiting Instruction Level Parallelism in Geometry
Processing for Three Dimensional Graphics
Applications,” Technical Report CS-1998-14,
Computer Science Department, Duke University,
September 1998.

AUTHORS’ BIOGRAPHIES
Paul Zagacki is a senior processor architect for the
Microprocessor Products Group in Folsom, CA. He holds
a B.S. degree in computer science from the University of
Michigan, Ann Arbor. He has worked for Intel since 1994
in the areas of high-level performance modeling for
microprocessor architectures, Pentium® III processor
software and benchmark analysis and optimization, and 3D
graphics implementation, performance analysis, and
tuning. His professional interests include computer
architecture/microarchitecture, 3D graphics, compiler
performance, and software/hardware performance
analysis. His e-mail is paul.zagacki@intel.com.

Deep Buch is a staff processor architect in the
Microprocessor Products Group in Folsom, CA. He
received an M.Tech degree in electrical engineering from
the Indian Institute of Technology, Bombay, in 1989. He
has been working for Intel since 1993 in the areas of
processor architecture, platform technologies, and 3D
graphics. Prior to joining Intel, Deep was a hardware
specialist at Wipro Infotech R&D in Bangalore, India,
working on ASIC and system level design. His interests
are computer architecture, multimedia and
communications. His e-mail is deep.k.buch@intel.com.

Emile Hsieh is a senior processor architect in the
Microprocessor Product Group in Folsom, CA. He holds a
B.S. degree from the National Taiwan University, Taipei,
Taiwan, and a M.S. degree from Purdue University, West
Lafayettte, IN, all in electrical engineering. His research
interests include computer architecture, performance
modeling and analysis, compilers, graphics, signal
processing, and communications. His e-mail is
emile.hsieh@intel.com.

Hsien-Hsin Lee is presently a Ph.D. candidate in computer
science and engineering at the University of Michigan.
From 1995 to 1998, Hsien-Hsin was a senior processor
architect for the Microprocessor Products Group in
Folsom, CA. While there he worked on design and
performance modeling for the Pentium® Pro, Pentium® II
and Pentium III processors. He holds a B.S.E.E. degree
from the National Tsinghua University, Taiwan and an
M.S.E. degree from the University of Michigan. His
research interests include microarchitecture, memory
system design, ILP optimization, and graphics
architectures. His e-mail is linear@eecs.umich.edu.

Daniel Melaku is a processor architect for the
Microprocessor Products Group in Folsom, CA. He holds
a B.S. degree in computer engineering from California State
University, Sacramento. Daniel has been with Intel since
1997, and has worked in the areas of performance
projection, validation, and tool development. His interests

Intel Technology Journal Q2, 1999

Architecture of a 3D Software Stack for Peak Pentium® III Processor Performance 11

include digital signal processing, computer animation,
voice and image recognition, and artificial intelligence. His
e-mail is daniel.melaku@intel.com.

Vladimir Pentkovski is a Principal Engineer in the
Microprocessor Product Group in Folsom. He was one of
the architects in the core team that defined the Internet
Streaming SIMD Extensions for the IA-32 architecture.
Vladimir led the development of the Pentium III processor
architecture and performance analysis. Previously he led
the development of compilers and software and hardware
support for programming languages for Elbrus multi-
processor computers in Russia. Vladimir holds a Doctor of
Science degree and a Ph.D. in computer science and
engineering from Russia. His e-mail is
vladimir.m.pentkovski@intel.com.

