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Abstract

Secure processor architectures enable new sets of applications such as commercial grid computing, software copy protection and secure
mobile agents by providing secure computing environments that are immune to both physical and software attacks. Despite a number of
secure processor designs have been proposed, they typically made trade-offs between security and efficiency. This article proposes a new
secure processor architecture called M-TREE, which offers a significant performance gain while without compromising security. The M-
TREE architecture uses a novel hierarchical Message Authentication Code Tree (MACTree) for protecting applications’ integrity at a minimal
performance overhead. M-TREE also introduces a new one-time-pad class encryption mechanism that accelerates security computation over
the existing block cipher-based schemes with high security guarantee. Based on the results of our performance simulation, the performance
overhead of the M-TREE integrity check mechanism is as small as 14% in the worst case, a substantial improvement over the 60% slowdown
reported by previously proposed techniques. Meanwhile, the overhead of M-TREE encryption scheme is approximately 30%, compared to
50% of using block cipher encryption. In overall, our M-TREE architecture can provide a tamper-resistant and tamper-evident computing
environment with low-performance impact, thereby offering a transparent and practical security computing platform.
© 2006 Elsevier Inc. All rights reserved.
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0. Introduction

Recently, there is a growing interest in integrating secu-
rity features into processor architecture [6,13,17] for provid-
ing digital copyright protection, software confidentiality, ability
for anti-reverse engineering, or security guarantee for running
trusted applications on remote computing devices, to name a
few. These security architectures rely on new tamper-resistant
processors and certain cryptographic hardware for supporting a
tamper-resistant and tamper-evident (TE) computing environ-
ment. The security implication is that data inside the processor
die are protected while every data bit outside the die, particu-
larly when stored in memory or transferred over the external
buses, are assumed unsafe and subject to attacks. An effective
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security processor system should guarantee applications robust
protection and immunity so that privacy and secrets of com-
putational information will not be compromised by either soft-
ware attacks or hardware-based physical tampering.

Despite a few security architectures were proposed
[13,17,24], severe performance degradation still remains a
major issue to be resolved in order to make them practical.
The challenge is that when running applications, the traffic be-
tween the processor and off-chip memory can be very frequent.
When a data item crosses the protection boundary, it needs
to be encrypted/decrypted and checking of its integrity must
be performed. In many cases, the performance overhead due
to cryptographic computation increases the critical path tim-
ing, leading to substantial performance degradation. Besides
the performance impact, some proposed schemes also incur a
significant capacity increase in system memory as well.

In practice, the performance degradation could be more
severe for memory-bound applications where the demand for
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memory is high. There were other cost-effective cryptographic
schemes proposed [24,18] with performance in mind as the
design objective, however, these techniques typically achieve
performance improvement at the risk of weakening security.
Therefore, it remains crucial to explore new cryptographic
schemes for performance improvement while maintaining a
high security level at the same time.

In this article, we present a new secure processor architecture,
M-TREE that offers a strong security protection with a min-
imal performance impact. The M-TREE architecture employs
a hierarchical message authentication code Tree (MACTree)
for guaranteeing the integrity of applications. The MACTree
scheme uses a 32-bit message authentication code (MAC) value
for each tree node. Our analysis also shows that the MACTree
scheme is as strong as the prior proposed schemes (e.g. CHTree
in [6]) with a substantially lower-performance impact. The M-
TREE encryption scheme also employs a one-time-pad (OTP)
cipher [1,15] for protecting the confidentiality of applications,
similar to what were proposed independently by [24,18], while
our scheme addresses the security flaws found in these propos-
als. The M-TREE integrity protection scheme and the encryp-
tion scheme can be applied independently to provide a TE or a
private computing environment. On the other hand, they can be
combined to provide a complete tamper-resistant and private
environment.

The rest of this article is organized as follows. Section 1 dis-
cusses the related work of secure processor architectures and
our motivation. In Sections 2 and 3, we present our MACTree-
based integrity checking scheme and the encryption scheme
and propose the M-TREE architecture. The security and perfor-
mance of the M-TREE architecture are evaluated against other
existing techniques in Section 4. Finally, Section 5 concludes
this work.

1. Related work and motivation

To prevent adversaries or unauthorized parties from compro-
mising trusted applications is becoming a major challenge not
only to software developers but also to processor architects and
system designers. To combat these malicious exploits, alliance
such as Trusted Computing Group (TCG) [20] was formed
across a variety of industry segments to tackle the information
security issues. An interesting trend is to define and incorpo-
rate security enhancements into the processor hardware directly
such as Intel’s LaGrande Technology [9]. A few other thrusts
in academia also attempt the issues in a similar approach.

XOM [13] pioneered the design of a secure processor ar-
chitecture to protect trusted applications from physical attacks.
The security of the XOM architecture is achieved by a tamper-
resistant processor design. Data within the processor die are as-
sumed secure and stored in plaintext while those data stored in
off-chip memory and peripherals are all protected via encryp-
tion as they are subject to software and physical attacks. Only
when the data and instructions are brought into the tamper-
resistant processor will they be decrypted and stored on-chip in
plaintext. When executing applications, the architectures ensure
that sensitive data and instructions of an application will not

be revealed by untrusted parties at any given time. As the per-
formance overhead of encryption/decryption is critical, XOM
accelerates the process with a dedicated crypto-hardware. Suh
et al. improved XOM’s approach with the AEGIS secure pro-
cessor architecture design [17] in which both privacy and in-
tegrity of applications are protected. They also described the
implementation of a secure environment with a block cipher
encryption and a CHTree integrity checking scheme [6].

The CHTree scheme in AEGIS was designed for protecting
the integrity of an application by constructing a m-ary hash tree
where m is the number of child nodes per parent node has and
is equal to the size of the cache line divided by the size of hash
values. The AEGIS settings use a 128-bit hash value and 512-
bit, 1024-bit cache lines, i.e. m is 4 and 8, respectively. The
integrity check of a cache line using the hash tree costs logm(L)

hashing computations, assuming there are L data cache lines
in the application. The overhead can be large when m is small.
Their simulation results showed that the CHTree scheme slows
down the execution by 20% for most of the benchmark program
with a worst case of 50%. In addition, the CHTree scheme
consumes a large memory space for storing the hash tree. The
memory overheads of the CHTree scheme are 33% and 14%
for a 512-bit and a 1024-bit cache line, respectively. The block
cipher encryption scheme is used for both AEGIS and XOM for
protecting confidentiality of applications. When a cache line is
brought in from memory, the line must be decrypted prior to use.
The encryption increases the memory latency, thus resulting
in a considerable performance loss. The original block cipher
encryption scheme has an up to 25% performance degradation
for confidentiality protection, with a 1 MB cache and a 512-bit
cache line used in the study.

Several new cryptographic designs have been proposed
since to improve the performance of the CHTree scheme and
the block cipher encryption. For example, the LHash integrity
check and a few OTP-class encryption schemes. Unfortunately,
even though these techniques could improve performance with
security enhancement, yet they achieve the goal at the cost of
potentially reducing the level of security.

The Log Hash integrity checking scheme (LHash) [18] im-
proves performance by logging memory operations and check-
ing integrity only when a large number of memory operations
are accumulated. The drawback lies in the delay of integrity
check. Under certain circumstances, it is desirable to check the
integrity on a per-instruction basis for detecting attacks such as
when an adversary injects their instructions into a cache line.
If the integrity check is delayed, the damage might be difficult
to recover. As shown in [18], the LHash scheme outperforms
the CHTree scheme only when the integrity check is performed
for every 106 memory accesses or more. In other words, the
LHash scheme leaves a long vulnerable instruction window for
adversaries without any integrity check.

In [18], the performance of confidentiality protection was im-
proved by replacing the block cipher encryption with an OTP-
class encryption. The OTP-class encryption inserts a timestamp
at the beginning of each cache line. When the cache line is read
from memory, the processor will bring in its associated times-
tamp first. Once the timestamp arrives, the processor starts to
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compute the OTP, an encrypted value of the timestamp, the
cache line virtual address and padding using AES. The com-
putation can be performed in parallel with the fetching of the
remaining cache line chunks. When all cache line chunks ar-
rive and the OTP is computed, decryption will be performed
by XORing the OTP and the encrypted cache line just fetched.
The OTP approach improves the performance by hiding partial
decryption delay behind the memory access. Yang et al. pro-
posed a similar scheme in [24] for performance improvement
for protecting confidentiality. Moreover, both proposed OTP
schemes contain some flaws. More details are to be discussed
in Section 2.2.2.

2. The M-TREE integrity protection and encryption
scheme

Assume that an application under protection is divided into
data blocks of equal size, each equivalent to a 256-bit cache
line. The protected application owns a set of secret tokens that
contains the secret key (or Sec Key) and other crucial informa-
tion such as an initial counter value (ICnt), encrypted using
the processor’s public key. When a program starts execution
in a secure environment, it first passes the secret tokens to the
processor for decrypting the application’s secret key which will
then be used to protect the privacy and the integrity of the ap-
plication for data outside the protection boundary.

2.1. M-TREE integrity protection scheme—MACTree

For guaranteeing a TE computing environment, any unautho-
rized modification attempts to applications running on the sys-
tem must be detected via a robust integrity checking design. In
addition to its effectiveness, the design goal of such an integrity
protection scheme is high performance without compromising
security. In other words, the hardware support for a TE comput-
ing environment needs to be transparent to the users. Toward
this goal, we propose a novel scheme called MACTree integrity
protection. We describe the integrity tree construction and an-
alyze its security and efficiency in the following sections.

2.1.1. MACTree construction
Our proposed integrity checking scheme, MACTree, uses 32-

bit MAC nodes to construct an m-ary MAC tree. Note that a
conventional MAC requires at least 128-bit to ensure a suffi-
cient security level. However, as shown in prior study discussed
in Section 1, using 128-bit MAC nodes suffers a substantial
performance loss due to a large number of hash computations
and storage overhead. Therefore, more deliberate support must
be developed in the MACTree construction to achieve desired
security.

A MACTree is constructed by the following steps:

• A 32-bit MAC value is generated for each cache line. First
of all, an initial 256-bit MAC value is generated using the
SHA-256 hash function [5] by concatenating the cache line
data, its virtual address, and the secret key of the application
as inputs. A new 32-bit MAC is then computed by XORing
the eight evenly divided chunks.

Chunk1Chunk0 Chunk2 Chunk3 Chunk4 Chunk5 Chunk6 Chunk7

SHA256

32-bit MAC

32 bit

Cache Line Data Cache Line VAddr Sec Key

Fig. 1. The 32-bit MAC generation for a cache line.

• All 32-bit MACs form one layer of nodes in the MACTree
and are stored linearly as shown in the left-hand side of Fig.
2. For this layer, a new MAC line is made by concatenating
seven consecutive MACs together and padded with a 32-bit
random initial value (RIV) which is generated by a random
number generator using thermal noise in the core [10].

• Similar to the method described in Fig. 1, a new 32-bit
MAC value for the next level in the MACTree is computed
by concatenating the new RIV/MAC line and the secret key
of the application as the inputs to the SHA-256 function.

• Repeat the last two steps until a root MAC is generated.

Whenever a MAC line is to be cast out of protection bound-
ary, the RIV/MAC line is encrypted by the AES block cipher as
illustrated in the dashed box of Fig. 2. It needs to mention that
each MAC line in the MACTree is encrypted by a different key
constructed using the following method. The key is computed
by XORing the security key (or Sec Key) with a 128-bit value
(NodeIndex, NodeIndex + 1, NodeIndex + 2, NodeIndex + 3),
where NodeIndex is the 4-byte index of the MAC line in the
MACTree. The index of the MAC line at ith level and j th posi-
tion starting from left is (7i − 1)/6 + j . It is easy to verify that
the method allows us to generate different keys for encrypting
different MAC lines in the MACTree.

Note that the root MAC is always kept inside the processor
once the program enters the TE environment to avoid any po-
tential tampering.

Our proposed MACTree scheme differs from the CHTree
scheme in three aspects—first, 32-bit MAC values are used
instead of 128-bit hash values; secondly, the MACtree is en-
crypted using the secret key (Sec Key) of a given application;
thirdly, each MAC line is computed from the 32-bit MACs of
its seven children lines with a RIV value generated randomly
by circuits.

In MACTree integrity protection scheme, we achieve the per-
formance advantage by employing new schemes that is uncom-
mon to existing cryptographic scheme designs. The biggest dif-
ference of our design and common cryptographic designs is the
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cache line cache line cache linecache line

MAC MAC MAC MAC MAC MAC MAC
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RIV

RIV MAC

...

Bounday, RM needs to be encrypted
When evicted outside Protection

Encrypted RM value (same size)

MACTree in Plaintext within Protection Boundary

Fig. 2. Structure of the MACTree in plaintext within protection boundary. Note that a hash value needs to be encrypted when being evicted out of the protection
domain.

use of 32-bit MAC values for cache lines obtained by XORing
32-bit chunks in 256-bit MAC values. This change, although
very uncommon, can still ensure high guarantee of security in
our system. And the reasons are explained below.

The most common attack to hash function is to find collisions
[8], in other words, to find two distinct pieces of data that have
the same hash value. If an adversary can find a new data that
has the same hash as the data from a trusted source, he can use
the new data to replace the data from a trusted source without
his modification being detected. Assume an n-bit hash is used,
an adversary can find a new data that has the same hash as
a given data with 2n computations, and an adversary can find
two distinct pieces of data with the same hash value with 2n/2

computations (birthday attack) [8]. The computations of hash
values can be performed at any computer. An adversary can
even construct special hardware to expedite the computations
[8]. Usually, the bit length of hash is at least 128. Therefore,
an adversary needs about 264 computations to find collisions
which is computationally infeasible. But, if the bit length of
a hash is reduced to 32, an adversary would only need about
216 computations to find collisions which can be done very
easily. However, the attack just described cannot be applied to
our scheme since we use MACs instead of hashes. The key
difference between MACs and hashes lies in that MACs are
computed using a secret key which, in our case, is only known
to the trusted CPU core. Therefore, an adversary cannot use
untrusted computers or build specialized hardware to attack the
MACTree scheme by computing MACs of cache lines with
random content.

Although using MACs can greatly limit the capability of an
adversary in launching collision attacks, itself is not sufficient to
prevent all the possible attacks. Adversaries can possibly attack
the MACTree scheme by running the trusted application they
are attacking on the trusted CPU core. The adversaries must run
the trusted application they are attacking on the trusted CPU
core because this is the only way for them to generate MACs as
they needs. Then, they can manipulate cache lines in the appli-
cation’s memory and observe the changes of MACTree nodes
to find out collisions. Since we are using 32-bit MACs in our
scheme, there is a high probability of collision, or finding two
cache lines of data with the same MAC value. If an adversary
collects 216 distinct cache lines of data and the MAC lines of

MACTree were not encrypted, the adversary can compare the
cache lines of data and their MACs. He will likely find out two
distinct cache lines of data with the same MAC value and attack
the integrity checking scheme by swapping two cache lines. as
shown in Fig. 3. Our MACTree scheme prevents this attack by
encrypting MAC lines in the MACTree. Now, although colli-
sion does exist in cache lines of data, an adversary will not be
able to figure it out since he will not be able to look into corre-
sponding MACs and compare the values which are encrypted.
For example, assume the two cache lines of data collected by
the adversary are distinct and have the same MAC value. If the
corresponding MAC lines in the MACTree are not encrypted,
an adversary will find out the collision by comparing the cache
lines and the MAC lines of the MACTree. If MAC lines of the
MACTree nodes are encrypted, then the adversary will not be
able to figure out the collision because he cannot compare the
encrypted values of MAC lines as shown in Fig. 3.

The only possibility for an adversary to find out a collision
is when they see two cache lines of data are distinct and the
encrypted MAC lines are the same. Fig. 4 illustrates such ex-
ample. This only happens when RIVs of the two MAC lines
are the same and the 32-bit MACs for the corresponding seven
child cache lines are the same. In order to obtain such col-
lision, an adversary would have to collect about 216 × 216×7

distinct cache lines of data, assuming the cache lines of data
are completely random. In Fig. 4, we use time T (0) and T (1)

to represent the data of a MAC line at different times. In
our analysis, we consider data at a MAC line with fixed in-
dex in the MACTree because MAC lines with different in-
dex are encrypted by different keys. So the encrypted data of
MAC lines with different indices cannot be used to correlate
each other.

We consider a rare case. We assume an adversary wants to re-
place a cache line of trusted data with a new data they fabricate.
We assume that the adversary manages to keep the other six
cache lines unmodified during the execution and only modify
the data in the cache line. We assume that, after each modifica-
tion, the adversary can trick the trusted CPU core into accepting
the modification and recomputing the MACTree. The adversary
then tricks the CPU into evicting the recomputed MAC lines
out to the memory. These assumptions are extremely unlikely
to happen in real world. In this case, the adversary would need
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MAC lines are not encrypted, so an adversary can find collision here.

MAC lines are encrypted, an adversary cannot find collision by comparing encrypted lines.

Fig. 3. Attack the MACTree scheme if the nodes are not encrypted.

Fig. 4. Find two same encrypted MAC lines.

Fig. 5. A rare attack.

about 264 computations, each of which includes cache line mod-
ification, cache line and MAC line read, MACTree recomputa-
tion and MAC line eviction, in order to find a fabricated data
that has the same MAC value as the original data. Note that,
although an adversary might be able to keep cache lines of data
unmodified, he/she is unable to keep the RIV unchanged for
each recomputation of MACTree. If an RIV were not associated
with a MAC line, the adversary would need about 232 compu-

tations, which they may possibly achieve. Fig. 5 illustrates the
concept of the attack. An adversary modifies cache line(7) at

time T (i) , i = 1, 2, . . ., and compute the encrypted MAC line
Y (i) with Y . If he finds that Y (k) = Y at the time T k , then he
can replace the cache line cache line(7) with his fabricated data

of cache line(k)
(7) . But, in order for this to succeed, there will

need about 264 computations which is infeasible.



C. Lu et al. / J. Parallel Distrib. Comput. 66 (2006) 1116–1128 1121

An adversary can possibly launch brutal force attack. In other
words, the adversary directly modifies the data of cache line,
hoping that the new data has the same MAC value as the original
one. But, the chance for this to succeed without being detected
is 2−32. The processor in the M-TREE architecture will stop
the execution of this application once an integrity verification
failed, prohibiting the adversary from further attempted attacks.

We now compare the security of our MACTree scheme with
that of the CHTree scheme that uses 128-bit hash values. Let us
assume that there are 215 computers, each of which can compute
225 hashes per second. Since the attack on the CHTree scheme
can be done offline on computers other than the targeted secure
processor, the security of the CHTree scheme comes from the
brute-force effort of finding hash collisions using the available
computing power. Based on the assumption, we can obtain
260 hash values by running computers for 220 s. If a protected
application consists of 4 billion cache lines, the possibility that
any of its cache lines can be replaced is about 2−36 (assume
hashes are 128-bit long), which is pretty close to 2−32 of the
MACTree. Based on the above arguments, we conclude that
both schemes have a comparable security level.

Finally, it is important to note that, although we use SHA-
256 for discussion in the MACTree scheme, any secure hash
functions can be used by the MACTree scheme to provide the
same functionality. It is shown, in the past few years, that the
advances of attack techniques on hash functions can be very
fast [21,22]. So, the MACTree scheme can always choose more
secure hash functions than SHA-256, if available.

2.1.2. Efficiency analysis
Here we analyze the advantage of the MACTree over the

CHTree. 1 First of all, a 256-bit cache line can hold 7 nodes in
the MACTree versus 2 nodes in the CHTree. Hence, the height
of the tree is reduced to log7 L nodes from log2 L, or a 180%
reduction of the number of nodes needing to be examined.
Nonetheless, the MACTree incurs decryption overheads caused
by encryption. Assume that the decryption delay is Td and the
memory access delay is Tm. The overhead caused by memory
access and decryption for integrity check is log7 L× (Td +Tm)

in the MACTree against log2 L × Tm in the CHTree scheme.
Let Td = Tm

2 , similar to the assumption used in other secure
processor architectures, the MACTree has 47% less overhead
than the CHTree. Even when Td = Tm, the MACTree has 35%
less overhead. The MACTree scheme can be further improved
by caching nodes within the protected boundary. With the same
cache size, the MACTree can hold 3.5 times more nodes.

2.2. M-TREE encryption scheme

To ensure a private (PR) computing environment, all the
instructions and data of a protected application must be kept
confidential from any unauthorized accesses. We propose the
M-TREE encryption scheme for protecting the privacy of ap-

1 As discussed in Section 1, the LHash scheme provides much weaker in-
tegrity protection than the MACTree. Therefore, it is inappropriate to compare
performance between the MACTree scheme and the LHash scheme.

plications in a secure processor architecture. Before detailing
our scheme, the following notations are defined:

• SecKey: Secret key of the protected application.
• ICnt: Initial counter value of the application.
• RIVi : 32-bit random initial value associated with the ith

cache line.
• PRVi : Pseudo random value for encrypting the ith plaintext

cache line or decrypting the ith ciphertext cache line with
XOR.

• MACi : 32-bit Message authentication code associated with
the ith cache line. The MACs are generated in the same
way as described in Section 2.1.1.

2.2.1. PRV generation
To encrypt the ith cache line of an application, the PRVi

block is first computed by Eq. (1). The PRVi is used as the
key similar to a OTP for encrypting the cache line via simple
XORing. The decryption is vice versa

PRVi = H(ICnt + i, RIVi , MACi , SecKey). (1)

In Eq. (1), the function H can be either a hash algorithm
(e.g. SHA-256) or a block cipher (e.g. AES). Two alternatives
for computing PRV blocks are shown in Fig. 6 in which the
RIV/MAC is a concatenated value of the RIVi with the MACi .
The initial counter ICnt is used and incremented for each cache
line i to prevent dictionary attack as in the AES counter mode
encryption [14]. To decipher the plaintext of a cache line from
off-chip memory, the processor first reads its corresponding
RIV/MAC value. Then it computes the PRV block while fetch-
ing the encrypted line from memory in parallel. Once the en-
crypted line arrives, the decryption is done by XORing the en-
crypted line with the PRV block. Integrity checking of the line
can be performed in parallel with the instruction execution, thus
has no major impact to the performance. To evict a dirty cache
line back to memory, the processor generates a new RIV/MAC
value for the line. A new PRV block will then be computed for
encryption. Finally, the line is evicted and its RIV/MAC value
also needs to be updated at its corresponding memory location.

2.2.2. Security analysis for M-TREE encryption
Notwithstanding a better performance, the OTP-like scheme

is less secure than a block cipher, a reality never explicitly
analyzed in prior literature. Hence, it is particularly important
to make a detailed security analysis on OTP-like schemes as
processor architects must be very careful when determining
what OTP schemes are more appropriate.

The OTP schemes make use of an additional variable or
timestamp (also referred to as sequence number by other lit-
erature) for encryption. For a given virtual address, the PRV
block generated solely depends on the associated timestamp.
Therefore, the number of possible PRV block patterns is equal
to the number of possible values for the timestamp. For exam-
ple, if the timestamp is only 8-bit, there are only 28 possible
PRV block patterns. If the timestamp is 64-bit, there is 264 PRV
block patterns. In generic OTP encryption schemes, the possi-
ble patterns of PRV block for a cache line of data are as large
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Sec Key

ICnt + i RIV/MAC Value Sec Key

256-bit PRV block

SHA256

SHA-256

128-bit PRV block 128-bit PRV block

AES

Padding ICnt + 2i+1 RIV/MAC ValueICnt +2i RIV/MAC ValuePadding

AESSec Key

AES

(a)

(b)

Fig. 6. Two options for PRV block generation.

as 2256. The security of the OTP schemes depends on the size
of the timestamp used as a larger timestamp offers exponen-
tially more PRV patterns, making attacks more difficult from
succeeding. Meanwhile, the size of the timestamp should not
be infinitely big because it will lead to performance degrada-
tion. As a result, the size of the timestamp needs to be chosen
meticulously for both performance and security consideration.

In [24],Yang et al. proposed to use a 16-bit timestamp, which
is too small to provide sufficient security. If an adversary knows
1000 possible PRV patterns (one can obtain PRV patterns if
some plaintext values at the virtual address are known), the ad-
versary can decrypt almost 1

65 of the cache line content, which
is totally unacceptable. The scheme proposed by [18] uses a
32-bit timestamp. To prevent PRV blocks from being re-used,
the timestamp is incremented, starting from 0, for each mem-
ory update. If the timestamp is exhausted, the whole program
must be re-encrypted. However, this scheme has another po-
tential vulnerability. In the scheme, when the processor dirty-
writes back a cache line, it first increments the associated times-
tamp by one, then computes the OTP using the cache line’s
virtual address and the timestamp, finally the plaintext cache
line is XORed with the OTP. The timestamps are not protected
from modification, hence an adversary can attack the encryp-
tion scheme by manipulating the timestamps. Assume we have
the following code whose data need to be kept confidential:

while(1) {. . . , a = k; . . . , }.
The value a and k are stored in an encrypted cache line, how-
ever, since the adversary knows the PRV block of the cache line
of a when the associated timestamp is 1. To obtain the secret
value of k, an adversary can launch attack described as follows.
When the execution reaches the location right before a = k,
the adversary changes the timestamp of the cache line a to 0

and tricks the processor into loading the cache line. Therefore,
the timestamp of the cache line is changed to 0 now. Right af-
ter the processor executes the instruction a = k, the adversary
forces a dirty writeback. Then, the processor will encrypt the
cache line a by XORing it with the PRV block generated us-
ing timestamp 1. As the adversary knows the PRV block with
timestamp 1, he can reveal the encrypted value of k. Therefore,
the OTP-based scheme must be used together with an integrity
protection even for the sake of protecting program’s confiden-
tiality, which may incur additional overhead.

Moreover, both encryption schemes carry the vulnerabil-
ity of weak integrity protection from OTP encryption. More
specifically, if an adversary knows the plaintext, P , of an en-
crypted data chunk, C, he can very easily change it to another
plaintext P ′ by replacing the original ciphertext C with C′ =
P

⊕
C

⊕
P ′. Such attacks can be prevented by using an in-

tegrity check scheme along with the encryption scheme.
The design of the M-TREE encryption scheme is different

from the previous schemes in two aspects. First, the RIV/MAC
value used in M-TREE encryption is 64-bit which offers up
to 264 different PRV blocks for a given cache line address.
Therefore, if an adversary knows n possible PRV blocks at that
cache line address, the possibility that he can decrypt a given
encrypted values at that cache line address is only n

264 . Even for
an n as large as one million, the possibility for the adversary to
decrypt a cache line using the PRV blocks they have is still as
small as 2−44. Additionally, an RIV/MAC value consists of 32-
bit MAC value which can be used to verify the integrity of the
associated cache line. Because of this, an adversary is unable
to modify a cache line or the associated RIV/MAC value as
unauthorized modifications can be detected when the associated
MACs of the cache lines are verified. Indeed, the M-TREE
encryption scheme is the closest paradigm to the block cipher
encryption among all OTP-based schemes. Note that a block
cipher encryption will prevent an adversary from changing a
cache line of data to whatever they favor. This feature, however,
is only contained in the M-TREE encryption scheme among
all other OTP-based schemes. Hence, the M-TREE encryption
scheme provides much better security.

When using the M-TREE encryption scheme alone, people
must be aware that it might be vulnerable under certain replay
attacks, which are also applicable to block cipher encryption
scheme. If an adversary replaces a cache line as well as its
associated RIV/MAC value, the attack activity will not be de-
tected by the M-TREE encryption scheme. In order to prevent
replay attacks, the M-TREE encryption scheme must be used
together with the MACTree.

3. The M-TREE architecture

The M-TREE security architecture is illustrated in Fig. 7
by integrating the M-TREE encryption mechanism with the
MACTree integrity protection into a processor. Within the pro-
tection boundary, three new microarchitectural components are
introduced including the integrity verification unit (IVU), the
RIV/MAC and MAC cache (RM/MAC cache), and the encryp-
tion/decryption unit (EDU), for enabling the security support.
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Fig. 7. M-TREE architecture.

Additional memory space is consumed by storing the RM val-
ues and the MACTree. The IVU and EDU are both required for
providing a TE and tamper-resistant system while the RM/MAC
cache is primarily a performance feature. The RM portion ac-
celerates data decryption by caching the RM values. The MAC
portion keeps partial MACTree for speeding up integrity veri-
fication. Both caches operate in a similar manner as the victim
cache does [11]. For cache lines that are being evicted from
the protected domain, their RM and MAC values are deposited
into the RM/MAC cache. During a cache miss, the proces-
sor first checks if the missed line’s corresponding RM value
hits the RM/MAC cache. Similar to a regular cache lookup,
the RM/MAC caches are indexed by the virtual address of the
missed cache line. If hit, the PRV block generation is processed
simultaneously with the encrypted missed cache line fetching
by using the RM value obtained from the RM/MAC cache. The
overhead of the encryption scheme is equal to either the mem-
ory access delay or the decryption delay, whichever is bigger.
If miss, the M-TREE will incur extra delay for fetching the
RM value from memory. In this case, the MACTree encryp-
tion scheme can still outperform the block cipher as the anal-
ysis shows below. Under the M-TREE encryption scheme, the
decryption ready time is

max(RM value latency + AES latency,

pipelining interval + data block latency) + XOR latency.

That is smaller than the delay caused by the block cipher scheme
which is

Data block latency + AES decryption latency.

The RM values are stored linearly at the end of the program
starting at the virtual address RMBase. Assume the cache block

is 32 B, the RM value is 8 B. The RM value for the memory
block starting at virtual address 0 is placed at RMBase. The RM
value for the next block starting at virtual address 32 is placed
at RMBase + 8, and so on. When a cache line is accessed, the
virtual address of its RM value can be simply computed by

RMAddr = RMBase + VAddr/4,

where VAddr is the current cache line’s virtual address. MAC-
Tree nodes are laid out linearly in a similar way. The root of
MACTree is placed at MACBase. The second level nodes follow,
from the left most node to the right most one, and so on.

In addition to the secret key of the application, the other se-
cret tokens of the application must also include the ICnt, RMBase
and the base addresses for each layer of the MACtree.

Speculative execution can be employed to further improve
the performance for the M-TREE security processors. The re-
sults of unverified instructions can be speculatively consumed
by dependent instructions without stalling the pipeline. How-
ever, all the unverified instructions and their dependent instruc-
tions must not be committed before the corresponding integrity
checks are completed. The reorder buffer can be used to satisfy
this need with a minor modification which adds the verification
completion as a condition for retirement. In other words, in ad-
dition to branches, the machine states induced by instructions
with pending integrity checks are also considered speculative.

4. Performance analysis

4.1. Memory overhead

Integrity checking schemes need additional memory space
to store the integrity codes. In the MACTree scheme, the ad-
ditional memory space needed is approximately 1

(m−1)
of the

data memory space with a m-ary balanced MACTree. As we
use a 256-bit cache line and a 32-bit MAC value, the mem-
ory overhead is about 15%. In contrast, a 128-bit hash value
used in the CHTree scheme will result in a 100% memory
overhead. The M-TREE encryption scheme uses a 64-bit RM
value for each cache line, leading to 25% memory overhead
for encryption, larger than 12% in a direct block cipher that
uses 32-bit random initial values, but can achieve a better
performance.

4.2. Simulation framework

Our simulation work is based on SimpleScalar [2] running
alpha binaries compiled with -03 option. Each benchmark is
fast-forwarded according to SimPoint’s suggestion [16] and
then simulated for 100 million instructions in performance
mode. During fast-forwarding, L1 and L2 caches were warmed
up. Table 1 summaries the architectural and microarchitec-
tural parameters. An 80 ns latency was used for both SHA-256
and AES-256 given they are custom designed. While both
values are quite optimistic [4,12,19,23], an 80 ns AES decryp-
tion delay is more conservative than that used in [18] and an
80 ns hash computation delay is the same as used in [6]. The
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Table 1
Processor model parameters

Parameters Values Parameters Values

Frequency 1.0 GHz Memory bus 200 MHz, 8 B wide
Fetch/decode width 8 Issue/Commit width 8
L1 I/D cache DM, 8 KB, 32 B line L1 latency 1 cycle
L2 cache 4 W, Unified, 32 B line, L2 latency

256 KB, 0.5 MB, 1 MB, 2 MB 256 KB/512 KB/1 MB/2 MB 6/8/10/12 cycles
AES/SHA-256 latency 80 ns/80 ns Memory latency X-5-5-5 (cpu cycles)

X depends on mem page status
MAC length 32 bits RIV/MAC 64 bits
RM/MAC cache 4 W, 8 KB, 32 B line RM/MAC cache latency 6 cycles
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Fig. 8. Normalized IPC for MACTree and CHTree with 8 K MAC cache: (a) 256 KB L2 cache, (b) 2 MB L2 cache.

performance sensitivity of hash function delay will be fur-
ther discussed in Section 4.3.3. We integrated a more accurate
DRAM model [7] to improve the system memory modeling,
in which bank conflicts, page miss, row miss are all modeled
following the PC SDRAM specification. This memory model
has a trailing-edge chunk latency of 5 core cycles (meaning
a 1-to-5 frequency ratio to the processor) while the critical
chunk latency is determined by various dynamic factors such
as previous command, open page, same bank or not, etc. Both
SPEC2000 INT and FP benchmark programs were used for
our evaluation. We subset our simulations for those with high
L2 misses.

4.3. MACTree integrity check evaluation

4.3.1. Performance comparison with the CHTree
Fig. 8 compares the performance of the MACTree and the

CHTree for two different L2 cache sizes. The IPC numbers
were normalized to the baseline. 2 The results clearly show
the performance advantage of the MACTree scheme over the
CHTree. The performance overhead over the baseline for the
MACtree scheme is 8% on average and up to 14% in the worst
case, while the CHTree scheme has 50% slowdown on average
and as much as 60% overhead in the worst case with a 256 KB

2 Baseline has the same configuration with no security feature.

L2 cache. Even with a 2 MB L2, the performance degradation
of the CHTree is reduced to 35% in the worst case and 11%
on average, still less efficient than the MACTree scheme which
shows an overhead of 5% on average and 10% in the worst
case.

The performance advantage of the MACTree is twofold. As
shown in Fig. 9(a), with an 8 KB MAC cache and a 256 KB
L2 cache, the MACTree has fewer MAC cache accesses than
the CHTree. It can be seen that the number of accesses to the
MAC cache in the MACTree are reduced to less than half of
those in the CHTree for all cases. On the other hand, since the
same cache capacity will hold more nodes for the MACTree,
the cache hit rate is also significantly higher as shown in Fig.
9(b).

We also simulate the case when an unified L2 cache is to
be shared by the MAC values, a similar approach used in
[6]. In this case, the MAC values or Hash values will com-
pete cache space with data values, leading to more conflict
misses and cache pollution. However, due to the similar rea-
son aforementioned, the pollution caused by the MACTree
is much smaller than the CHTree, which translates into a
significant performance gain. The number of the L2 misses
and its miss rate for both schemes are shown in Fig. 10.
Fig. 11 shows the performance comparison for the MACTree
scheme and the CHTree scheme using a shared MAC/L2
cache.
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Fig. 9. MAC cache accesses/hit rates (256 KB L2): (a) 8 KB MAC cache, number of cache accesses, (b) 8 KB MAC cache, cache hit rates.
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Fig. 10. Accesses/hit rates of an unified MAC/L2 cache (256 KB): (a) number of cache accesses, (b) cache hit rates.
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Fig. 11. Normalized IPC for MACTree and CHTree with an unified MAC/L2 cache: (a) 256 KB MAC/L2 cache, (b) 2 MB MAC/L2 cache.

4.3.2. Performance sensitivity of the MAC cache size
Now we investigate the performance sensitivity of using dif-

ferent MAC cache sizes for the MACTree. The normalized IPC
results are shown in Fig. 12 for four different MAC caches in-
cluding a perfect MAC cache, a transparent security support
representing the baseline. As shown, even for a MAC cache as
small as 8 KB, the performance with integrity check can ap-

proach closely to the baseline. The good performance of the
MACTree scheme is attributed to the following reasons. First,
the 8 KB MAC cache can hold a sufficient number of nodes
for the MACTree in order to exploit temporal locality and thus
achieve a high hit rate. Another reason is speculative execution.
In other words, instructions are issued as soon as the data de-
cryption is done so that the integrity check can be performed in



1126 C. Lu et al. / J. Parallel Distrib. Comput. 66 (2006) 1116–1128

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

am
m

p
ap

plu ar
t

m
gr

id
sw

im bz
ip

m
cf

pa
rs

er
tw

olf vp
r

H-M
ea

n

Perfect 32K 8K Unified

Fig. 12. Performance sensitivity of MAC cache sizes of MACTree (256 KB
L2).

parallel with instruction execution. However, the instruction is
not allowed to commit to the architectural states until integrity
check is completed. As such, the latency of integrity check can
be partially or even completely hidden. In the same figure, it
also shows that when a MAC/L2 unified cache is employed, the
performance is evidently degraded due to contention. Compar-
ing with a separate 8 KB MAC cache, performance is reduced
by 8% on average and 12% in the worst case, suggesting that
a more efficient M-TREE implementation should consider the
use of a separate MAC cache to store MAC values.

4.3.3. Performance sensitivity of the hash latency
The 80 ns hashing latency used by [6] might be optimistic

according to either synthesized based hardware design or ASIC
[4,12,19,23]. Thus, we also study the performance impact when
the hashing latency is doubled to be 160 ns for both the MAC-
Tree and the CHTree scheme. The results are shown in Fig. 13,
which shows that a higher hashing latency is not too sensitive
to the overall performances regardless of the integrity check
scheme used. In fact, the major performance bottleneck comes
from the additional number of memory accesses induced by
the integrity checking schemes. These additional memory ac-
cesses contend with regular memory accesses and thus degrade
the overall performance. Meanwhile, the hash/MAC computa-
tions can be hidden by instruction executions, thus are not on
the critical path. In summary, the effectiveness of the MACTree
lies in the significant reduction in the memory bandwidth.

4.4. M-TREE encryption evaluation

4.4.1. Performance comparison with the block cipher-based
scheme

Here we analyze the performance of M-TREE encryption
scheme against the block cipher-based scheme under two dif-
ferent L2 configurations. The normalized IPCs for the M-TREE
encryption scheme and the block cipher-based scheme are
shown in Fig. 14. Apparently, the M-TREE encryption scheme
outperforms the block cipher-based scheme for all benchmark
programs. The slowdown of the M-TREE encryption scheme

is about 30% in the worst case and 20% on average; while
the block cipher-based scheme shows a 50% slowdown in the
worst case and 30% on average.

With an 80 ns AES latency, there is still a considerable per-
formance gap between the M-TREE encryption scheme with a
perfect RIV/MAC cache and a realistic one. The reason is that
the memory access latency cannot always hide the AES decryp-
tion latency entirely. Under our accurate memory modeling,
the latency of the critical chunk is determined by many factors
such as previous command, memory page hits, row misses, etc.
In many cases, the memory lead-off latency turns out to be less
than 80 cycles, not enough to cover the entire AES latency. This
is manifested by reducing the AES latency to 40 ns. As shown
in Fig. 14(b), performance under 40 ns AES latency is better
than its counterpart under 80 ns AES shown in Fig. 14(a).

Also, for some benchmark programs, increasing the size of
RM cache does not always lead to significant performance im-
provement. This is due to the RM cache hit rate does not im-
prove by increasing the RM cache size for those applications,
in particular, the SPEC2000FP programs. Furthermore, the RM
values cached inside the RM cache show poor temporal local-
ity, i.e. most of the cached RM values are not re-accessed prior
to eviction.

4.4.2. Performance sensitivity of the decryption delay
As mentioned earlier, the performance impact of two dif-

ferent AES decryption latencies to the M-TREE encryption
scheme is also examined. Fig. 14 shows the normalized IPCs
with two AES latencies: 40 and 80 ns. 3 With an optimistic 40 ns
AES decryption latency, the performance of M-TREE encryp-
tion scheme with a perfect RM cache now can approach the
baseline. So long as the memory access latency is bigger than
40 cycles, the AES latency will be hidden by memory access
latency, which is the common case. Under this circumstances,
the performance overhead of the M-TREE encryption scheme
is about 13% in the worst case and about 10% on average by
using a 32 K RM cache. On the other hand, the performance
overhead of the block cipher scheme is 25% in the worst case
and 15% on average. For a more realistic AES latency 80 ns,
the average degradation of the M-TREE is about 20% versus
30% of the block cipher.

4.5. PTR processing

Finally, we study the performance of the PTR processing
by putting our proposed integrity checking and encryption to-
gether. We compare the performance of the M-TREE integrity
checking and encryption scheme with that of the CHTree
scheme and block cipher encryption scheme. Fig. 15 shows the
IPC results normalized to the baseline. In general, the M-TREE
architecture suffers much less performance penalty against the
CHTree integrity checking scheme and block cipher encryp-
tion scheme. For a 256 KB L2, the M-TREE architecture can

3 40 ns latency for AES decryption was used in [17] which is fairly opti-
mistic. Hence, we also use 80 ns for sensitivity evaluation.
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Fig. 13. Performance sensitivity on hash latency (8 KB MAC cache): (a) 256 K L2 cache, (b) 2 M L2 cache.
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Fig. 14. Normalized IPC for the M-TREE encryption scheme (256 KB L2): (a) 80 ns decryption delay, (b) 40 ns decryption delay.
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Fig. 15. Normalized IPC for PTR processing: (a) 256 KB L2 cache, (b) 2 MB L2 cache.

reduce performance overhead from 60% of the prior art down
to 20% and from 45% to 12% for a 2 MB L2.

5. Conclusions

In this article, we propose the M-TREE processor architec-
ture that implements novel integrity protection and encryption
mechanisms for providing a tamper-resistant and tamper-
evident computing environment. The architecture consists of

two new cryptographic features: the MACTree integrity pro-
tection scheme and an OTP-class encryption scheme with
novel and enhanced security mechanisms. We analyze the ef-
ficiency of the proposed integrity checking scheme and the
encryption schemes against the existing techniques and show
that the M-TREE architecture offers a significant performance
improvement as well as security advantages over the prior art.

Based on our simulation results, it is shown that the MAC-
Tree integrity verification suffers the worst case overhead of
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14%, which is substantially lower than the worst case overhead
of 60% reported in published secure processing schemes. M-
TREE encryption scheme improves the performance by more
than 10% of that of the block cipher-based encryption scheme.
Combined both integrity verification and encryption schemes
of M-TREE, we show the performance is degraded within 20%
versus the 60% in prior scheme using CHTree with a block
cipher.
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