
J. Parallel Distrib. Comput. 70 (2010) 443–457
Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

A low-cost memory remapping scheme for address bus protection

Jun Yang a,∗, Lan Gao b, Youtao Zhang c, Marek Chrobak d, Hsien-Hsin S. Lee e

a Electrical and Computer Engineering Department, University of Pittsburgh, United States
b Vmware Corporation, Palo Alto, CA, United States
c Computer Science Department, University of Pittsburgh, United States
d Department of Computer Science and Engineering, University of California, Riverside, United States
e School of Electrical and Computer Engineering, Georgia Institute of Technology, United States

a r t i c l e i n f o

Article history:
Received 16 September 2008
Received in revised form
8 October 2009
Accepted 23 November 2009
Available online 6 February 2010

Keywords:
Address bus leakage protection
Secure processor

a b s t r a c t

The address sequence on the processor-memory bus can reveal abundant information about the control
flow of a program. This can lead to leakage of proprietary algorithms or critical information such as
encryption keys. Addresses can be observed by side-channel attacks mounted on remote servers that
run sensitive programs but are not under the physical control of the client. Two previously proposed
hardware techniques tackled this problem through randomizing address patterns on the bus. In this paper,
we examine these attempts and show that they impose great pressure on both the memory and the disk.
We propose a lightweight solution to alleviating the pressure with equal security strength. The results
show that our technique can reduce thememory traffic by a factor of 10 comparedwith the prior scheme,
while keeping almost the same page fault rate as a baseline system with no security protection.

© 2009 Elsevier Inc. All rights reserved.
1. Introduction

In modern computing systems, it is common to protect pro-
cesses running on the host machines from the exploits of mali-
cious applications downloaded from unauthorized sources as they
may containmalicious code such as viruses orworms. On the other
hand, there is an often overlooked security vulnerability where the
confidentiality of an application can be compromised by the pro-
cesses running on the host machine itself. In other words, counter-
exploit mechanisms are needed for the application providers to
protect their intellectual properties when their applications are
executed on untrusted machines. This problem is becoming more
realistic and prevalent in distributed computing and embedded
computing domains.
In distributed computing, for instance, application tasks are dis-

patched to geographically distributedmachines that are often con-
tributed by volunteers. Even though distributed security protocols
authenticate and authorize resources and users, there is no pro-
tection mechanism once a job starts executing on a remote node.
It is difficult to recognize if the execution was tampered with, or if
any secret it carrieswas compromised locally. A hostmachine, hav-
ing full access to all the local resources, can launch a background

∗ Corresponding author.
E-mail address: juy9@pitt.edu (J. Yang).

0743-7315/$ – see front matter© 2009 Elsevier Inc. All rights reserved.
doi:10.1016/j.jpdc.2009.11.008
program to analyze the execution of an active job and extract confi-
dential information such as the encryption key [23]. Also, themem-
ory contents could be altered either through software breaches or
by privileged users so that the computation time of a job is length-
ened [9]. This is especially harmful in a commercial environment
where resources and services are charged by hour [3].
There have been a number of proposals that address the attacks

from a host machine to its guest programs. The attacks can origi-
nate from a privileged user [9,17,31], a normal user [23], or even
physical accesses [12,9,17,31,35,37,30]. A common countermea-
sure is to encrypt memory contents to prevent secrecy violation,
and to authenticate the memory at runtime to prevent misbehav-
ior induced by memory corruption during execution. Both can be
provided by a secure processor architecture such as XOM [17] or
AEGIS [31].
In addition, the dynamic execution address sequence can be ob-

served locally and analyzed to expose a program’s critical informa-
tion such as the private key in the RSA algorithm [14]. Losing a key
allows an attacker to impersonate a trusted user or to delegate a
victim’s access right to other malicious users. Exposing dynamic
address sequence can also reveal the program’s control flow infor-
mation to enable a commercial software developer to reconstruct
a core algorithm from a competitor [37,10,11,36]. Hardware tap-
ping devices for extracting addresses from the system bus, or even
injecting traffic into the bus are readily available. For example, an
FPGA-based programmable device can be attached to an SMP bus
to perform on-line cache emulations taking real-time bus traffic

http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
mailto:juy9@pitt.edu
http://dx.doi.org/10.1016/j.jpdc.2009.11.008


444 J. Yang et al. / J. Parallel Distrib. Comput. 70 (2010) 443–457
from real workloads [22]. There are commercially available mod-
chips that can be soldered onto the bus on the motherboard in a
Sony Playstation orMicrosoft Xbox tomisguide the console to play
pirated games [21].
Several techniques have been designed to combat the ad-

dress information leakage: Goldreich et al. proposed three pro-
gram transformationmethods [10,11] to construct a data-oblivious
memory access pattern. Unfortunately, these software-only meth-
ods suffer from either great performance penalty or memory
explosion. Recently, two hardware-assisted schemes have been
developed to trim down the overhead. The HIDE scheme [37] per-
mutes memory subspace at certain intervals by reading them on-
chip and writing them back after permutation. The Shuffle scheme
[36] randomly shuffles the memory content whenever a block is
read on-chip so that it will be written to a randomly different loca-
tion later on. Both schemes try to randomize the address sequence
on the bus to hide easily recognized memory access patterns such
as loops.
We have observed that the HIDE scheme increases memory

access by a factor of 12 to 32 for page sizes between 4 kB and 64 kB,
due to sequential reads/writes and redundant permutations. On
the other hand, the Shuffle scheme could induce a large number
of page faults in high-performance systems with memory paging.
Designs that significantly increase the memory or disk demand
do not scale well in future machines incorporating multi-threaded
or multi-core processors in which memory and disk bandwidth
are both the first-order constraints. Thus, it is imperative to take
those constraints into consideration while designing a secure
architecture.
In this paper, we address the two main problems of the afore-

mentioned security methods: memory access increase and page
fault increase. These problems are mainly due to the following
reasons: (1) excessive memory reads and writes on every per-
mutation, (2) wasteful permutations, and (3) non-restricted block
relocation.We propose a lightweight on-chip address permutation
that effectively addresses all the three problems and achieves the
lowest memory demand and page fault rate. Our main idea is to
permute only on-chip cached blocks, to avoid the memory sweeps
in HIDE, and launch a permutation for only those addresses that
have not been remapped since they are read on-chip. Our scheme
incurs only an 88% increase in memory accesses and a close-to-
base page fault rate, without compromising the security strength.
The remainder of this paper is organized as follows. Section 2

describes the motivation of this work. Section 3 gives an overview
of the two baseline schemes that we improve, and the in-depth
analysis of them. Section 4 introduces our proposed scheme, fol-
lowed by its architecture design issues in Section 5. Section 6
presents our experimental results. Section 7 discusses the related
work and Section 8 concludes this paper.

2. Motivation

The address sequence recorded from the CPU-memory address
bus may disclose the control flow information of a program under
execution. This is true even in secure processors such as XOM [17]
or AEGIS [31] in which the memory contents are all encrypted
(i.e., the CPU-memory data bus transfers only ciphertext) but the
addresses are left in plaintext. Such a plaintext address sequence
can lead to critical information leakage and is the main problem
we tackle in this paper. First of all, the sequence can be split
into code and data sequences with explicit reads and writes. This
is because code and data are in separate memory regions. Code
regions are read-only and typically accessed sequentially at the
start-up of the program execution. The obtained code sequence
shows the control transfers only at a coarse granularity since most
of the instruction reads are serviced by the on-chip caches. This is
not difficult to circumvent as the on-chip caching can be disabled
through setting proper control register bits [13], or minimized by
running concurrent threads that compete for the shared cachewith
the victim thread [23,24].
The sequence obtained hereafter can be used to derive the con-

trol flow graph (CFG).1 A sequence of ‘‘abc abc abc’’ clearly
shows a loop with ‘‘a’’ being possibly the loop starting and ‘‘c’’ be-
ing the loop ending instruction.Whereas a sequence of ‘‘abcd abd
abcd abd’’ indicates a conditional branch after ‘‘b’’ inside a loop
containing ‘‘a, b, c’’ and ‘‘d’’. Most software nowadays have a
high percentage of reuse code [19]—those that reuse pre-built li-
braries from the public domains or a third party. In other words,
the reused portions of an application can be identified once their
CFGs are constructed. This could ease the identification of the non-
reused part of the code, leading to a potential intellectual property
theft.
More seriously, the timing attacks to Diffie–Hellman, RSA and

other security algorithms exploit the actual directions of a branch
instruction inside a simple loop to reveal the private key bit-by-
bit [14]. The loop iterates for a number of times equivalent to the
bit width of the private key. Once the address sequence of the loop
is exposed, the private key can be recovered.
Finally, addresses to data region can also expose control flow

since some data are only accessed by one path of the program.
Therefore, data addresses and code addresses should be protected
simultaneously. Next, we will briefly review two existing algo-
rithms (HIDE and Shuffle) for address sequence protection. For
each of them, we give an example of how the scheme works. Then
we analyze the two main problems they have. We focus on the
memory access increase for the HIDE scheme and the page fault
increase for the Shuffle scheme. We propose a scheme that has
lower memory demand and lower page fault rate than HIDE and
Shuffle. All the simulationswere performed using the SimpleScalar
Tool Set [1] with 11 SPEC2K benchmark programs, each simulating
1.1 billion instructions. If not specified, result is averaged across all
the benchmarks.

3. Overview of address sequence protection

The basic idea of address sequence protection is to obliterate its
correlation with the CFG of the program. For example, the address
sequence of ‘‘a a+ 4 a+ 8’’ will not correspond to sequential
instructions in the code. Also a sequence of ‘‘abc abc’’ will not
necessarily represent a loop structure. Prior schemes (HIDE and
Shuffle) incorporated randomization of thememory contents from
time to time. Next, we will explain the processor-memory and
hardware support model in those schemes.

3.1. Model and premises

We use the secure processor models proposed recently in
[17,31,15] for our baseline, which was also used by both HIDE
and the Shuffle schemes. In such a secure model, the processor is
physically secure such that once the data and code are brought
onto the chip, they cannot be tampered with. If any data are
sent off-chip to the memory, they are always encrypted to ensure
their confidentiality. Therefore, attacks can only be mounted to
components external to the processor, such as the buses and
the memory. Since the crypto operations are always performed
between the processor and the memory, we assume a fast crypto
mechanism is available on-chip to accelerate the process [29,32,
34,28,4].

1 The control flow graph is a directed graph that shows the transfer among
instruction basic blocks.



J. Yang et al. / J. Parallel Distrib. Comput. 70 (2010) 443–457 445
Fig. 1. Example of the HIDE scheme.

3.2. Chunk-level permutation

The basic idea of the HIDE technique [37] is to permute the
address space at suitable intervals to obliterate the correlation
between repeated memory addresses. Ideally, before an address
recurs, a permutation is initiated to map it to a different location.
In reality, it is not practical to memorize all the addresses between
permutations, nor is it efficient to search the history list to detect
the recurrence. Hence, HIDE proposed to augment the L2 cache re-
placement policy with additional locking control—a block that is
newly read from the memory or becomes dirty since its last permu-
tation cannot be replaced after a permutation is performed. This is
because both cases could cause their addresses to recur on the bus
in future reads if they were allowed to be replaced earlier. Hence,
those entries are temporarily locked in the cache. Only blocks that
are not locked could be freely replaced. Each permutation per-
mutes a chunk (one to several pages) of continuous blocks, map-
ping each block to a different address within the chunk, so that
recurring addresses on the bus may not indicate the same block.
Fig. 1 shows how this scheme works.
We assume a two-set, two-way set associative cache, and a

two-page memory with eight blocks in each page. In this example,
one chunk is composed of one page, with even-addressed blocks
mapped to set 0, and odd-addressed blocks mapped to set 1.
Initially the cache is empty and no block is locked. When the CPU
reads blocks 0, 1, 2, 3, 8, 0, the actual sequence on the bus is 0, 1,
2, 3, permutation traffic, 8, π1(0).π1(0) is the permuted address of
block 0. Permutation traffic consists of sequential reads and writes
of all blocks in page 0, and this permutation is triggeredwhen block
8 replaces the locked block 0. After permuting page 0, all cache
blocks of page 0 are cleared for their locks. Any block brought on-
chip is locked afterward. Next, when the CPU writes block 1 and 3,
both are locked again in the cache. The last read for block 9 causes
a write-back of block 1. Since it is locked, a second permutation
of page 0 is initiated, during which the locks on block 0 and 3 are
cleared.
Through permuting the entire chunk, control transfers within

the chunk are invisible on the bus, thus reducing the likelihood of
information leakage. However, the strengthened security comes at
a high cost of memory accesses as all the blocks in the chunk are
swept through – read on-chip and then written off-chip – on every
permutation. In Fig. 2, we categorize HIDE memory accesses into
true memory requests (‘‘true’’) and permutation induced accesses
(‘‘perm’’). All the accesses are normalized to the first bar for 4Kbyte
chunk size. It is surprising to see that the percentage of true and
useful memory accesses account for only 7.5% and 3% of the total
for 4 kB and 64 kB chunk sizes respectively. In other words, the
Fig. 2. Memory traffic breakdown for different chunk sizes.

HIDE scheme increases the memory traffic by a factor of 12 (4 kB)
or 32 (64 kB). Using larger chunk sizes has its own advantages:
(1) it further reduces the control flow exposed on the bus; and
(2) it reduces the frequency of permutations since the chances of
clearing the locks are higher. However, the dramatic increase in
memory traffic using large chunks creates a serious bottleneck in
the system, which overrides its benefit in security. We break down
the extra traffic into two sources:
Excessive memory accesses on permutation. Fig. 2 shows that most
memory accesses in HIDE are useless to the program. They are
redundant accesses simply to hide the traces of the useful memory
addresses. Here, ‘‘useful blocks’’ refer to those that have been
accessed by the program. We observed that this quantity is fairly
low between two permutations, an indication of large redundancy
in HIDE.
In Fig. 1(b), only 4 blocks in Page 0 are accessed when the

permutation is invoked. During the permutation, they are read
on-chip again with the other half that is never touched. Then the
whole page is written back, quadrupling the traffic. We studied
the excessive accesses in a real system where the page size is
4 kB and each page consists of 128 32-byte blocks. Fig. 3(a) is a
histogram of the pages with their numbers of accessed blocks from
0 to 128 upon a permutation. That is, when a new permutation of
a page is initiated, if it accessed i blocks since the last permutation,
we increment the ith bar in the histogram. We can see that only
17% of pages are fully accessed between two permutations. For
those pages, efficiency is good since there is no reading of useless
memory blocks. However, 65% of pages triggering a permutation
are accessed less than a quarter of the blocks.
In fact, if we take a global view of the block usage in a page

during the entire simulation, the percentage of pages that are used
is quite high (Fig. 3(b)). More than half (57%) of the total pages are
fully used, much more than that in Fig. 3(a), because some blocks
inside those pages are recalled before the rest are touched. Each
recall triggers a scan of the entire page and unaccessed portion
of the page can be permuted multiple times due to multiple such
recalls. Using the example in Fig. 1, if block 4–7 are accessed in the
future, then page 0 would be fully used. Before this could happen,
however, it is already permuted twice.
Redundant permutations. Due to the difficulty of tracking if an ad-
dress is a repeated access, the permutation is triggered preven-
tively. That is, before a dirty block is written back to the memory, a
permutation of the hosting page is triggered, anticipating that the
block will be read again in the future. This is why the second per-
mutation in Fig. 1(d) is performed. Such permutations induced by
write locks trigger multiple permutations while only one is neces-
sary. The example below illustrates such a scenario.
Let blocksA,B,Cbelong to pageP. They are initially read on-chip

and then locked. When B has to be replaced, a permutation of P is
triggered sinceBholds a read lock. Afterward,A,B,C are allmapped



446 J. Yang et al. / J. Parallel Distrib. Comput. 70 (2010) 443–457
(a) Between permutations. (b) During the entire simulation.

Fig. 3. Histogram of pages with 0–128 blocks accessed.
Fig. 4. Example of the Shuffle scheme.

to different addresses, B is written back to a new address while the
others are still on-chip. The permutation also clears off their read
locks. Suppose a later write locks A again. When A is replaced at
some point, a second permutation of P is initiated, which we can
see is unnecessary because A has beenmapped to a new location in
the first permutation. Similarly, B and C are both remapped in the
second permutation, which are also redundant. Note that between
permutations, no accesses to page P are necessary, indicating that
a page could be permuted repeatedly without even a single access.
This also explains why the 0th bar in Fig. 3(a) is positive (0.46%).

3.3. Memory shuffle

A simpler scheme was proposed in [36] for embedded systems,
since they are more vulnerable to the side-channel attacks on the
address bus. The approach is to relocate a block if it is brought
on-chip so that it will be written to and read from a different
memory address in the future. Thenewaddress is chosen randomly
from the program’s memory space. To implement it efficiently,
a small portion of memory blocks is stored in an on-chip shuffle
buffer. A random block is selected from this buffer to swap with
the requested block read on-chip. Essentially, a memory read is
always followed by a memory write, where the read is demanded
by the processor while the write is a swap randomly picked from
the buffer. The block being read still resides in the buffer (as well
as the caches) so that the shuffle buffer always has a fixed number
of memory blocks for swapping.
Fig. 4 (an example adapted from [36]) shows how this scheme

works. We assume the on-chip shuffle buffer only stores 4 blocks.
The first 4 accesses fill up the buffer. Starting from the fifth access,
a random swap between the memory and the shuffle buffer (e.g.,
block 8 and 2) is performed. If the access hits in the buffer (e.g.,
block 1 and 3), no swapping is necessary. Finally, all the blocks in
the shuffle buffer are written back to the very first four empty slots
in the memory.
As shown, thememory traffic in the Shuffle scheme – aswewill

term it in this paper – is only two times of an unprotected system,
because a read is always followed by a write. This overhead is
significantly lower than the HIDE scheme. However, the blocks are
swapped in the entire program memory space, e.g., the swapping
of block 8 in page 1 and block 2 in page 0. So this scheme needs to
remember the blockmapping, i.e., which address a block ismapped
to, using the full-width block address, whereas in the HIDE scheme,
only the offsets in the chunk need to be remembered as the blocks
are remapped only within a chunk. The storage overhead of the
Shuffle scheme is therefore greater than that of the HIDE scheme
(10% versus 3.5% as reported previously).
More importantly, in order to make memory accesses look

‘‘random’’ in its memory space, the Shuffle scheme shuffles blocks
in the entire program memory. As a result, it destroys the
program’s locality, and blocks in hot pages may be mapped to cold
pages. Eventually, in the long run, all pages are roughly equally
warm. This may increase the page faults if not all pages are in the
memory. If the Resident Set Size2 (RSS) is 100%, i.e., all pages of the
program reside in memory, such a randomization will not incur
extra page faults, and all page faults are cold page faults. However,
if RSS is 50%, i.e., at any time of the program execution, only half of
the pages reside inmemory, any access to the pages not inmemory
will incur a page fault. In this case, random swapping of blocks will
increase the page faults.
Fig. 5(a) plots the trend of page faults versus the RSS for gcc.

As we can see, the number of page faults increases by 257×when
RSS drops from 100% to 50% of the total memory pages, while the
curve is almost flat for the base case. This shows that preserving
locality is critical to program performance. Similar patterns can be
observed in other programs as well. Here we assumed a 4 kB page
size and perfect LRU memory page replacement policy.
Nonetheless, if the shuffling happens to keep or improve the

program’s locality, e.g., page 0 and page 1 in Fig. 4 are always ac-
cessed together, the number of page faults could remain the same
or even decrease. As we can see from gzip in Fig. 5(b), the num-
ber of page faults in the Shuffle scheme is almost the same as
that in the base case. This is because the shuffle buffer of gzip
storesmainly those blockswithin the currentworking set due to its
special memory access pattern.

2 The number of virtual pages resident in RAM.



J. Yang et al. / J. Parallel Distrib. Comput. 70 (2010) 443–457 447
bas e

50% 55% 60% 65% 70% 75% 80% 85% 90% 95% 100%

N
um

be
r 

of
 P

ag
e 

F
au

lts

Resident Set Size (in % of Memory Footprint)

base Shuffle

50000
100000
150000
200000
250000
300000
350000
400000
450000

0
50000

100000
150000
200000
250000
300000
350000
400000
450000

N
um

be
r 

of
 P

ag
e 

F
au

lts

50% 55% 60% 65% 70% 75% 80% 85% 90% 95% 100%

Resident Set Size (in % of Memory Footprint)

45000

50000

55000

60000

65000

70000
base Sh uffle

40000

45000

50000

55000

60000

65000

70000
base Shuffle

(a) gcc. (b) gzip.

Fig. 5. Page fault curves.
It is also worth noting that the Shuffle scheme can introduce
redundantmemorywrites aswell. This is because the shuffle buffer
effectively holds the recently fetched memory blocks. On a new
read from an address Addr for example, a block B is randomly
picked from the shuffle buffer and written back to Addr. However,
writingBback tomemorymight be a redundant operation asBmay
need to be written back again later when an actual write to B takes
place. This suggests that the previous write was unnecessary. Our
measurements show that such redundant writes account for ∼5%
of the total memory traffic on average.

3.4. Real workloads

Apart from the simulations above, we also use real workloads
to verify the impact of smaller resident set size on page faults.
This serves as a supplement to our studies above, since multiple
applications with small memory footprints running together could
have a union of a rather large footprint. When they compete
for memory resources, each application has a relatively smaller
working set in the memory, leading to more page faults. Fig. 6
shows the page fault curve for Windows Media Player on a DELL
Inspiron 4150 laptop with 384 MB memory running Windows XP.
We use two tools in the Windows 2000 Resource Kit to perform
the experiment, the page fault monitor (pfmon) and the memory
stealer (leakyapp). We first use leakyapp to allocate and hold a
fixed amount of memory, then run Windows Media Player either
alone or with other applications to see how it performs when the
memory is running low. Two popular applications,Microsoft Office
PowerPoint and Adobe Reader, are chosen to run at the same time
with the Media Player. Pfmonmonitors the page faults generated
by Windows Media Player. The result shows that when all three
applications are running concurrently and the available memory is
reduced to 64 MB, the number of page faults increases by almost a
factor of 4. This justifies the above simulationmethod in which the
resident set size is varied to see the page fault increase.

3.5. Summary

The HIDE scheme permutes blocks only within a chunk, practi-
cally one page, and hence has little impact on the memory paging.
However, it incurs extremely high overhead of memory accesses,
which makes it hard to fit into contemporary processors where
memory is still a performance bottleneck and one of the most
power-hungry components. The Shuffle scheme, on the other
hand, introduces mild extra memory demand. Yet its demand on
the disk access limits itself to embedded systems where most ap-
plications have small memory footprints. Accessing memory is
usually several orders of magnitude faster than accessing the most
technologically advanced hard-drives. Hence, in a demand paging
system, it is important to keep the page fault rate low. In the next
section we introduce our lightweight design that addresses the
shortcomings of the previous systems, by reducing their memory
access overhead and the excessive number of page faults.
200
400
600
800

1000
1200
1400
1600
1800

0
200
400
600
800

1000
1200
1400
1600
1800

64 128 192
Available Memory (MBytes)

N
um

be
r 

of
 H

ar
d 

P
ag

e 
F

au
lts

G
en

er
at

ed
 b

y 
W

in
do

w
s 

M
ed

ia
 P

la
ye

r 

m player m player+ppt m player+ppt+acroread

Fig. 6. Page fault curve for Windows Media Player.

4. Proposed inexpensive address permutation

Our scheme aims at achieving three goals. The first goal is to
avoid wasteful memory reads and writes in each permutation.
The second goal is to eliminate the wasteful permutations so as
to reduce the total number of permutations. The third goal is to
preserve locality and keep the page fault rate low. The approachwe
take is to permute selective blocks instead of a whole page, aided
by a good decision of when a permutation should happen.

4.1. The permutation mechanism

The idea. We propose to perform permutations only on on-chip
blocks. This is because their addresses have occurred once on the
bus, and could recur if they are evicted and read in again in the
future. Therefore, it is necessary to relocate them (i.e., permute
them) before they are replaced. However, not every replacement
should be preceded by a permutation because if a victim block
has been permuted and mapped to a different address, it is safe
to release it off-chip. It is only those blocks that are recently
read on-chip (called RR blocks) but have not participated in any
permutations that should be permuted. In other words, a block B
of a page P is an RR block if B is fetched frommemory after P’s last
permutation. Hence, a permutation is started only if an RR block
is to be replaced. Afterward, all the RR blocks that are involved in
the permutation are turned into normal blocks which can be safely
released off-chip because the permutation has masked the earlier
traces of accesses and their addresses have been mapped to other
random locations.
Since only on-chip blocks are involved during a permutation,

the need of reading chunks of blocks from memory and writing
them back as in HIDE is eliminated. This is the main reason why
our scheme can reducemost of thememory traffic. Another benefit
of this approach is that we do not need to update the memory
right away. Since the permuted blocks are on-chip, we simply



448 J. Yang et al. / J. Parallel Distrib. Comput. 70 (2010) 443–457
Fig. 7. Comparison of on-chip block permutation and the HIDE scheme. x, y, z are
from the same memory page. x is mapped to cache set set 1. y and z are mapped
to set 2. The block with a ∗means an RR block in our scheme, and a locked block
in HIDE. ‘m[a] = x’ means x is stored at memory address a.

perform the permutation of their addresses and remember the
mapping. When they need to be replaced sometime in the future,
they refer to the mapping to obtain their new addresses to which
they should be written. Note that we write every replaced block
into the memory because it is relocated to a different address even
if it is not dirty.
An example. We now walk through an example in Fig. 7 to show
our permutation mechanism. Assume that initially, x, y, z are from
the same page in memory with address a1, a2, and a3 respectively.
When x, y and z are loaded on-chip, they aremarked as RR blocks. If
later a readmiss happens in x’s set (event 3) and x is to be replaced,
a permutation must be performed because x is an RR block. The
permutation generates a randommapping (event 4) for all the on-
chip blocks of the same page as x (and some other blocks which
will be explained later) and then clears off the marks for those RR
blocks being permuted. Themapping is kept on-chip. After that, x is
written back to thememory at new address b1. Note that xmay not
be dirty but is still copied back. y and z are not written back until
they are evicted from cache. A write hit on y (event 5) does not set
the RR-bit again. Finally when y is replaced (event 6), it is written
back to the new address b2 assigned during the latest permutation.
We also illustrate the actions taken by the HIDE scheme in the

same figure as a comparison to our scheme. This example is along
the same line as Fig. 8. The main differences are in the type and
number of blocks involved in each permutation and the time a per-
mutation is triggered. In event (4), HIDE performs sequential reads
and writes to the entire page so that all the blocks in the memory
are physically permuted. Note that this is wasteful because y and z
are still on-chip to serve future requests from the CPU. Moreover,
the write hit to y in event (5) locks y again, which triggers a second
permutation upon a replacement of y in event (6). The entire block
Fig. 8. An example showing redundant permutations in HIDE.

is again sequentially read and written to the memory although a
remapping of all three blocks at this time is indeed unnecessary.
Let usmention a few subtleties here tomake this examplemore

complete. First, the initial addresses ai are not the true physical
addresses of x, y and z. They have been randomized in previous
permutations or an initial permutation of all memory pages as the
program started. This is a requirement in HIDE and Shuffle as well.
Therefore, one cannot infer, for example ‘‘a1 is mapped to b1 as
the permutation is triggered by their cache conflict’’, because what
caused the conflict are not really a1 and b1 on-chip. They have
been remapped randomly. Second, permutation on event (4) of
HIDE may not happen at the same time as in our scheme because
of the LRU replacement that was modified in HIDE to delay such
permutation. However, it can be delayed but cannot be avoided in
the future. Third, the mapping created by the two schemes may
not be identical because they use different block sets. We make
them equal in the example for ease of illustration and comparison
only. Finally, the permutation is performed on virtual addresses. In
a demand paging system, this will cause more subtleties involved
in TLB and page table updates. The HIDE scheme did not address
the complexity properly, while the Shuffle scheme assumes most
of the embedded systems do not employ virtual memory. We will
explain these problems later in Section 5.
In brief, our scheme permutes only on-chip blocks, and a per-

mutation takes place only when an RR block is replaced. We save a
significant amount of memory traffic compared to HIDE. The over-
head we pay here is only the write-backs of the non-dirty blocks.
Further, we eliminate permutations that are due to the write locks
in HIDE scheme. The simulation result will be presented in the next
section after the full scheme is described.

4.2. Permuting sufficient number of blocks

During each permutation, there should be enough many blocks
involved to ensure the quality of the randomization. For example,
in our 4 kB page setting, HIDE permutes 128 blocks every time,
generating 128! possible mappings or a probability of 1/128 to
guess one mapped address correctly. If there are only 32 on-chip
blocks in a page and if we only permute among those blocks, then
the probability is increased to 1/32, much higher than before and
thus less desirable.
Therefore, we increase the number of available blocks by look-

ing at the chunk level instead of page level. The HIDE scheme could
not truly scale to the chunk level due to its prohibitive increase in
memory demand, while we do not have this concern as we only
look at the on-chip blocks, and thus our scope can be scaled up to
include more pages. Our goal here is to permute the same num-
ber of blocks per permutation as the HIDE scheme. As the number
of blocks on-chip is dynamic for every page, we cannot be certain



J. Yang et al. / J. Parallel Distrib. Comput. 70 (2010) 443–457 449
Fig. 9. The procedure of searching for sufficient number of blocks to permute.

0

5

10

15

20

25

30 vpr

parser
mesa
mcf
gzip
gcc
equake
bzip2

0

5

10

15

20

25

P
er

ce
nt

ag
e 

of
 T

ot
al

30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of Pages

vpr
vortex
parser
mesa
mcf
gzip
gcc
equake
bzip2
art
ammp

Fig. 10. Average number of pages that supply sufficient number of on-chip blocks
per permutation.

how many pages should be included in order to have 128 blocks
in every permutation. Therefore, we develop a simple incremental
mechanism to solve this problem, as illustrated in Fig. 9.
The procedure. When a permutation is started by replacing an RR
blockA in pageP, we first check ifPhas enough, e.g., 128, blocks on-
chip. If so, we simply permute the 128 addresses of those blocks.
Otherwise, we expand the search scope one page at a time in
its neighborhood until we have enough many blocks to permute.
When there are a sufficient number of blocks, giving priority to
the RR blocks over the normal blocks can reduce the total number
of permutations because only an RR block triggers a permutation
and it becomes a normal block after the permutation. However, our
search space does not grow unbounded. It is limited by the chunk
size, i.e., the chunk boundarywhere P falls within. If we still cannot
find sufficient number of blocks in the entire chunk, to ensure the
same level of security, we choose to read extra blocks from the
memory within the chunk as padding blocks to the permutation
input. Aswe can see, the chunk size should be a reasonable number,
as too small the chunk size leads to a HIDE-like scheme becausewe
need to readmany extra blocks, but too big the chunk size leads to a
Shuffle-like scheme because we lose locality among the permuted
blocks. Therefore, choosing an appropriate chunk size depends on
the trade-off between the memory accesses and the incurred page
faults.
Typically, the collection of sufficient number of blocks can be

found in just a couple of pages. The extreme of searching in the
entire chunk does not happen very often. Fig. 10 shows the average
number of pages searched in order to find sufficient number of
blocks on-chip. We set the chunk size to 16 pages, the choice that
will be explained later. The figure is averaged across all 11 SPEC2K
benchmark programs. Each bar also shows the weight contributed
by eachprogram. Inmost cases (∼58%), up to twopages are enough
to provide 128 blocks on-chip. However, searching through the
entire chunk does happenmore than 15% of the time. This number
is mainly contributed by programs ammp and vortex, both having
poor locality and small number of blocks per chunk in the cache.
Note that when the search stops at 16 pages, padding might be
10
20
30
40
50
60
70
80
90
100 ammp

art

bzip2

equake

gcc
gzip

mcf

mesa

parser
0

10%
 o

f P
ag

es
 U

se
d 

in
 a

P
er

m
ut

at
io

n

20
30
40
50
60
70
80
90

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of Pages in a Chunk

a

art

bzip2

gc

gzip

f

pa

vortex

vpr

Fig. 11. Number of pages involved in each permutation.

90

80

70

60

50

40

30

20

10

100

P
er

m
ut

at
io

n 
R

ed
uc

tio
ns

 O
ve

r 
H

ID
E

 (
%

)

0

Fig. 12. Percentage of permutation reduction.

Fig. 13. The percentage of saved permutations due to write locks.

needed. If so, they automatically fall into the 16th bar. An anatomy
of the number of pages touched per permutation for each program
is given in Fig. 11. As shown,most of the programs, except forammp
and vortex, need only 4 pages for 70% of the time. This implies
that the searching algorithm can terminate quickly.
The benefit. Permuting across multiple pages on-chip helps greatly
to reduce the number of permutations. For example, suppose a
replacement of an RR block in page P1 triggers a permutation,
followed by a replacement of an RR block in P2. In HIDE, both
replacements cause permutationswhile in our scheme, P2 could be
permuted together with P1 in the first permutation, which might
clear off the RR block in P2 and save the second permutation.
Such an effect is the major contribution to the total permutation
reductions shown in Fig. 12. On average, our scheme saves nearly
40% of the permutations in HIDE including those due to write locks
as explained in the previous section. Specifically, Fig. 13 shows the
percentage of such permutations saved by our scheme over HIDE.
We also studied how frequently permutations occur. If they

happens very often, then normal memory accesses would be
greatly affected. If it happens only occasionally, the costs could
be amortized over a much larger number of memory accesses. In
Fig. 14,we also show the density, in percentage of totalmemory ac-
cesses, of permutations for our chunk-level scheme and the HIDE
scheme. On average, only 1.52% of the memory accesses invoke
permutations, i.e., among 200 memory reads and writes, only 3 of
them trigger a permutation. With efficient hardware components
discussed in Section 5, the impact of our scheme on the system



450 J. Yang et al. / J. Parallel Distrib. Comput. 70 (2010) 443–457
26.50

0

1

2

3

4

5

6

chunk HIDE

26

0

1

2

3

4

5

6

chunk HIDE

Fig. 14. Permutation frequency.

Fig. 15. Memory traffic comparison of different schemes. Chunk size is varied from
2–16 pages.

Fig. 16. Page faults comparison among different schemes averaged across all
benchmarks.

is very limited. Our scheme saves the most for benchmark ammp,
where only two out of 100 memory accesses trigger a permuta-
tion, whereas in HIDE, one fourth of the memory accesses trigger a
permutation.
Choosing the chunk size. As mentioned earlier, a large chunk size
may result in more page faults as the permutation spans over a
wider address space. A small chunk size may generate more ex-
tra memory accesses since not all pages are fully cached on-chip.
Hence it is important to find a good break-even point between the
page faults and memory accesses. We compare the total number
of memory accesses in Fig. 15 with varying chunk sizes in terms of
number of pages. The results are normalized to that in a base sys-
tem where no address protection is present. The Shuffle scheme
doubles the memory traffic while HIDE leads to an enormous in-
crease by a factor of 12. As expected, the larger the chunk size, the
smaller the traffic. A chunk of 16 pages only brings 88%more traffic
on average, even better than Shuffle, while other sizes increase the
traffic by a factor of 2.46, 3.59, 5.73, respectively. Ourmemory traf-
fic is lower than the Shuffle scheme because the aforementioned
reason that Shuffle introduces∼5% extra writes while our scheme
can avoid them. The major portion in the 88% extra traffic comes
from thewrite-backs of non-dirty blocks. To show thepage fault in-
creases with larger chunk sizes, Fig. 16 plots the curves with grad-
ually decreasing memory RSS. The results are averaged across all
the benchmark programs. As we can see, although a larger chunk
size generates a little more page faults (less than 2% increase from
chunk-2 to chunk-16), they all have far fewer page faults than the
Shuffle scheme. So, overall speaking, a chunk size of 16 pages has
the lowest memory traffic increase with a reasonable page fault
increase.

4.3. Security analysis

To find out the address recurrence from our randomized
address sequence, an observer must be able to conjecture at least
one address mapping correctly between two permutations. Our
scheme has many uncertainties that help reduce the probability
of a successful guess. For example, there is no clear indication of
when a permutation really happened from off-chip observation
since most permutations do not involve off-chip accesses and only
a subset of off-chip write-backs would cause a permutation. Also,
even if a permutation is identified, it is hard to know which set
of on-chip blocks participated in the permutation since they are
determined internally. Furthermore, it is not clear what set of
blocks are really on-chip soon after some initial execution aswrite-
backs are remapped so that it is hard to know what blocks are
returned to the memory.
Nevertheless, let us assume a case where an observer can make

a correct guess with the highest probability. Other situations are
significantlymore complex than this case and the probabilitieswill
not be higher. Suppose a page P is entirely read on-chip. Later on
a block is written back to an address A in P. Since all the blocks of
Pwere read on-chip and were initially RR blocks, any replacement
would invoke a permutation inside P only. Hence, it is some block
in P that is mapped and written back to A. The probability to guess
A’s original address correctly is 1

128 , assuming there are 128 blocks
per page. If a second write-back to A′ in P occurs, the probability
to also guess (A′)’s original address correctly is 1

128 ×
1
127 . In order

to guess all mappings correctly, the probability is 1
128! . Hence, it is

best for an observer to make a guess in the first write-back after a
latest permutation.
Similar to HIDE, what an observer can see on the bus is the

chunk-level transition, instead of fine-grained page-level or even
block-level transition that can reveal control flow easily. The HIDE
technique has shown that a chunk size of 64 kB, i.e., 164 kB pages,
can cover 95% of the program’s control flow (some compiler-
assisted layout optimization may be necessary to achieve this
number). However, the HIDE scheme cannot afford to operate on
real 64 kB chunk, while our scheme performs the best with this
size.
By permuting mostly the on-chip blocks with occasionally off-

chip padding blocks, our scheme makes full use of the on-chip
cache. The more blocks stored on chip, the fewer addresses are
transferred on the bus, and the more secure it is. If an attacker
maliciously runs a simultaneously executed thread to inject well
crafted cache accesses in order to push some cache blocks off-chip,
the program under attack would create more memory accesses
as fewer blocks are on-chip, leading to a more HIDE-like effect.
Essentially, the address protection scheme plays against the cache-
centric attack until the program runs at very low speed. Now it is
probably good to raise an alarm indicating a possible attack.
However, the previous discussion is based on the assumption

that there is no pattern in the block replacement. If the block re-
placement is very regular, an adversary might have higher prob-
abilities to guess a correct mapping. For example, if the cache is
direct-mapped, and a processor reads only one address A from a
chunk and immediately evicts it, there will be 127 reads to bring
enough many blocks on-chip for shuffling. If A is evicted by itself,
i.e., the 127 padding blocks are evicted together without A, then an
adversary can correlate the single readwith the singlewrite to find
out the mapping for A. Another extreme example is that in a fully



J. Yang et al. / J. Parallel Distrib. Comput. 70 (2010) 443–457 451
associative cache with FIFO replacement policy, where an adver-
sary is able to tell which block is to be evicted next, it is not hard to
correlate a previous read with a future write to find out the block
mappings.
To defeat these kinds of attacks, we take advantage of our

prefetch buffer to delay all block evictions by a random amount of
time, i.e., when a block is evicted, we hold it in the prefetch buffer
for some time, and evict another victim instead. The prefetch buffer
is where we store the padding blocks as discussed in the previous
section. Now that which block is evicted at what time is unpre-
dictable, the adversary cannot correlate the two addresses before
and after the swap as easily as before.
Another security issue we need to discuss is how much infor-

mation an adversary can obtain from the side-effects of TLB and
block mapping accesses. Since it is impossible to store all the ad-
dress mappings on-chip, we designed a Chunk Information Table
(CIT), introduced in Section 5.1, to cache partial mappings on-chip.
Similar to data cache misses, TLB misses and CIT misses on the bus
can reveal page and block access patterns. Let us first look at how
much information an adversary can obtain. For a 4 kB page size, one
page can cover 1024 32-bit instructions. For a 64 kB chunk size and
a 32 B L2 block size, each block index needs 11 bits, so a 32 B CIT
block can store the indices for 23 (b32× 8/11c) L2 blocks, which
contain 184 instructions. Compared with a 32 B L2 block that have
only 8 32-bit instructions, much less information can be extracted
from the TLB and CIT misses.
To achieve even better security, we can build a hierarchical pro-

tection scheme as mentioned in both [37,36]. Any CIT miss will
cause another look up in the CIT cache again to fetch its own map-
ping. Now that we need to store multi-level mapping table, and
fetch multi-level such mappings just to get one L2 data block, the
performance and storage overhead is even bigger. There is always
a trade-off between security and performance. In our work, we
choose to use only one-level mapping table to build an affordable
security system.

5. Implementation issues and architecture design

5.1. The permutation architecture

To put everything together, we need the following hardware
components to assist the address protection scheme. First of all,
we need a permutation unit that can generate a random permuta-
tion for 128 blocks. Such a permutation unit can leverage the hard-
ware random number generator that utilizes the complex physical
phenomena [18]. Hence, no special procedure for seed genera-
tion is necessary. A shuffle algorithm performing 128 swaps would
suffice as long as a hardware true random number generator is
present. Notice that, in most cases, we only need to permute the
addresses of the on-chip blocks. Occasionally we also need to read
some padding blocks from memory to participate in the permuta-
tion. Thus, a buffer for temporarily storing them is necessary. Its
size is 127 blocks as there must be at least one block on-chip in the
chunk. Also, storing the 128 block offsets for permutation requires
128× 7 bits in total.
Next, we need an information table for every chunk that

remembers the block address mappings (in BAT) and the block
status. All address mappings are stored in the chunk information
table. Each chunk has an entry, consisting of two bit vectors and a
virtual address BAT. One bit vector remembers if the block is on-
chip, and another remembers if it is an RR block. The BAT stores the
virtual-to-virtual address mappings (more in Section 5.3) for each
block, with each mapping used only once before being relocated
again. The record size is small compared with the size of a chunk.
If we assume the block size is 32 bytes, and each page is 4 kB, then
for a 64 kB chunk, the storage overhead is only 5%, since there are
Fig. 17. Architecture of the permutation unit.

only two status bits per block, and 11 bits for the mapped block
offset within the chunk. Hence, there is approximately the same
overhead as in HIDE with the same chunk size. When compared
with the Shuffle scheme where there is a 10% storage overhead for
the BAT, we reduced the storage overhead by half.
Finally,weneed an address generationunit that can quickly find

128 on-chip addresses to permute. This can be easily performed
through wide shift registers and an adder. We can first AND two
status bit vectors of a page into the shift register, and then shift the
register one bit at a time. The adder increments the block offset on
each shift, and outputs the offset to the permutation unit if the bit
is set, i.e., the block address should be used for permutation. Once
a vector for a page is finished, the unit starts with the next page.
It might take two iterations to do so as we may not have sufficient
number of RR blocks in one round. In the second round, we shift
only the on-chip status bit vectors. The starting point should be
randomly selected to inject some randomness in selecting the on-
chip cache blocks. Since the adder only operates on block offsets, it
is only 7-bit wide. Hence, a conventional 32-bit adder can perform
four additions in parallel, producing 4× the throughput.
The architecture design of the hardware components and the

datapath are illustrated in Fig. 17. When a cache miss happens, the
BAT is searched for the mapped address, followed by a TLB access
to obtain the physical address. When a write-back happens, if the
victim is not an RR block, the write-back just needs to go through
address mapping and TLB translation as with the cache miss. If
the victim is an RR block, a permutation must be initiated before
it can go off-chip. The permutation starts by sending the status
bit vectors to the address generation unit which then emits 128
addresses for the permutation unit. When a newmapping is ready,
it is then updated into the BAT table. The victim can now be sent
off-chip with a new mapping.
We assume the entire permutation takes 300 cycles on a

1 GHz processor, 128 for the address generation unit, 128 for
the permutation, and the rest for address updates (BAT can be
multiported). Since the number of permutations in our scheme is
low, and the permutation is done on the write path which is non-
critical, such a latency does not bring forth noticeable performance
penalty.

5.2. Virtual addresses versus physical addresses

As with the HIDE address mapping scheme, our permutation
should be performed on virtual addresses (VA), although we aim
to prevent physically tapping the addresses bus. This is because if
permutationwas performed in the physical address space, itwould



452 J. Yang et al. / J. Parallel Distrib. Comput. 70 (2010) 443–457
(a) Address translation in a physically addressed L2 cache. (b) Address translation in a virtually addressed L2 cache.

Fig. 18. Double and single TLB lookups in a physically and virtually addressed L2 cache.
be interfered by the virtual–physical address mapping managed
by the OS. For example, suppose that a permutation spans across
two consecutive physical pages, P and P+1, and that P’s associa-
tion with a virtual page is later changed by OS. The permutation
mapping maintained on-chip for P and P+1 now becomes invalid
because P and P+1 originally contained blocks of each other, but
now the contents of P are swapped out to the disk due to its change
in virtual address association. In contrast, if the permutation is per-
formed in the virtual address space, any VA will be mapped to
another VA first, then translated to a PA by the TLB. The VA–PA
association changes remain transparent to the hardware permuta-
tion unit. This is the main reason why we decide to permute the
blocks in the virtual address space.

5.3. Virtual cache versus physical cache

Our address remapping process is carried beneath the last level
cache, since we only need to protect the addresses that occur
on the processor-memory bus. Therefore, the implementation of
the permutation is different for a virtual L2 cache from that for a
physical L2 cache. In this section, we discuss the advantages and
disadvantages of using virtual cache versus physical cache.
Physical cache implementation. Since physically indexed, physically
tagged L2 cache is the predominant cache type in×86 CPUs, let us
first discuss our implementation in a system featuring a physical
L2 cache. In such systems, the MMU first translates the VA into a
PA and uses it to access the cache, as shown in solid line path in
Fig. 18(a). If it is a cache hit, the data is returned to the CPU and
L1 and no further action is needed. If a miss happens, however,
the PA should be sent to memory to fetch the data. In a memory
address protected system such as HIDE and ours, the original VA is
remapped to a VA′, and hence the current PA should not be used for
memory access. Instead, we should first look up the new mapping
for the original VA to find VA′ in the Block Address Table (BAT) [36],
and then translate the VA′ to a PA′. Only after this, can we have the
true physical address to access memory.
Compared with the data path in a system without address

permutation, a second TLB lookup is necessary on an L2 miss to
translate the mapped address VA′. This is because VA′ and VA are
translated independently by OS to different physical addresses,
and there is no correlation between PA and PA′. This procedure is
illustrated in the dotted path in Fig. 18(a). The second TLB lookup
might be a miss and trigger a memory access for the proper page
table entries, which penalizes the performance. Our experiments
show that on average, the TLB accesses increase by 5%, while the
TLB misses increase by more than 12%. The increased TLB misses
partly come from the increased TLB accesses, partly from the
permutation induced variance.
It is possible to avoid the second address translation on an L2

miss by mapping the chunk to contiguous physical memory. Now
that each chunk is contiguous in both the virtual address space and
the physical address space, only one TLB entry is necessary for the
entire chunk.When there is an L2miss, PA′ can be calculated based
on VA, VA′ and PAwithout accessing the TLB again. This essentially
increases the page size, forcing the physical pages belonging to the
Fig. 19. TLB miss reduction with a 64 kB chunk.

Fig. 20. Number of pages accessed per chunk when swapping out.

same chunk to be swapped in and out together. In a system with
plenty of memory, large benefits are gained from increasing the
TLB coverage. Fig. 19 presents the best-case TLB miss reduction
for each benchmark. This is obtained when the benchmarks are
always given the contiguous memory regions they need. For some
benchmarks, the data TLB misses are almost eliminated. However,
when the system later runs out of contiguous physical memory,
higher paging traffic will cause extra memory pressure because
some pages are swapped without real accesses to them. Fig. 20
shows the average number of pages accessed in a chunk before it
is swapped out when the available memory decreases from 100%
to only half of the program’s working set size. For vpr, only 2 out of
16 pages in a chunk are actually accessed when RSS drops to 50%.
These I/O costs can easily outweigh the benefits from reduced TLB
misses.
If we lessen the condition above, i.e., a chunk could be non-

contiguous in physical space as mentioned before, then the mem-
ory pressure is greatly reduced. Fig. 21 shows that, when the RSS
drops to 50%, a contiguous chunk generates around 8 times more
page faults than a non-contiguous chunk, averaged across all the
benchmark programs.
Virtual cache implementation. It is possible to eliminate the extra
TLB accesses by using a virtual L2. In a virtual L2, TLB lookups
precede the L2 misses. Hence, with the address permutation
interface, themissed VA is first searched in the BAT for itsmapping,



J. Yang et al. / J. Parallel Distrib. Comput. 70 (2010) 443–457 453
Fig. 21. Page fault increase over non-contiguous chunk in a physical cache.

Fig. 22. Comparison of TLB misses for virtual L2, virtual L2 with permutation (our
scheme), and physical L2 cache with permutation. Results are averaged across all
benchmarks.

and then translated through the TLB to get the true physical
address. Only one TLB lookup is necessary, as shown in Fig. 18(b).
Putting the TLB below a virtual L2 cache has the advantage that its
coverage on page table entry is better than the TLB in a physical
L2 cache, since the former holds page entries for L2 misses [25].
Therefore, the TLB for a virtual L2 cache has much less misses than
a physical L2 cache. To see this, we measured the TLB misses in
Fig. 22 for a virtual L2 cache (‘‘VL2’’), our address permutation on
a virtual L2 cache(‘‘VL2-perm’’), and on a physical L2 cache (‘‘PL2-
perm’’), normalized to the TLB misses in a baseline with a physical
L2 cache.
The results show that using a virtual L2 instead of a physical

L2 cache can reduce the TLB misses by half on average. When en-
hanced with address permutation in a virtual L2 cache, TLB misses
increase only by 1% on average. However, if permutation is added
to a physical L2 cache, the TLB misses are increased by 12%. These
data show that a virtual L2 cache is especially useful in our scheme.
Using a virtual L2 cache has some issues such as the synonyms
and exception handling, so it is not widely accepted. However,
those problems have been well addressed in the literature with
certain hardware-assisted schemes [25–27]. In particular, a Syn-
onym Lookaside Buffer (SLB) was proposed in [25] to dynamically
translate synonyms to its corresponding main address. The main
address acts as a unique identifier for all pages in a synonym set,
thus preventing synonyms in the cache.
Where do we fit? In conclusion, our scheme can be implemented
in both physical and virtual caches. If the infrastructure of virtual
caches is already developed, our scheme is best fit in virtual caches.
Because the address translation is done deeper in thememory hier-
archy, the frequency of TLB accesses is reduced, and the TLB cover-
age is better than a physical cache. Even if we add permutation on
top of it, no second TLB access is necessary, and there is only mod-
est increase in TLB misses. In a system with physical caches, we
could also achieve lower TLB misses and avoid the second address
translation, as long as there is plenty of free, non-fragmentedmem-
ory to support a physically contiguous chunk. Even if the chunk
is not contiguous, our scheme only incurs around 12% more TLB
misses, while generating much less page faults when the system is
heavily loaded with very limited free memory.

5.4. Compatibility with multi-core architectures

In this paper, our design mainly targets single-core chip archi-
tectures. As technology advances to nanoscale dimensions, chip
multiprocessors, a.k.a. multi-core processors start to become the
norm of future processor architecture. The memory address traces
exposed on the memory bus between a multi-core processor and
the memory contains information frommultiple cores. This makes
it more difficult for an attacker to infer the information of the code
on aparticular core. However, such complexity is not computation-
ally high. Therefore, it is still not safe to leave the address traces in
clear text.
The technique we propose for single-core processors can be

adapted to multi-core processors as well. There might be multiple
memory controllers for a multi-core processor, each correspond-
ing to a distinct memory address space. Each memory controller
should contain one permutation unit as shown in Fig. 17. Hence,
each permutation unit is responsible for permuting the addresses
within the subspace of the memory controller to achieve protec-
tion. The bit vectors and BAT in different controllers store different
information now, but the algorithm carried is the same as in the
single-core scenario. Hence, although the studies and experiments
performed in this paper focus only on single-core processors, the
design and principle can be applied to future multi-core architec-
tures as well.

6. Evaluation

For all the data shown earlier in the paper, we used the Sim-
pleScalar Tool set 3.0 [1] to run 11 SPEC2K benchmark programs.
All programs were simulated for 1.1 billion instructions. The pa-
rameters used are listed in Table 1.
We have shown the reductions of both the memory traffic and

the page faults earlier in Figs. 15 and 16. This is mainly due to the
removal ofmemory page sweeps during each permutation, and the
reduction in the total number of permutations due to chunk-level
permutations shown in Fig. 12. In this section, we focus on the
performance results and the memory energy consumption. Since
SimpleScalar is not a full-system simulator, we cannot model the
page fault handling accurately. We assume the working set of a
program fits entirely in the memory, so the results only reflect the
differences of memory traffic increase.
We implemented our chunk-level permutation scheme, the

HIDE scheme, and the Shuffle scheme. In Sections 6.1 and 6.2, we
assumed perfect auxiliary on-chip storage for the chunk info ta-
ble in our scheme, the page info record in the HIDE scheme, and
the block address table in the Shuffle scheme. In Section 6.3, we
implemented the chunk info table cache that only has limited on-
chip storage, and compared it against the one with a perfect on-
chip storage.

6.1. Memory energy consumption

We compare the memory energy consumptions for different
schemes to show the impact of memory access increase on its
total energy. Note that the total energy may not be proportional to
the total access numbers because burst reads and writes consume



454 J. Yang et al. / J. Parallel Distrib. Comput. 70 (2010) 443–457
Table 1
Simulation parameters.

Clock freq. 1 GHz Unified L2 1 MB, 4way, 32 B, 12 cycle
Decode/issue/commit width 8/8/8 L1 I- and D-cache 8 kB, 32 B direct-map, 1 cycle
RUU/LSQ size 128/64 Memory latency 80 (critical), 5 (inter) cycles
Fetch queue 32 entries Memory bus 200 MHz, 8-byte wide
TLB miss 30 cycles Chunk size 4 kB–64 kB
Fig. 23. Memory energy consumption increase normalized to the base.

less energy than sparse accesses. The energy is also a function
of internal banking and row buffering. We used a detailed trace
driven DRAM simulator [7,6] that implemented a power model
for SDRAM, DDRSDRAM and DDR2. Due to the simulation speed,
the traces were generated over 100 million instructions after
fast-forwarding one billion instructions and the chunk size is set
to one page (Chunk-1). The 16-page chunk size (Chunk-16) we
choose has even smaller memory traffic and therefore, consumes
less energy than Chunk-1. We simulated our benchmarks using
the DDR2 specification [20] for a 1 Gbit memory with 1 rank,
each rank having 5 chips with the 5th being the ECC, 32-bit
interface with a total bandwidth of 2.67 GB/s running at 667 MHz
on a 4 GHz processor. Hence, our memory model projects into
future processor architectures that will have high bandwidth
requirement.
As expected, HIDE and Shuffle consumemore energy on average

than our scheme. As shown in Fig. 23, on average, HIDE and
Shuffle increase energy consumption level by a factor of 4.53
and 1.79 respectively. In contrast, our scheme shows a modest
increase in energy consumption of 1.21× the baseline. In the case
of benchmark ammp, our scheme incurs highermemory traffic than
Shuffle when running only over 100 M instructions, thus resulting
in an increase of memory energy consumption. However, in the
same benchmark HIDE increases energy by a factor of 166. This
is because the trace for ammp during the collected interval shows
much higher memory demand than the overall results (68.85× in
Fig. 15) for 1.1 billion instructions.

6.2. Performance discussion

The evaluation of the performance benefits of our scheme
varies with several parameters. Since the differences of the three
schemes mainly lie in the bus traffic and the memory accesses,
the report of the total execution time of a program depends on
how well those components are modeled in the simulation tool.
For example, the SimpleScalar 3.0 tool set adopts an unlimited
write buffer, an ideal bus with unlimited outstanding requests
and an overly simplified memory latency estimation. Those may
result in a more optimistic evaluation as queuing effects, memory
bank scheduling, bus transaction control overhead, etc. are all left
out. To see different ways of how those aspects can impact the
Fig. 24. Performance comparison assuming sequential memory accesses.

final performance reports, we experimented with three different
settings: (1) using the same experimental methodology as in
HIDE: the default SimpleScalar parameters with a critical block first
policy, i.e., the critical block can always precede the other memory
requests and come back in time; (2) using the same setting as in
(1) except for a memory latency of 300 cycles; and (3) using a
serialized atomic bus which performs atomic reads for blocks and
each block is a transaction.
We found that in setting (1) the average performance slow-

downs for our scheme, the Shuffle scheme, and the HIDE scheme
are 0.51%, 0.5% and 0.82% respectively. There are hardly any differ-
ences among the three schemes despite the fact that their memory
demands are dramatically different. This is because the assumption
of critical-block-first makes all memory reads return in about the
same time, leading to very close performance results. In setting (2),
the average slowdowns are 2.59%, 3.07% and 2.93% for ours, Shuffle
and HIDE respectively. As we can see that even each scheme itself
is slowed down because of the longer memory latency, across dif-
ferent schemes the differences are still small due to the same rea-
son as in setting (1). In setting (3), we see significant variations as
plotted in Fig. 24.
On average, the Shuffle and our chunk scheme show a 1.43×

and 1.36× slowdown respectively. However, the HIDE scheme suf-
fers a 7.38 fold degradation. The main reason for this set of data to
be very different from previous ones is that all memory and bus re-
quests are serialized, and critical blocks are not reordered to pre-
cede any requests. Allowing the critical blocks to always precede
other accesses requires that all the queues along the path have the
ability to perform reordering and dependence checking. Not allow-
ing them to bypass others puts a rather constrained limit on the
performance. As we can see, this is the dominant performance fac-
tor in HIDE as many memory reads hit permutation traffic.
Wewant to stress that the above data only serve the purpose of

showing that system variations can lead to vastly different perfor-
mance results. Thus, making a conclusion on a single setting may
not be entirely appropriate. Nevertheless, a design that generates
low memory traffic and page faults is always desirable.

6.3. Performance discussion in a more realistic setting

In this section, we changed some of the simulation parameters
tomodel amore realistic machine.We also assume there is limited



J. Yang et al. / J. Parallel Distrib. Comput. 70 (2010) 443–457 455
Table 2
More realistic simulation parameters.

Decode/issue/commit width 4/4/4 Memory latency 300 cycles
RUU/LSQ size 64/32 Bit vector cache 1 kB, fully assoc, 32 B
Fetch queue 16 entries BAT cache 8 kB, fully assoc, 32 B
Fig. 25. Performance comparison with a more realistic machine model.

Fig. 26. Breakdown of memory traffic increase factor.

on-chip storage for the chunk information table. Table 2 lists the
parameters that are different from those listed in Table 1.
As explained in Section 5.1, the storage overhead for the Chunk

Information Table (CIT) is about 5% of the memory. Hence, it is
more practical to cache CIT instead of keeping the entire table on-
chip. The complete CIT and BAT should be stored in memory with
encryption. Previously proposed encryption and authentication
techniques [9,17,31,29,32,34] can be used for data exchanges
between the on-chip cached part and off-chip complete tables. In
our settings, the L2 cache block size is 32 bytes. For a 64 kB chunk
of 16 pages, each block needs two bits for the status, and eleven
bits for the mapped block address, so we use a Bit vector cache
of 1 KB and a BAT cache of 8 kB to store these information. The
CIT is split into two separate caches so that the bit vectors and
the block mappings can be accessed independently by the address
generation unit and the permutation unit as shown in Fig. 17.
Fig. 25 compares our chunk scheme with the base scheme

where there is no protectionmechanism. Both bars are normalized
to the base scheme using parameters from Table 1. As expected,
both schemes suffer more from a realistic machine model because
of fewer resources and longer memory access latency. The
performance overhead increased to a factor of 1.86 for the base
scheme and 8.05 for our scheme on average. However, under the
same realistic setting, our scheme is only 3.27 times slower than
the baseline.
Fig. 26 breaks down the increasedmemory traffic to better show

the sources of performance slowdown. We categorize them into
four groups and compare each group against the original memory
traffic which includes both L2 read misses and L2 write-backs. In
Fig. 26, ‘‘L2’’ stands for thewrite-backs of non-dirty blocks. In order
to shuffle the blocks around, we need to write-back all blocks,
even if they are not dirty. How much additional traffic we get
depends on the replacement rate of the L2 cache. For example,
‘‘ammp’’ has a rather high replacement rate of 86.81%. Because of
such bad locality, blocks are constantly read on-chip and replaced,
so the write-backs of non-dirty blocks almost double the traffic,
and the ratio of ‘‘L2’’ in the first bar almost hit 1 (100%). While for
benchmarks that have good locality, such as ‘‘equake’’, ‘‘mesa’’ and
‘‘vortex’’, the traffic increase due to L2 cache block replacements is
less than 10%. On average, ‘‘L2’’ brings 35% more traffic.
The next two groups are ‘‘Vec’’ and ‘‘Bat’’, which stand for the

additional Bit vector/Bat cache read misses and write-backs. They
bring about 54% and 66% more traffic due to the frequency of
accesses and their limited size. The higher the hit ratio, the lower
the extra traffic. For example, ‘‘equake’’ has a hit ratio of 99% in
the Bit vector cache and 97% in the Bat cache, so we can barely see
the additional traffic in the chart. In our settings, one Vec block of
32 bytes covers bit vectors for 128 L2 cache blocks, while one Bat
block of 32 bytes covers blockmappings for 23 L2 blocks. The traffic
increase is determined by the memory footprint of the benchmark
and the size of our auxiliary caches. If thememory footprint is large
but the Bit vector and Bat caches are really small, then there will
be a considerable increase of memory traffic.
The last group ‘‘Extra’’ stands for extra traffic due to padding

blocks. As discussed in Section 4.2, there should be sufficient num-
ber of blocks involved in each permutation to ensure the quality of
the randomization. The traffic increase relies on the spatial local-
ity of the program. We have seen in Fig. 11 that it is hard to satisfy
the permutation need for ‘‘ammp’’ and ‘‘vortex’’, so Fig. 26 shows a
lot of extra traffic for these two benchmarks. However on average,
only 28% more traffic are brought by the extra padding blocks.
In total, our scheme brings about 2 times more traffic, which

leads to the performance overhead of a factor of 3.27. For all of our
experiments, we assume a 300-cycle permutation latency due to
accesses to the on-chip CIT upon each permutation.

7. Related work

Apart from the address sequence randomization techniques
[37,10,11,36], there are some other techniques that aim at protect-
ing the control flow graph (CFG) of a program as well. Earlier at-
tempts have taken a software obfuscation approach to transform a
code into a form that is harder to reverse engineer [5]. However,
it is theoretically uncertain whether a generated transformation
can ensure a required level of protection, as studied and proved in
[2,33]. In the world of embedded computing, protecting the pro-
gram runtime execution trace has been adopted in commercial
products since many embedded processors are used in financial
applications in which secrecy is highly required (e.g., DS5000 and
DS5002FP by Dallas Semiconductor [8]). The protection is done
through encrypting the off-chip address and data buses, which un-
fortunately creates a fixed mapping for addresses that fails to ob-
fuscate the CFG of a program [16].

8. Conclusion

In this paper, we propose an efficient address permutation
scheme for protecting the information leakage from the address
bus under physical tampering. Our technique addresses two main



456 J. Yang et al. / J. Parallel Distrib. Comput. 70 (2010) 443–457
issues of the previously proposed HIDE scheme: the excessive
memory accesses per permutation and redundant permutations.
We also avoid the large number of page faults that incurred in
the Shuffle scheme. On average, our scheme reduces the memory
traffic in HIDE from 12× to 1.88×, and brings the memory energy
consumption from 4.53× down to 1.21×. At the same time, we
reduced the number of pages faults to only 1/6 of the Shuffle
scheme even when the resident set size drops to 50%.

Acknowledgments

The first author was supported in part by NSF CAREER 0747242,
CCF-0734339, CNS-0720595, and Intel. The third author was
supported in part by NSF CAREER 0641177 and CNS-0720595. The
fourth author was supported in part by NSF grant CCF-0729071
and the fifth author was supported in part by DOE Early CAREER
PI Award and NSF CAREER 0644096.

References

[1] T.M. Austin, The SimpleScalar toolset, 2003. http://www.simplescalar.com.
[2] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S.P. Vadhan, K.
Yang, On the (im)possibility of obfuscating programs, in: CRYPTO’01: The 21st
Annual International Cryptology Conference on Advances in Cryptology, 2001,
pp. 1–18.

[3] R. Buyya, 2002. http://www.buyya.com/ecogrid.
[4] S. Chhabra, B. Rogers, Y. Solihin, M. Prvulovic, Making secure processors
os- and performance-friendly, ACM Transactions on Architecture and Code
Optimization 5 (4) (2009) 111–144.

[5] C. Collberg, C. Thomborson, D. Low, A taxonomy of obfuscating transforma-
tions, Tech. Rep. 148, University of Auckland, 1997.

[6] V. Cuppu, B. Jacob, B. Davis, T. Mudge, A performance comparison of contem-
porary DRAM architectures, in: ISCA ’99: The 26th Annual International Sym-
posium on Computer Architecture, 1999, pp. 222–233.

[7] V. Cuppu, B. Jacob, B. Davis, T. Mudge, High-performance DRAMs in
workstation environments, IEEE Transactions on Computers 50 (11) (2001)
1133–1153.

[8] Dallas semiconductor, DS5002FP secure microprocessor chip, 2006. http://
datasheets.maxim-ic.com/en/ds/DS5002FP.pdf.

[9] B. Gassend, G.E. Suh, D. Clarke, M. van Dijk, S. Devadas, Caches and hash trees
for efficient memory integrity verification, in: HPCA ’03: The 9th International
Symposium on High-Performance Computer Architecture, 2003, pp. 295–306.

[10] O. Goldreich, Towards a theory of software protection and simulation by
oblivious RAMs, in: STOC’87: The 19th Annual ACM Symposium on Theory of
Computing, 1987, pp. 182–194.

[11] O. Goldreich, R. Ostrovsky, Software protection and simulation on oblivious
RAMs, Journal of the ACM 43 (3) (1996) 431–473.

[12] A. Huang, Hacking the Xbox, No Starch Press, 2003.
[13] Intel Corporation, Intel 64 and IA-32 architectures software developer’s

manual, vol. 3a, November 2006. http://www.intel.com/design/processor/
manuals/253668.pdf.

[14] P. Kocher, Timing attacks on implementations of Diffie–Hellman, RSA, DSS,
and other systems, in: CRYPTO’96: The 16th Annual International Cryptology
Conference on Advances in Cryptology, 1996, pp. 104–113.

[15] M. Kuhn, The TrustNo1 cryptoprocessor concept, Tech. Rep. CS555 Report,
Purdue University, 1997.

[16] M.G. Kuhn, Cipher instruction search attack on the bus-encryption security
microcontroller DS5002FP, IEEE Transactions on Computers 47 (10) (1998)
1153–1157.

[17] D. Lie, C. Thekkath, M. Mitchell, P. Lincoln, D. Boneh, J. Mitchell, M. Horowitz,
Architectural support for copy and tamper resistant software, in: ASPLOS-IX:
The 9th International Conference on Architectural Support for Programming
Languages and Operating Systems, 2000, pp. 168–177.

[18] D. Lim, J.W. Lee, B. Gassend, G.E. Suh, M. van Dijk, S. Devadas, Extracting
secret keys from integrated circuits, IEEE Transactions on Very Large Scale
Integration (VLSI) Systems 13 (10) (2005) 1200–1205.

[19] C. McClure, Software Reuse Techniques: Adding Reuse to the System
Development Process, Prentice-Hall, Inc., Upper Saddle River, NJ, 1997.

[20] Micron technology, 2007. http://www.micron.com.
[21] modchip.com, 2007. http://www.modchip.com.
[22] A. Nanda, K.-K. Mak, K. Sugavanam, R.K. Sahoo, V. Soundararajan, T.B.

Smith, MemorIES: A programmable, real-time hardware emulation tool for
multiprocessor server design, in: ASPLOS-IX: The 9th International Conference
on Architectural Support for Programming Languages and Operating Systems,
2000, pp. 37–48.

[23] D.A. Osvik, A. Shamir, E. Tromer, Cache attacks and countermeasures: The
case of AES, in: CT-RSA’06: RSA Conference 2006, Cryptographers’ Track, 2006,
pp. 1–20.

[24] C. Percival, Cache missing for fun and profit, in: BSDCan 2005, 2005.
http://www.daemonology.net/papers/htt.pdf.
[25] X. Qiu, M. Dubois, Towards virtually-addressed memory hierarchies, in:
HPCA’01: The 7th International Symposium on High-Performance Computer
Architecture, 2001, pp. 51–62.

[26] X. Qiu, M. Dubois, Tolerating late memory traps in dynamically scheduled
processors, IEEE Transactions on Computers 53 (6) (2004) 732–743.

[27] X. Qiu, M. Dubois, Moving address translation closer to memory in distributed
shard-memory multiprocessors, IEEE Transactions on Parallel and Distributed
Systems 16 (7) (2005) 612–623.

[28] W. Shi, H.-H.S. Lee, Accelerating memory decryption and authentication with
frequent value prediction, in: ACM International Conference of Computing
Frontiers, 2007, pp. 35–46.

[29] W. Shi, H.-H.S. Lee, M. Ghosh, C. Lu, A. Boldyreva, High efficiency counter
mode security architecture via prediction and precomputation, in: ISCA’05:
The 32nd Annual International Symposium on Computer Architecture, 2005,
pp. 14–24.

[30] W. Shi, H.-H.S. Lee, C. Lu,M. Ghosh, Towards the issues in architectural support
for protection of software execution, SIGARCH Computer Architecture News
33 (1) (2005) 6–15.

[31] G.E. Suh, D. Clarke, B. Gassend, M. van Dijk, S. Devadas, AEGIS: Architecture
for tamper-evident and tamper-resistant processing, in: ICS’03: The 17th
International Conference on Supercomputing, 2003, pp. 160–171.

[32] G.E. Suh, D. Clarke, B. Gassend, M. van Dijk, S. Devadas, Efficient memory
integrity verification and encryption for secure processors, in: MICRO-36: The
36th Annual IEEE/ACM International Symposium on Microarchitecture, 2003,
pp. 339–350.

[33] C. Wang, A security architecture for survivability mechanism, Ph.D. Thesis,
University of Virginia, October 2000.

[34] J. Yang, Y. Zhang, L. Gao, Fast secure processor for inhibiting software piracy
and tampering, in: MICRO-36: The 36th Annual IEEE/ACM International
Symposium on Microarchitecture, 2003, pp. 351–360.

[35] Y. Zhang, L. Gao, J. Yang, X. Zhang, R. Gupta, SENSS: Security enhancement
to symmetric shared memory multiprocessors, in: HPCA’05: The 11th
International Symposium onHigh-Performance Computer Architecture, 2005,
pp. 352–362.

[36] X. Zhuang, T. Zhang, H.-H. Lee, S. Pande, Hardware assisted control flow
obfuscation for embedded processors, in: CASES’04: The 2004 International
Conference on Compilers, Architecture, and Synthesis for Embedded Systems,
2004, pp. 292–302.

[37] X. Zhuang, T. Zhang, S. Pande, HIDE: An infrastructure for efficiently
protecting information leakage on the address bus, in: ASPLOS-XI: The
11th International Conference on Architectural Support for Programming
Languages and Operating Systems, 2004, pp. 72–84.

Jun Yang received the Ph.D. degree in Computer Sci-
ence from the University of Arizona, 2002. She is an
associate professor of Electrical and Computer Engi-
neering at University of Pittsburgh. Jun Yang’s research
interests include power and thermal management of
microprocessors, three-dimensional processor stacking
technology, non-volatile memory technologies, network-
on-chip, reliability improvement, and cache management
in chip multiprocessors. Dr. Yang has co-authored a paper
that won the Best Paper Award in ICCD-2007, and a paper
nominated for Best Paper Award in HPCA 2009. She is a

recipient of NSF CAREER award in 2008. She is a member of ACM and IEEE.

Lan Gao received the Ph.D. degree in Computer Science
from University of California, Riverside, in 2007. She is a
Member of the Technical Staff at VMware, Inc. She worked
on VMware vCenter Converter in the past, and is now
working on VMware High Availability (HA). Her research
interests include architectural support for security and
trusted computing, virtualization, high availability com-
puting.

Youtao Zhang received the Ph.D. degree in computer
science from the University of Arizona in 2002. He is
an assistant professor in Computer Science Department,
University Pittsburgh. His research interests are in the
areas of computer architecture, compilers, and system
security. He is the recipient of US NSF CAREER Award
in 2005, the distinguished paper award of ICSE’2003, the
most original paper award of ICPP’2003. He is a member
of the ACM and the IEEE.

http://www.simplescalar.com
http://www.buyya.com/ecogrid
http://datasheets.maxim-ic.com/en/ds/DS5002FP.pdf
http://datasheets.maxim-ic.com/en/ds/DS5002FP.pdf
http://datasheets.maxim-ic.com/en/ds/DS5002FP.pdf
http://datasheets.maxim-ic.com/en/ds/DS5002FP.pdf
http://datasheets.maxim-ic.com/en/ds/DS5002FP.pdf
http://datasheets.maxim-ic.com/en/ds/DS5002FP.pdf
http://datasheets.maxim-ic.com/en/ds/DS5002FP.pdf
http://datasheets.maxim-ic.com/en/ds/DS5002FP.pdf
http://www.intel.com/design/processor/manuals/253668.pdf
http://www.intel.com/design/processor/manuals/253668.pdf
http://www.intel.com/design/processor/manuals/253668.pdf
http://www.intel.com/design/processor/manuals/253668.pdf
http://www.intel.com/design/processor/manuals/253668.pdf
http://www.intel.com/design/processor/manuals/253668.pdf
http://www.intel.com/design/processor/manuals/253668.pdf
http://www.intel.com/design/processor/manuals/253668.pdf
http://www.intel.com/design/processor/manuals/253668.pdf
http://www.micron.com
http://www.modchip.com
http://www.daemonology.net/papers/htt.pdf


J. Yang et al. / J. Parallel Distrib. Comput. 70 (2010) 443–457 457
Marek Chrobak is a Professor of Computer Science and
Engineering at the University of California at Riverside.
He was born and studied in Poland, obtaining his M.S.
and Ph.D. degrees in Computer Science from Warsaw
University in 1985. His current research and teaching
interests include design and analysis of algorithms, com-
binatorial optimization, on-line computation, job schedul-
ing, and bioinformatics.
Hsien-Hsin S. Lee is an Associate Professor of the School
of Electrical and Computer Engineering at Georgia Tech.
He received his Ph.D. degree in Computer Science and
Engineering from the University of Michigan, Ann Arbor.
His research interests include computer architecture, 3D
IC, low-power VLSI, and cyber-security. Previously, hewas
a processor architect at Intel Corporation and later the
architecture manager of StarCore DSP Technology Center
of Agere systems andMotorola. Dr. Lee received DOE Early
CAREER PI Award and NSF CAREER Award. He holds 4 US
patents and is a senior member of the IEEE and the ACM.


	A low-cost memory remapping scheme for address bus protection
	Introduction
	Motivation
	Overview of address sequence protection
	Model and premises
	Chunk-level permutation
	Memory shuffle
	Real workloads
	Summary

	Proposed inexpensive address permutation
	The permutation mechanism
	Permuting sufficient number of blocks
	Security analysis

	Implementation issues and architecture design
	The permutation architecture
	Virtual addresses versus physical addresses
	Virtual cache versus physical cache
	Compatibility with multi-core architectures

	Evaluation
	Memory energy consumption
	Performance discussion
	Performance discussion in a more realistic setting

	Related work
	Conclusion
	Acknowledgments
	References


