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Abstract— GPU has become a first-order computing plat-
form. Nonetheless, not many performance modeling techniques
have been developed for architecture studies. Several GPU
analytical performance models have been proposed, but they
mostly target application optimizations rather than the study
of different architecture design options.

Interval analysis is a relatively accurate performance mod-
eling technique, which traverses the instruction trace and
uses functional simulators, e.g., cache simulator, to track the
stall events that cause performance loss. It shows hundred
times of speedup compared to detailed timing simulations and
better accuracy compared to pure analytical models. However,
previous techniques are limited to CPUs and not applicable to
multithreaded architectures.

In this work, we propose GPUMech, an interval analysis-
based performance modeling technique for GPU architectures.
GPUMech models multithreading and resource contentions
caused by memory divergence. We compare GPUMech with a
detailed timing simulator and show that on average, GPUMech
has 13.2% error for modeling the round-robin scheduling pol-
icy and 14.0% error for modeling the greedy-then-oldest policy
while achieving a 97x faster simulation speed. In addition,
GPUMech generates CPI stacks, which help hardware/software
developers to visualize performance bottlenecks of a kernel.

Keywords-performance modeling; GPGPU; interval analysis;
simulation;

I. INTRODUCTION

Performance models are attractive solutions to speed

up simulation speed, especially for exploring early-stage

design options. The models can provide greater insight for

understanding architectures and applications. For example,

analytical models have been proposed for both CPUs and

GPUs [1], [4], [6], [9]. However, because of the relatively

short history of GPU architectures, fewer analytical models

and fast-simulation methods have been developed for GPUs.
Even though several GPU performance models are pro-

posed [16], [2], [27], [24], unfortunately, most of them have

focused on helping software optimizations. These models

use hardware performance counters or program analysis to

understand the performance bottlenecks of software, but they

have not been used to explore different GPU architecture

design options. Jia et al. [17] presented a regression-based

GPU model that can explore the design space with various

hardware parameters, but this model lacks in providing

insight into performance changes.
Analytical models are simple and fast enough to get

a first-order performance estimation, but they often have

higher errors than detailed timing simulations. As an al-

ternative solution to traditional analytical models, interval

analysis was proposed [19], [13], which uses both trace-

driven functional simulators and an analytical model to

estimate core-level performance. The key difference between

traditional analytical models and interval analysis is that

while traditional analytical models use the average (or total

summation) value of events, interval analysis traverses the

instruction trace and tracks the performance degradation

events, such as cache misses and branch mispredictions, and

then a model is used to estimate the performance impact

of each event. Tracking the events only requires functional

simulations, e.g., cache simulation, which results in at least

a 100x speedup compared to cycle-level simulations [10],

[18], [5]. Hence, the interval analysis technique is faster

than detailed cycle-level simulation while having a higher

accuracy than traditional analytical models. Furthermore,

interval analysis also provides the CPI stack, which shows

the breakdown of different types of performance loss events

and can provide an insight into performance behavior.
Nonetheless, no previous interval analysis technique has

been proposed for GPU architectures. Prior interval analysis

techniques cannot be naı̈vely applied to GPU architectures

for two reasons. First, multithreading is not considered.

Techniques have been developed for single-core or multi-

cores in which only one thread executes per core but not

for multithreaded architectures in which multiple threads

concurrently execute to hide the memory latency. Second,

control and memory divergence are not considered, since

they are unique behaviors in SIMD/SIMT architectures.
To overcome these limitations, we propose an interval

analysis technique, called GPUMech, the first interval anal-

ysis technique for GPU architectures. GPUMech profiles

the instruction trace of every warp and uses a clustering

algorithm to identify the representative warp. This is critical

for kernels that have control-flow divergent warps. To model

multithreading, GPUMech introduces the concept of non-
overlapped instructions to accurately model the latency

hiding capability of a scheduling policy. To handle perfor-

mance degradations resulting from memory divergence, the

resource contention in the memory system is also modeled.
The contributions of this paper are as follows.

• We propose the first interval analysis technique for GPU

architectures, which can be also applied to other muli-
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tithreaded architectures as well.

• We improve the interval analysis technique by modeling

multithreading (Section IV-A) and resource contention of

memory system. (Section IV-B).

• By leveraging our proposed technique, we propose the

first CPI-stack visualization tool for GPU architectures

to provide insights into performance bottlenecks. (Sec-

tion VII).

II. BACKGROUND AND MOTIVATION

A. Interval Analysis

The foundation of interval analysis was proposed by

Karkhanis et al. [19] and Eyerman et al. [13]. The basic

idea is that the performance of a processor is equal to the

issue rate of a processor (a sustained performance) unless

disruptive miss events occur such as branch mispredictions

or cache misses. Performance is then estimated by subtract-

ing the stall cycles due to different stall events from the

maximum issue rate. Figure 1 illustrates interval analysis.

An interval is defined as a sequence of instructions with

the maximum issue rate followed by stall cycles. Functional

simulators are used to detect stall events.
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Figure 1. Example of interval analysis. (i: instruction.)

B. Motivation

Multithreading: To apply CPU-based interval analysis

to an in-order multithreaded architecture, e.g., GPU, sev-

eral challenges exists. First, the previous interval analysis

techniques have only been developed for single-threaded

applications. Extending the model from a single-threaded

architecture to a multithreaded architecture requires emu-

lating instruction scheduling from multiple threads, which

could incur high overhead.

IPCcore = IPCsingle−warp performance × #warps (1)

Alternatively, as shown in Eq. 1, a naı̈ve approach to pre-

dict the performance of a multithreaded architecture is to use

interval analysis for a single warp, which is then multiplied

by the number of warps to get the final performance of

multithreading. It assumes that the total cycles of a single

warp remain unchanged while all instructions from the other

warps can be issued during the stall cycles of the single

warp to hide the stall cycles. However, this approach does

not accurately model the warp scheduling policy, in which

case the total cycles may change since not all instructions
from the other warps can overlap with the stall cycles. The

extra cycles, which are needed to issue the instructions that

do not overlap with stall cycles, result in performance loss.
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Figure 2. The case of interval analysis with multiple warps. (W: warp, i:
instruction.)

Figure 2 shows an example. Assume that 3 warps are run-

ning on a core and each of which has two intervals: Interval

1 has 1 instruction while Interval 2 has 4 instructions. Both

intervals have 10 stall cycles. The issue rate is 1 instruction

per cycle. During interval 1, a total of three instructions can

be issued, so the IPC for the core is 3/11, which is the

same result as using Eq. 1 (1/11 × 3). However, this is an

optimistic assumption. For Interval 2, warp 3 cannot issue

instructions 4 and 5 during the stall cycles of warp 1. To

issue those instructions, extra issue cycles are required. In

Section IV-A, we will illustrate and model two widely used

scheduling polices: round-robin (RR) and greedy-then-oldest

(GTO) policies to consider the extra issue cycles incurred in

both polices.
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Figure 3. Interval analysis with different degrees of memory divergences.

Resource Contention in the Memory System: The

second issue of the naı̈ve approach is that it ignores resource

contention in the memory system, which is likely to occur

with multithreaded architectures. One of the unique features

of a GPU architecture is that the number of memory re-

quests from a SIMD/SIMT instruction varies significantly

depending on the degree of memory divergence, referred to

as uncoalesced memory accesses. Figure 3 illustrates that

stall cycles can vary significantly because of queuing delays

caused by memory divergence. To address the problem, we

model the queuing delays of limited MSHR entries and

DRAM bandwidth, shown in Sections IV-B1 and IV-B2.

A Case Study: To provide a more concrete example,

we show how modeling different components reduces the

error gradually. Figure 4 shows the error of interval analysis

compared with a detailed timing simulation for an SRAD

kernel that has divergent memory accesses from Rodinia [8].
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Figure 4. The errors of a kernel from the SRAD benchmark

Naive_Interval bar shows the error when using Eq. 1.

MT models the round-robin scheduling policy while MSHR
and DRAM Bandwidth model resource contention for the

MSHRs and DRAM bandwidth, respectively. As the result

shows, modeling both scheduling policy and resource con-

tention is critical to improve the accuracy of the interval

analysis technique for GPUs.

III. SINGLE-WARP MODEL

A. GPUMech Overview
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Figure 5. GPUMech Overview

Figure 5 shows the performance model of GPUMech,

including single-warp and multi-warp models. The input of

the single-warp model is generated by the input collector de-

scribed in Section V. For the single-warp model, the interval
algorithm, described in the next subsection, models an in-

order execution of a warp and forms its intervals. “Selecting
the representative warp” chooses the representative warp

that has an interval profile similar to that of the majority

of warps.

Eq. 2 shows an interval profile of a warp, defined as

a collection of intervals constructed by the interval algo-

rithm. Each interval has the information of the number

of instructions and stall cycles. The interval profile of the

representative warp is sent to the multi-warp model.

interval profile = {[#interval instsi,stall cyclesi

]
, i ∈ intervals} (2)

Eq. 3 shows the final CPI, which is the sum of the CPIs

of multithreading and resource contention, predicted by the

multi-warp model.

CPIfinal = CPImultithreading + CPIrc contention (3)

B. Interval Algorithm

The purpose of the interval algorithm is to construct

a warp’s interval profile assuming an in-order execution
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Figure 6. Intervals of a warp. (The shaded boxes indicate the stall cycles
in which no instructions are issued. The instructions in dark gray are the
ones that lead to stall cycles.)

model. The inputs of the interval algorithm are (1) the in-

struction latency per static instruction and (2) the instruction

trace of a warp tagged with dependency information. The

generated interval profile of each warp will be used to select

the representative warp.

Figure 6 illustrates intervals of a warp. The done cycle

is equal to the issue cycle plus the instruction latency.

instruction 3 (i3) leads to stall cycles because instruction

5 (i5) depends on it. On the other hand, other instructions

in the first interval have no dependent instructions, so they

do not cause any stall cycles.

The interval algorithm traverses every instruction in the

instruction trace of a warp. It determines the issue cycle of

each instruction using Eq. 4, assuming that one instruction

can be issued every cycle. An interval is formed if the issue

cycle of the current instruction is not equal to the issue cycle

of the previous instruction plus one, since it indicates that

the stall cycles are incurred between the two instructions. In

that case, the previous instruction is included into the newly

formed interval, while the current instruction will belong to

the interval that will be formed next. The algorithm proceeds

until every instruction in a warp belongs to an interval.

issue cycle(instk+1) = max(issue cycle(instk) + 1,

done cycle(source instk+1) + 1)
(4)

C. Selecting Representative Warp

Once the interval profile of each warp is collected, we

select one warp to predict the overall performance. How-

ever, as some warps may have different degrees of control

divergences, their interval profiles could be quite different.

Using the interval profile from a random warp as an input to

the multi-warp model can lead to high error, since the warp

may not be representative of the other warps. Therefore, to

reduce the errors caused by control divergences, we attempt

to identify the most representative warp using clustering.

Specifically, GPUMech uses the k-means algorithm,

which requires two inputs: (1) the number of clusters and

(2) the feature vector of each warp. We set the number of

clusters to two. One cluster is to capture the majority warps

with similar interval profiles while the other cluster is to
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capture the outlier warps.

warp perf =

∑
i∈intervals(#interval instsi)∑

i∈intervals(
#interval instsi

1.0(issue rate)
+ stall cyclesi)

(5)

A feature vector is used to characterize the interval

profile of a warp. One simple approach is to represent each

interval as one dimension of the vector. Then the number

of dimensions is equal to the number of intervals of a

warp. However, clustering the vectors is not scalable, since a

feature vector for a long-running warp may have thousands

or more dimensions (intervals). Instead, we use the warp
performance, which is the IPC when a warp is running

alone on a core, as shown in Eq. 5, as one dimension of the

vector. Our assumption is that if two warps have different

interval profiles, their warp performances are different, and

vice versa. However, the warp performance may not capture

the warps with different number of intervals, e.g., distinct

iteration counts, even though their performances are the

same. Thus, the number of instructions of a warp is also

used as another dimension of the vector. The final feature

vector of a warp is shown in Eq. 6. Both features are

normalized by the respective average value over all warps.

feature vectorw =
[ warp perfw

avg warp perf
,

#warp instsw

avg warp insts

]
,w ∈ warps

(6)

The representative warp is selected as the warp closest

to the center of the largest cluster, since its interval profile

is more likely to be representative of the majority of warps

and thus will be used as the input of the multi-warp model.
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Figure 7. Errors from different representative warp selection methods.
Each tick represents a control divergent kernel and data points are sorted
by the errors of Clustering approach.

Figure 7 shows the errors of GPUMech when it uses

three different methods to select a representative warp.

(The baseline configuration is shown in Table I). The three

selection methods are (1) MAX: selecting the warp with the

maximum warp performance; (2) MIN: selecting the warp

with the minimum warp performance and (3) Clustering:

selecting the warp using clustering. For some kernels, the

three cases have similar errors, indicating that the difference

of interval profiles of warps is negligible. For the others, the

clustering method usually has the best accuracy.

IV. MULTI-WARP MODEL

The multi-warp model uses the interval profile of the

representative warp and predicts the performance under

multiple warps, which is the typical situation on a GPU

core. Specifically, it models the performance improvement

due to multithreading and the degradation due to resource

contention.

A. Modeling Multithreading

We model multithreading by assuming that multiple warps

are running on a core without resource contention. The key

idea is to count the number of instructions of the remaining

warps that hide the stall cycles of the representative warp.

Later, we add resource contention modeling. Ideally, all

instructions in the remaining warps hide the stall cycles.

However, some instructions do not hide the stall cycles,

leading to sub-optimal performance. In the following, we

illustrate and model two popular warp scheduling polices:

round-robin (RR) and greedy-then-oldest (GTO) [23] po-

lices.

In our terminology, among the warps assigned to a given

core, the warps other than the representative warp are

referred to as the remaining warps. From the remaining

warps, the instructions that hide the stall cycles of the

representative warp are referred to as overlapped instruc-
tions while the other instructions are called non-overlapped
instructions. The “intervals” and “stall cycles” are referred

to as those of the representative warp, unless otherwise

specified. We also differentiate between “schedule” and

“issue”. A warp is scheduled means that a warp is selected

by the scheduler to issue instructions. But it may not be able

to issue due to stalls. In this case, the next candidate warp

is scheduled in the same cycle until the warp that can issue

instructions is scheduled.
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Figure 8. The cases of non-overlapped instructions of RR and GTO
policies. (WR: representative warp.)

1) The cases of non-overlapped instructions: Figure 8

illustrates how non-overlapped instructions are incurred. To

begin with, we assume that four warps are running on a core

with the issue rate equal to 1 instruction per cycle, and they

all have the same interval profile. For simplicity, we use one

interval that has 3 instructions and 6 stall cycles, as shown

in Figure 8(c).

Figure 8(a) illustrates the case for the round-robin

scheduling policy, which issues an instruction every cycle

in round-robin fashion. Since the instructions are issued
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regardless whether the representative warp is stalled or
not, some instructions from the the remaining warps do

not hide the stall cycles. As shown in the example, three

instructions from the remaining warps hide the stall cycles

of the representative warp while the other instructions are

interleaved with the first two instructions from the warp. The

number of overlapped instructions is 3 (the instructions after

WR-i3, i.e., W1-i3, W2-i3, W3-i3) while the number of non-

overlapped instructions is 6 (W1-i1, W2-i1, W3-i1, W1-i2,

W2-i2, W3-i2). The remaining stall cycles is 3 (the number

of stall cycles minus the number of overlapped instructions).

By contrast, the remaining stall cycles of the naı̈ve prediction

is 0 since all instructions from the remaining warps overlap

with the stall cycles (9 = 3× 3 > 6).
Figure 8(b) illustrates the case for the greedy-then-oldest

scheduling policy, which issues instructions from the same

warp until it stalls. Then, the warp that has the oldest instruc-

tion is issued next and so on. As shown in the example, all

instructions from W1 and W2 are overlapped with the stall

cycles. However, the non-overlapped instructions are still

incurred since 3 instructions (W3-i1, W3-i2, W3-i3) are not

overlapped with any stall cycles. Ideally, those instructions

could potentially hide the stall cycles of the next interval.

But in this case, since W3 has the oldest instruction, the

representative warp has to wait even though it is ready to

issue.
With consideration of non-overlapped instructions, Eq. 7

shows the calculation of the multithreading CPI. The non-

overlapped instructions become extra cycles added to the

total cycles of the representative warp (total cycles) since

they do not overlap with the stall cycles. For the ease

of explanation, we again assume that the issue rate is

1 instruction/cycle and the warp scheduler can issue an

instruction from a warp every cycle.

CPImultithreading =
#warps ×∑

i∈intervals #interval instsi

total cycles + #total nonoverlapped insts
1.0(issue rate)

(7)

Eq. 8 shows how the total non-overlapped instructions is

counted. The basic idea is to aggregate per-interval non-

overlapped instructions, which are calculated probabilis-

tically based on the scheduling policy. The probabilistic

counting takes into account cases in which the intervals of

warps could randomly interleave while Figure 8 illustrates

the case where the warps are well aligned.

#total nonoverlapped insts =
∑

i∈intervals

#nonoverlapped instsi

(8)

Before modeling the non-overlapped instructions for a

given scheduling policy, we first define the issue probability
as the probability that a warp can issue an instruction in a

cycle, as shown in Eq. 9. Issue probability is computed with

a representative warp, and we assume that all other remain

warps have the same uniform distribution.

issue prob =

∑
i∈intervals(#interval instsi)∑

i∈intervals(
#interval instsi

1.0(issue rate)
+ stall cyclesi)

(9)

Next, we explain how to estimate the number of non-

overlapped instructions of an interval when a scheduling

policy, round-robin or greedy-then-oldest, is used.

2) Modeling Round-Robin Policy: To model the non-

overlapped instructions in the round-robin policy, we iden-

tify the instructions that are issued within several “waiting

slots”, where a “waiting slot” is the time period between

scheduling two instructions from the representative warp

during an interval. For example, in Figure 8(a), there are two

waiting slots, one between WR-i1 and WR-i2 and another

between WR-i2 and WR-i3. Eq. 10 shows the number of

waiting slots of an interval i.

#waiting slotsi = #interval instsi − 1, i ∈ intervals (10)

Within a waiting slot, every remaining warp is scheduled

because of the round-robin scheduling. Eq. 11 shows the

expected number of instructions issued from all remaining

warps within all waiting slots of interval i, which is equal to

the number of non-overlapped instructions of the interval.

#nonoverlapped instsi = issue prob×(#warps−1)×#waiting slotsi

(11)

Finally, the CPI of multithreading can be calculated using

Eq. 8 and 7.

3) Modeling Greedy-Then-Oldest Policy: To model the

non-overlapped instructions in the greedy-then-oldest pol-

icy, we identify the instructions that are issued after the

stall cycles of an interval are fully overlapped. To count

the number of non-overlapped instructions of the interval

i, we first need to count the total number of instruc-

tions issued before the representative warp is re-scheduled,

as shown in Eq. 12. This number is estimated as the

multiplication of the number of issued instructions for a

remaining warp (#avg interval insts) and the number of

warps issued before the representative warp is re-scheduled

(#issue warps in stalli). Both terms are explained in Eq. 13

and Eq. 14.

#issue insts in stalli = avg interval insts×#issue warps in stalli
(12)

The number of issued instructions of a remaining warp is

the number of instructions in the interval that it is currently

executing. Since this is unknown information, we instead

estimate that value by taking the average number of instruc-

tions of an interval as the number of issued instructions of

a remaining warp, as shown in Eq. 13.

avg interval insts =
∑

i∈intervals

#interval instsi

#intervals
(13)

Eq. 14 shows the number of warps that issues instructions

during the stall cycles of interval i. The number of remaining

warps (#warps − 1) is multiplied based on the assumption

that during the stall cycles, every remaining warp will be
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scheduled since the “oldest” policy equalizes the probability

of each warp being scheduled to prevent starvation.

#issue warps in stalli = issue prob in stalli×(#warps−1) (14)

Eq. 15 shows the issue probability of a remaining warp

during the stall cycles. Recall that we assume an uniform

distribution of the issue probability.

issue prob in stalli = max(issue prob × stall cyclesi, 1) (15)

Finally, Eq. 16 shows the number of non-overlapped

instructions of interval i by subtracting the number of stall

cycles from the total issued instructions (Eq. 12). The non-

overlapped instructions are incurred if the number of issued

instructions is more than the stall cycles.

#nonoverlapped instsi = min(#issue insts in stalli−
stall cyclesi × 1.0(issue rate), 0)

(16)

Similar to the round-robin policy, the CPI of multithread-

ing can be calculated using Eq. 8 and 7.

B. Modeling Resource Contention

One of the most prominent cause of resource contentions

in GPUs is memory divergence (a.k.a. uncoalesced memory

accesses). We do not model the resource contention for nor-

mal operations by assuming that in a balanced GPU design,
the resources used for normal operations are sufficient for
each warp. For example, if the number of threads is 32 in a

warp, then the floating-point units should be at least 32 (or

16 if a warp takes two cycles to issue) to make all threads

progress equally.

To model the queuing delays caused by memory diver-

gence, different scheduling policies may affect the queuing

delays as the instruction orderings are different. However,

we find that the instruction orderings matters only when the

degree of contention is low. Otherwise, different instruction

orderings cannot change the queuing delays much because

the incurred queuing delays are far more than any instruction

ordering can overlap. Thus, our resource contention models,

described below, are applied to both round-robin and greedy-

then-oldest policies.

Specifically, we model the queuing cycles caused by

the contention for (1) MSHRs and (2) DRAM bandwidth.

Similar to the multithreading model, we leverage the interval

profile of the representative warp to predict the queuing

delays. Eq. 17 shows the queuing delay calculated per-

interval basis.

CPIrc contention =

∑
i∈intervals(MSHR delayi + Bandwidth delayi)∑

i∈intervals #interval instsi
(17)

1) Modeling MSHRs: Figure 9 illustrates the queuing

delays resulting from a limited number of MSHRs. Assume

that the number of MSHR entries are 6 and all warps

have the same interval profiles containing two compute

instructions and one load instruction. The load instruction

issues two memory requests and which both result in an

L1 cache miss. The MSHR entries are saturated after three

warps issue (W1-W3) the load instructions. Thus, W4 incurs

queuing delays before its load instruction can be issued.
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Figure 9. The queuing delays caused by a limited number of MSHR.

Since the queuing delay of a memory instruction varies

depending on the number of the remaining warps issuing

memory requests beforehand, we probabilistically estimate

the queuing delay of every interval of the representative

warp. First, we estimate the number of concurrent memory

requests of a core in an interval (#core reqsi). Second, we

calculate the expected queuing delay of a memory request

(exp queuing delayi). Finally, by multiplying the expected

queuing delay with the number of memory instructions in

an interval, we get the queuing delay of the interval due

to limited MSHR entries (MSHR delayi). Details are as

follows.

Eq. 18 shows the number of concurrent memory requests

of a core in interval i. For each interval, we count the

expected number of concurrent memory requests as the total

requests issued from all warps in a core.

#core reqsi = #warp mem reqsi × #warps, i ∈ intervals (18)

Eq. 19 shows the expected latency of a memory request

in interval i considering a limited number of MSHRs.

avg miss latency is the average L2/DRAM access latency

of all memory instructions without MSHR contention. Since

the distribution of the L1/L2 miss rates of a memory instruc-

tion can be calculated from the input collector (Section V-B),

we take the average L2/DRAM access latency across all

memory instructions to get avg miss latency. Then, we

estimate the latency of a memory request with index j in

MSHRs as “avg miss latency ×
⌈

j
#MSHR

⌉
”. For example, in

Figure 9, the latency of the memory requests from W1, W2

and W3 is avg miss latency while the latency of those from

W4 is avg miss latency × 2 since the memory requests from

W1, W2 and W3 can be serviced concurrently while W4

has to wait until the MSHR entries are freed. By taking the

average, we get the expected latency of a memory request.

Finally, by subtracting avg miss latency from the expected

miss latency, we get the expected queuing delay of a memory

request caused by limited MSHRs.
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exp queuing delayi =

∑#core reqsi

j=1 avg miss latency ×
⌈

j
#MSHR

⌉

#core reqsi

− avg miss latency
(19)

Eq. 20 shows the queuing delay of interval i in a core

due to MSHR contention. The queuing delay only occurs

when the expected number of memory requests exceeds the

number of MSHRs. Note that #warp mem instsi represents

the number of memory instructions in interval i from a warp.

We count the queuing delay per-memory instruction not

per-memory request since a divergent memory instruction

has multiple memory requests issued concurrently, thereby

overlapping the queuing delay.

MSHR delayi =

⎧⎪⎨
⎪⎩
0, #core reqsi ≤ #MSHR

exp queuing delayi

×#warp mem instsi, #core reqsi > #MSHR

(20)

In Eq. 19, we assume that all warps issue the memory

instructions of an interval at the same cycle. However,

in reality, memory requests are issued at different cycles

depending on how warps are scheduled. In that case, some

warps may incur less queuing delay if they issue the memory

instructions at a later time. As the difference of the pro-

gresses of different warps tend to be much smaller than the

incurred stall cycles, the difference of queuing delay between

warps is ignored.

The approach used to model queuing delays can be

generalized to model other components with resource con-

tention problems, such as the special functional unit (SFU).

Applying the approach for these components is left for the

future work.

2) Modeling DRAM Bandwidth: As a large number of

memory requests from the warps are likely to be issued

within a short amount of time, limited DRAM bandwidth is

another major bottleneck in the memory system. However,

the queuing delay model of MSHRs cannot be applied to the

DRAM queue since the DRAM queue has a much shorter

service time. For example, the service time of a memory

request in MSHRs is the miss latency of the request while

that in the DRAM queue is the transmission time of a

cache line on the DRAM bus. In the case of short service

times, estimating the arrival time between different requests

is crucial since it can affect the queuing delay.

To approximate the arrival time of each request, we

leverage M/D/1 queue, an approach used to model queuing

delays in parallel simulations [21], as shown in Eq. 21. It

states that the arrival rate follows a Poisson process and

the service time is constant. The expected DRAM queuing

delay of interval i composed of the utilization (ρ) and the

arrival rate (λ). However, for some intervals with a large

number of memory requests, ρ could be equal to 1 resulting

in unlimited queuing delay. To prevent this, we cap the

queuing delay by assuming that a request arrives at the queue

in which half of the maximum number of requests are ahead

of it (
#core reqsi×#cores

2 ).

Bandwidth delayi = min(
λis

2

2(1− ρ)
, s × #core reqsi × #cores

2
)

(21)

Eq. 22 shows the utilization ρ in which the service time

s is represented in cycles as freqcore × L
B while the service

time of the request in the DRAM queue is L
B where L is the

cache line size and B is the DRAM bandwidth.

ρ(utilization) = λs = λ(freqcore ×
L

B
) (22)

Eq. 23 shows the aggregated arrival rate from all cores. To

estimate the arrival rate λ, we assume that the memory re-

quests of a given interval from all warps can be issued within

the total cycles of the interval ( #interval instsi
1.0(issue rate) + stall cyclesi).

λi(arrival rate) =
#core reqsi × #cores

#interval instsi

1.0(issue rate)
+ stall cyclesi

(23)

V. INPUT COLLECTOR

A. Overview
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Figure 10. The input collector

Figure 10 shows the input collector of GPUMech. GPUO-

celot [11] is used as a functional simulator, which executes

a GPGPU kernel and generates per-warp instruction traces

with dependency information. The cache simulator reads the

memory instructions and their addresses from the trace of

each warp in a round-robin fashion to get the per-memory
PC1 miss rates. The cache simulator models a system with

the number of warps and cores equal to that of the modeled

system without timing information. Once the latency of a

PC is determined (Section V-B), both per-warp instruction

trace and the per-PC latency are used as the inputs to the

single-warp model.

B. Instruction Latency per PC

To determine the latency of per PC, we classify the PCs

into compute and memory PCs. The latencies of compute

PCs are fixed and based on the system configurations. On

the other hand, the latencies of memory PCs are determined

as follows.

First, we simulate L1/L2 caches to collect the distribution
of miss events for every memory PC, e.g., (L1 hit: 0%,

1We use the term PC to indicate a static instruction.
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L2 hit: 10%, L2 miss: 90%). For a divergent memory

instruction, it may have some cache hits at different levels

of the memory hierarchy. In this case, the miss event of the

memory instruction is determined by the memory request

with the longest latency. Second, the distribution of miss

events is collected by counting the miss events of every

memory instruction across all warps. Lastly, the latency of

a memory PC is equal to the average memory access time
(AMAT) of the PC. For example, a memory PC hits L2

cache (120 cycles) for 90% of the executions and misses L2

cache (420 cycles) for 10% of the executions, the latency

of the memory PC is equal to 150 = 0.9× 120 + 0.1× 420
cycles.

In this work, we do not model front-end stall events, such

as I-cache misses and synchronization overhead. Because

warps share the same kernel (SIMT programming model),

the I-cache miss rate is very low for all kernels. In most

kernels, synchronization usually occurs occasionally within

a thread block, e.g. by calling synchthreads(). Since the

warps in a thread block are likely to make similar progress,

the within-thread-block synchronization overhead is typi-

cally low. Synchronization across thread blocks is rarely

used in GPGPU kernels since the operation requires atomic

instructions, which cause significant slowdown. Please note

that control divergence is not considered as one of the stall

events since it does not stall the entire warp (some threads

in a warp still make progress).

VI. EVALUATION

A. Methodology

We use Macsim [20], a cycle-level simulator to validate

GPUMech. The simulation configurations are listed in Ta-

ble I. The latency of the network-on-chip is included as part

of the L2 latency. The validation is done by calculating the

relative error of the CPI predicted by the evaluated model

with that of detailed timing simulation.

To demonstrate the wide applicability of our model, we

evaluated the kernels from Rodinia 2.1 [8], Parboil 2.5

suites [26] and NVIDIA SDK (40 kernels in total). The

evaluated kernels have at least 3× system occupancy thread

blocks to have enough length of simulation.

Table II shows the evaluated models. Naive_Interval
is the same as Eq. 1 in Section II-B. In addition to evalu-

ating the relevance of modeling different components, we

compare our results with a Markov Chain that models the

multithreaded performance in [9]. The Markov Chain model

is discussed in Section VIII.

B. Model Accuracies of Different Scheduling Policies

Figure 11 shows the comparisons between different mod-

els using the round-robin policy. Markov_Chain shows a

slightly better result than the Naive_Interval since it

models the multithreading effect more accurately. However,

compared to MT, it still overestimates the performance. On

the other hand, as MT does not account for the resource

contention, some kernels with high memory divergence

Table I
SIMULATION CONFIGURATION.

Number of cores 16

Front End
Fetch width: 1 warp-instruction/cycle,
4KB I-cache

Execution core

1.0 GHz,
SIMT width: 32,
Warp size: 32 threads,
Maximum threads: 1024 threads,
Issue width: 1 warp-instruction/cycle,
Instruction latencies are modeled according to
the CUDA manual (normal FP instructions are 25 cycles)

On-chip caches
16 KB software managed cache
32 KB L1 cache, 128B line, 25 cycles,
8-way assoc, 32 MSHR entries
768 KB L2 cache, 128B line, 120 cycles 8-way assoc

DRAM DRAM Bandwidth: 192 GB/s
Access latencies: 300 cycles

Table II
EVALUATED MODELS.

Evaluated Models Descriptions

Naive_Interval Optimistic overlap

Markov_Chain Markov chain based model [9]

MT Modeling multithreading (Section IV-A)

MT_MSHR Modeling Multithreading + MSHR (Section IV-B1)

MT_MSHR_BAND (GPUMech) Modeling Multithreading + MSHR
+ DRAM Bandwidth (Section IV-B2)
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Figure 11. Model comparisons for round-robin policy

have high errors, such as invert mapping from the kmeans
benchmark that has a 330% error. MT_MSHR reduces the

errors for most kernels down to less than 30%, except for

the kernel invert mapping from the kmeans benchmark. The

reason why MT_MSHR is effective for most cases without

modeling DRAM bandwidth is that the number of MSHR

entries caps the number of read requests, making the queuing

delay of DRAM bandwidth bounded. However, since write

requests do not allocate MSHR entries and invert mapping
has a large number of divergent write requests, the queuing

delay of DRAM bandwidth is significant and has to be

modeled. MT_MSHR_BAND (GPUMech) further reduces the

error of invert mapping from 180% to 35%. The remaining

error is mainly caused by the inherit errors from modeling

using queuing theory. Overall with our proposed mechanism

GPUMech, 75% of the kernels have less than 20% errors,

while only 50% of kernels have less than 20% errors with

Markov_Chain. Furthermore, 32 warp case in Figure 13

(our baseline), shows that the average error of GPUMech is

13.2% while the Markov_Chain average error is 62.9%.
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Figure 12. Model comparisons for greedy-then-oldest policy

Figure 12 shows the comparisons between different mod-

els using the greedy-then-oldest policy. The average error

of GPUMech is 14.0% while the Markov_Chain error is

65.3%, showing a similar trend as modeling the round-robin

policy. Overall, GPUMech models both scheduling policies

with high accuracy.

C. Varying Hardware Configurations

In order to demonstrate the robustness of our model, we

varied the number of warps per core, the number of MSHR

entries and the DRAM bandwidth to see the accuracy impact

of our models for multithreading, MSHR and DRAM band-

width. The error in the Y-axis is the relative error averaged
over all kernels. Since both round-robin and greedy-then-

oldest policies show a similar trend, in the following figures,

we report the results of modeling the round-robin policy

only.
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Figure 13. Errors with different number of warps per core

Figure 13 shows the errors with different number of

warps. For the importance of resource contention model-

ing, except for MT_MSHR and MT_MSHR_BAND, the errors

of other models increase with the number of warps per

core since the delays caused by memory contentions get

more severe with more warps. Although the MSHR is

rarely congested when the number of warps is 8, some

kernels still have significant queuing delays in DRAM

bandwidth because of the write traffic, such as the two

kernels from the sad benchmark. For the importance of

multithreading modeling, when the number of warps is low,

the prediction accuracies between MT, Markov_Chain
and Naive_Interval are similar since the probabil-

ity that instructions overlap with stall cycles is high.

However, when the number of warps increases, the per-

centage of non-overlapped instructions increases. In this

case, MT has a better accuracy than Markov_Chain and

Naive_Interval. Overall, in GPUMech, the errors are

higher in low number of warps per core, because it has more

variations of multithreading. However, all other modeling

techniques show higher errors as the number of warps per

core increases, which makes GPUMech more attractive.
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Figure 14. Errors with different number of MSHR entries

Figure 14 shows the errors with different number of

MSHR entries. Increasing the number of MSHR entries

increases the importance of modeling DRAM bandwidth.

With more MSHR entries, the queuing delays in MSHR

decrease, so the error differences between MT and MT_MSHR
also decrease. However, more MSHR entries increase the

queuing delays of DRAM since more on-the-fly memory

requests need to be consumed. Only MT_MSHR_BAND cap-

tures these increases in DRAM congestion well since with

all other modeling techniques, error increases as the number

of MSHR entries increases.
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Figure 15. Errors with different DRAM bandwidth (the unit of X-axis is
GB/s)

Figure 15 shows the errors with different DRAM band-

width. DRAM bandwidth modeling is more important when

the DRAM bandwidth is lower since lower DRAM band-

width indicates higher DRAM queuing delays. The differ-

ence between modeling MT_MSHR_BAND and other models

becomes smaller as the DRAM bandwidth increases. When

the DRAM bandwidth is low, the errors are higher even

with MT_MSHR_BAND indicating that it requires a more

accurate determination of DRAM queuing delays. For 64

GB/s, GPUMech shows 26.1% error, while for all other

configurations the error was less than 17.8%.

D. Discussions on Timing Overhead

In this section, we discuss the timing overhead of

GPUMech compared to a detailed timing simulator.

GPUMech has three areas of overhead: warp clustering,

interval algorithm and cache simulation. Since GPUOcelot
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is used for collecting traces for both detailed simulation

and GPUMech, its overhead is excluded. First, the overhead

of warp clustering could be significant depending on how

many warps a kernel has. However, clustering only incurs

a one-time cost in the per-input-basis. For the kernel with

100,000 warps, the clustering overhead is a few seconds.

Second, the instruction algorithm is several hundred times

faster than detailed simulations. In addition, the speedup can

be further increased by running the interval algorithm of

each warp in parallel, but we did not explore this option.

Third, on average, the cache simulator is around 108x faster

than our detailed simulator. Overall, GPUMech is 97x faster

than detailed simulation.

To model a different hardware configuration, since the

stall cycles may have changed, cache simulation and the
interval algorithm of the representative warp need to be

rerun. Because the representative warp is already selected,

running interval algorithms on the remaining warps and

warp clustering are not needed as these tasks are applied in

the per-input-basis and remain unchanged across different

hardware configurations. Overall, the speedup would be

higher when exploring different hardware configurations

since the profiling cost can be further reduced by excluding

the cost of warp clustering and the running of the interval

algorithms on the remaining warps.

VII. APPLICATION

An advantage of GPUMech is the ability to construct

CPI stacks which are used to visualize the performance

bottlenecks and their relative impact. Table III shows the

total categories in which cycles are spent.2 We construct the

CPI stack of a kernel as follows.

• We construct the CPI stack of the representative warp.

To determine the CPI category (excluding BASE3), we

check the reason for stalling. If the stall cycles are caused

by a dependence on a compute instruction, we add the

cycles to DEP category. If the stall cycles are caused by a

memory instruction, we use the distribution of miss events

to categorize the cycles. For example, if the stall cycles are

100 while the distribution of miss events is L2 hit: 10%

and L2 miss: 90%, we then add 10 cycles to L2 category

while we add 90 cycles to DRAM category assuming no

MSHR and DRAM queuing delays. By dividing each

category with the number of instructions, we get the CPI

stack of the representative warp. After the category of

an interval is determined, we add the stall cycles of the

interval to the category.

• Based on the performance improvement of multithread-

ing, we shrink down each category of the CPI stack of

the representative warp by the factor of
CPImultithreading

CPIrepres warp
. By

doing this, the relative importance of each category is

2Note that the DRAM access latency is the base DRAM access latency
(300 cycles in our case) without queuing delays

3BASE category is the cycles used to issue an instruction, which is a
constant depending on the system configuration.

Table III
STALL TYPES OF CPI STACKS.

Stall types Abbreviations

Instruction issue cycles BASE
Compute Dependencies DEP

L1 Hits L1
L2 Hits L2

DRAM access latency DRAM
MSHR queuing delay MSHR
DRAM queuing delay QUEUE

reserved while modeling the performance under multi-

threading.

• To model the resource contention, we create two new

categories: MSHR and QUEUE. The modeled queuing

delays of MSHR and DRAM bandwidth are normalized

by the number of instructions before being added to MSHR
and QUEUE categories.

A. Identify the Scaling Bottlenecks

In this application, we leverage the CPI stack to visualize

the performance bottlenecks with varying the number of

warps on a core. Increasing the number of warps may reduce

the cycles spent in DEP because the computation takes fixed

cycles while more warps can reduce the stall cycles caused

by computation dependencies. However, the cycles spent in

L1 and L2 depend on the miss rates where more warps may

cause higher miss rates due to cache pollution. On the other

hand, the cycles in MSHR and QUEUE may increase since

more warps compete for those shared resources. GPUMech

is able to visualize performance bottlenecks using the CPI

stack and then find the configuration that has the best

performance.

We select three kernels with distinct memory diver-

gence degrees from Rodinia suite [7]. cfd step factor ker-

nel is a coalesced kernel with no divergent accesses.

cfd compute flux has medium range of divergence since

some memory instructions have up to 16 diverged requests.

kmeans˙invert˙mapping has maximum memory divergence

with up to 32 diverged requests per memory instruction.

Figure 16 illustrates the CPI stacks, shown in bars. The

lines show the oracle CPI measured using detailed simu-

lations. All CPIs are normalized by the oracle CPI of the

configuration with 8 warps. As seen in the figure, GPUMech

accurately predicts the scaling trend. In the following, we

explain the performance limiting factors for each kernel.

• cfd step factor: Because all memory accesses are almost

coalesced, the cycle overhead from MSHR and QUEUE
are negligible in all configurations except for the 48

warps configuration, in which case larger MSHR queuing

delays are incurred. Even though the major performance

bottleneck is DRAM accesses, cfd step factor has a good

scaling capability since the accesses are well spread into

different intervals without congesting the memory system.

In addition, we can see that cfd step factor has negligible
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Figure 16. The CPI stacks of cfd step factor, cfd compute flux and kmeans invert mapping kernels.

or no cache locality since no cycles are seen in the L1 or

L2 categories.

• cfd compute flux: In the configuration of 8 warps, DRAM
and DEP have a similar amount of cycle overhead. The

L2 cache is effective for the diverged accesses while

L1 is not very useful since the working set is much

larger than the L1 size. In terms of memory congestion,

MSHR contributes to 10.8% of the cycle overhead while

QUEUE contributes to 3.8% of the cycle overhead, thanks

to the high degree of memory divergences. Since MSHR
and QUEUE are not the majority of the cycle overhead,

increasing the number of warps improves performance,

as shown from the configurations of 8 to 16 warps.

The predicted performance saturation point occurs in the

configuration of 32 warps in which MSHR dominates the

cycle overhead.

• kmeans invert mapping: In the configuration of 8

warps, since the load instructions have a high L1 hit rate

(90.5%), the cycles spent in the L1 cache is significant.

The MSHR is negligible even though the divergence degree

is high thanks to the high L1 hit rate preventing most

accesses from occupying MSHR entries. On the other

hand, it is a bit counter-intuitive to see that DRAM has neg-

ligible cycle overhead while QUEUE is high. The reason

is that while the store instruction is not on the critical path

and does not increase the cycles in DRAM category, the

diverged write accesses still consume DRAM bandwidth

and increase the queuing delays of the load instruction.

Because the performance bottlenecks could come from

multiple sources, without CPI stacks, it is hard to tell what

limits the performance of a given hardware configuration. By

showing the relative importance of performance bottlenecks,

the CPI stack is useful for software developers to apply the

corresponding optimizations and for hardware developers

to scale the required hardware resources, such as MSHR

entries, DRAM bandwidth, to achieve the optimal perfor-

mance. By leveraging the proposed model, not only can we

find the performance saturation point, but also the details of

performance bottlenecks.

VIII. RELATED WORK

A. Analytical Model of a Multithreaded Core

Chen and Aamodt proposed a first-order performance

model of a multithreaded core [9]. They performed a Markov

Chain analysis to predict the performance of a multithreaded

core similar to a GPU core except with vector processing.

We evaluated this model in Section VI as Markov_Chain.

To begin with, a single thread is modeled as a random

variable with two states: activated and suspended. Activated

means that the thread can issue an instruction at the cycle.

Otherwise, it is stalled. The transition probability from acti-

vated to suspended is p while the probability from suspended

to activated is 1
M , where M is the number of cycles of a

thread being suspended. By performing the Markov chain

analysis, the probability of being in any state at any cycle

can be known.

However, the model has two limitations, which are most

likely the causes of high errors in our evaluation. First, the

model assumes that threads are randomly interleaved without

modeling any specific scheduling policy. Second, because

the model assumes that a thread can issue no more than one

memory request, it underestimates the queuing delays due

to the resource contention in the memory system, especially

for memory divergent kernels on GPUs.

B. GPU Models

In the past few years, several GPU performance models

have been proposed. Baghsorkhi et al. [2] proposed to use

work flow graph (WFG), an extension from the control flow

graph, to estimate the performance. Zhang and Owens [27]

proposed a model to measure the execution time of the

instruction pipeline, shared memory, and global memory re-

spectively using micro-benchmarking. However, these prior

works did not model the cache hierarchy that is equipped in

all modern GPUs.

GPUPerf [24] is a performance analysis framework used

to predict the performance bottlenecks of GPGPU kernels.

They used benefit metrics to indicate the relative importance

of different performance bottlenecks. The benefit metrics

are generated by the performance model extended from

the MWP-CWP model [16]. But, similar to the model

for a multithreaded core, they do not model the queuing

delay due to resource contention in the memory system nor

do they model the scheduling policy. This does not only

affect the modeling accuracy, but also the reported benefit

metrics. For example, the model may suggest to increase the

memory-level parallelism (MLP), but it may instead hurt the

performance due to increased queuing delays. In addition,
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the proposed benefit metrics do not show what limits the
performance and by how much.

In addition to performance models, several GPU cache

models have been proposed. Baghsorkhi et al. [3] applied

the Monte Carlo simulation for a finite number of times

to mimic the non-deterministic schedule deviation between

thread blocks. Tang et al. [25] applied the reuse distance

theory on a single thread block to model the cache miss rate

without considering MSHRs. Nugteren et al. [22] proposed

a cache model for L1 cache based on the reuse distance

theory. They emulate per-warp memory traces with the

round-robin scheduling policy. In addition, they modeled

MSHRs accounting for a limited number of outstanding

misses.

C. Methods based on Interval Analysis

Several studies improved or applied the interval analysis

technique. Genbrugge et al. [15]. proposed “interval simu-

lation”, which improves the simulation speed by abstracting

the out-of-order execution using interval analysis. Eyerman

et al. [14], [12] proposed performance counter architectures

for out-of-order processors and SMT processors based on

interval analysis. Chen et al. [10] improved the accuracy of

the technique considering pending cache hits, prefetching

and MSHRs. Breughe et al. [5] applied the technique to in-

order processors.

IX. CONCLUSION

In this work, we proposed GPUMech, which is the first

interval analysis for GPU architectures. GPUMech mod-

els multithreading and resource contentions in MSHR and

DRAM bandwidth due to memory divergence. To reduce

the errors from control-divergent warps, we employ a clus-

tering algorithm to identify representative warps. Overall,

GPUMech is about 97x faster than a detailed timing simu-

lator and on average, it only has 13.2% error for modeling

round-robin scheduling policy and 14.0% error for modeling

greedy-then-oldest policy. In addition, GPUMech generates

CPI stacks, which helps the hardware/software developers

to visualize performance bottlenecks.
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