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ABSTRACT
Deep learning recommendation systems must provide high quality,
personalized content under strict tail-latency targets and high sys-
tem loads. This paper presents RecPipe, a system to jointly optimize
recommendation quality and inference performance. Central to
RecPipe is decomposing recommendation models into multi-stage
pipelines to maintain quality while reducing compute complexity
and exposing distinct parallelism opportunities. RecPipe imple-
ments an inference scheduler to map multi-stage recommenda-
tion engines onto commodity, heterogeneous platforms (e.g., CPUs,
GPUs). While the hardware-aware scheduling improves ranking
efficiency, the commodity platforms suffer frommany limitations re-
quiring specialized hardware. Thus, we design RecPipeAccel (RPAc-
cel), a custom accelerator that jointly optimizes quality, tail-latency,
and system throughput. RPAccel is designed specifically to exploit
the distinct design space opened via RecPipe. In particular, RPAccel
processes queries in sub-batches to pipeline recommendation stages,
implements dual static and dynamic embedding caches, a set of
top-𝑘 filtering units, and a reconfigurable systolic array. Compared
to previously proposed specialized recommendation accelerators
and at iso-quality, we demonstrate that RPAccel improves latency
and throughput by 3× and 6×.

CCS CONCEPTS
•Computer systems organization→Architectures; hardware;
• Hardware→ integrated circuits.
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1 INTRODUCTION
Deep neural network (DNN) based recommendation systems con-
stitute an overwhelming fraction of AI cycles in production data
centers (e.g., Facebook, Google, Alibaba) [1, 20, 24, 25, 35, 58, 65–67].
To improve content personalization in a wide range of services (e.g.,
search, e-commerce, movie and video-streaming, social media), the
size of production recommendation models has grown by over 10×
between 2017 and 2020 [45, 63, 64].

In response to the dramatic increase in infrastructure demands
from the ever-increasingmodel complexity, system- and architecture-
level solutions are customized for DNN-based recommendation,
including inference schedulers [18], near memory processing hard-
ware [38, 42, 56], and specialized accelerators [9, 30, 33]. These
prior solutions assume fixed models, leaving significant room for ef-
ficiency optimization. Evidenced by recent work optimizing DNNs
for computer vision and natural language processing [19, 22, 27,
49, 51, 53, 60], co-designing models with hardware is an effective
approach. However, the model accuracy requirement for recommen-
dation tasks is stringent [11, 66, 67], making the model-hardware
co-design space challenging to navigate.

While accuracy represents a model’s ability to predict whether
users will like individual items, production services are designed
to serve users a personalized collection of relevant items [5, 32]. As
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Figure 1: (a) Compared to prior work from machine learn-
ing and hardware researchers, this work jointly optimizes
quality and performance. (b) RecPipe co-designsmodels and
hardware across multi-stage recommendation pipelines. (c)
Transforming monolithic models into multiple stages re-
duces overall compute demand and embedding memory ac-
cesses by 7.5× and 4.0×, respectively.

such, while accuracy is intrinsic to models, quality is optimized
by improving model accuracy and increasing the number of items
ranked at the same time. The more holistic, application-level quality
objective allows system architects to judiciously trade off accuracy
for performance, opening new design spaces for system optimiza-
tion.

Ranking all items with complex models is wasteful—only a small
portion of items are relevant to individual users. Traditionally, rec-
ommendation engines achieve high quality by ranking a large num-
ber of input candidate items using complex DNNs. The combination
of large input working set sizes and complex models incurs high
performance overheads. Alternatively, one can decompose a mono-
lithic ranking model into multiple stages to maintain overall quality
at higher performance [31, 37, 65]. By splitting themonolithicmodel
into two, a frontend model coarsely filters relevant items while a
more accurate backend model finely ranks items to serve. Further
segmenting the pipeline into additional stages creates a ranking
funnel (Figure 1 (b)) where complex models only rank items requir-
ing accurate differentiation. For the Criteo dataset and Facebook’s
Deep Learning RecommendationModel (DLRM) [36, 47], Figure 1(c)
shows that, at iso-quality, compared to single-stage, multi-stage
recommendation reduces memory and compute demands by 4.0×
and 7.5×, respectively. This system-level view optimizing quality
and efficiency motivates a new generation of hardware solutions
for multi-stage recommendation.

Driven by this motivation, we propose RecPipe, a system to co-
design recommendation models and hardware to improve both
quality and performance (Figure 1(a)). Frontend stages pair light-
weight models (e.g., low compute and memory demands) with large
input sizes, exposing data-parallelism. Backend stages pair heavy-
weight models (e.g., billions of FLOPs, many GBs of storage) with
small input sizes, exposing model-parallelism instead. RecPipe’s
system solutions exploit these distinct parallelism opportunities to
jointly optimize quality, throughput, and tail-latency.

To understand the limits of commodity platforms, RecPipe im-
plements an inference scheduler that maps each recommendation
stage across heterogeneous hardware (e.g., CPU, GPU) to maxi-
mize performance. We find the optimal mapping depends on the
application level targets and underlying hardware. Despite the
tight co-design between models and hardware, we find commodity
CPU-GPU systems do not fully exploit the benefits of multi-stage
recommendation as they suffer from low utilization and high PCIe
communication overheads between stages.

To address these limitations, we design RecPipeAccel (RPAccel),
a specialized accelerator for multi-stage recommendation. Starting
with a TPU-like, systolic array-based, recommendation accelera-
tor [30], RPAccel’s hardware optimizations improve efficiency at
low area and power overheads. First, RPAccel implements a recon-
figurable systolic array that allows the hardware to concurrently
process models across recommendation stages. RecPipe’s inference
scheduler provisions the fraction of systolic array resources to de-
vote to frontend and backend stages based on application load,
balancing latency and throughput. Next, RPAccel eliminates high
PCIe communication overheads to the host processor by implement-
ing multiple on-chip filtering units to identify the top-𝑘 user-item
interactions between stages. Finally, to overlap frontend and back-
end query processing, RPAccel breaks queries into sub-batches to
pipeline stages and pre-fetch embedding vectors in separate caches.

The main contributions of this work include:
(1) We propose a new system, RecPipe, that enables design space

exploration and optimization for multi-stage recommendation
inference. The framework integrates data sets (e.g., Movie-
Lens [23], Criteo [36]), models (e.g., neural matrix factoriza-
tion [26], DLRM [47]), and hardware (e.g., CPU, GPU, simulated
accelerators) to study trade-offs among quality, tail-latency, and
throughput.

(2) We show designing and efficiently schedulingmulti-stage pipelines
for available commodity hardware platform reduces tail-latency
by 4× and 3× on CPUs and heterogeneous CPU-GPU hardware,
respectively.

(3) We design RPAccel, a novel accelerator that exploits the distinct
properties of multi-stage recommendation to jointly optimize
quality, latency, and throughput. Compared to a state-of-the-art
baseline accelerator [30], RPAccel’s software and hardware op-
timizations reduce tail-latency by 3× and increases throughput
by 6×, at iso-quality as well as small area (7%) and power (27%)
overheads.

2 MOTIVATION: WIDENING DESIGN SPACE
BY OPTIMIZING FOR QUALITY OVER
ACCURACY ALONE

Prior work on specialized systems for deep learning co-optimizes
for model accuracy and run-time efficiency (performance, power,
and energy) [19, 22, 27, 49, 51, 53]. For neural recommendation
however, hardware designers must go one step further, beyond
accuracy, and optimize for quality. In this section, we first describe
recommendation model architectures and conduct a model hyper-
parameter sweep. Then, we introduce the quality metric used in
this work, showing the fundamental difference between accuracy
and quality.
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Figure 2: (Top) General recommendationmodel architecture
configured by embedding dimension andMLP size (outlined
in red). (Bottom) Hyperparameter sweep shows tradeoff be-
tween model complexity and error.

Model RMsmall RMmed RMlarge
Embedding Dim. 4 16 32
MLP-Bottom 13-64-4 13-64-16 13-512-256-128-64-32
MLP-Top 64-1 64-1 96-1
Model Size 1GB 4GB 8GB
FLOPs 12K 17K 200K

Model Error 21.36% 21.26% 21.13%

Table 1: Pareto-optimal recommendation models.

2.1 Training hyperparameter sweep
Figure 2(top) lays out the general architecture for DNN recommen-
dation models [20, 47]. Continuous input features are processed
with DNN layers, e.g. Multi Layer Perceptrons (MLP), while sparse
input features are processed using embedding tables. Embedding
tables are organized as a collection of embedding vectors with tens
to hundreds of latent features. Latent features map sparse inputs
to low-dimensional, dense ones. By configuring the main network
components (i.e., MLP depth/width, embedding latent vector dimen-
sion), highlighted in red, we realize models with varying storage
capacity, compute demands, and accuracy.

Figure 2(bottom) shows a hyperparameter sweep by tuning the
main network parameters for Facebook’s DLRM trained on the
Criteo dataset [36, 47]. Increasing the computational complexity of
models reduces the test error. Models with 12K FLOPs and 200K
FLOPs observe an error of 21.36% and 21.13%, respectively. Note,
a 0.23% decrease in error is large given the high sparsity of user-
item interactions in recommendation use cases [66, 67]. Recent
industry publications show reductions of even 0.1% error greatly
improve user experience in real world applications [66, 67]. Table 1
shows the tradeoff between model error and complexity across
three Pareto-optimal networks (i.e., RMsmall, RMmed, RMlarge).
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Figure 3: While accuracy depends only on model size
(left), recommendation quality depends on number of items
ranked (center) and model size (right).

2.2 Quality versus accuracy
A model’s accuracy represents its ability to correctly predict a
user will positively interact with a single item. However, in recom-
mendation, models rank thousands of items opening the door for
measuring overall quality. Quality measures the relevance of the
entire collection of items presented to users based on their personal
preferences. Following recent work from machine learning and rec-
ommendation systems researchers, we use normalized discounted
cumulative gain (NDCG) to quantify the quality of the ordered list
of output items. NDCG [5, 32] is the ratio between the measured
and the ideal ordering, each of which is computed using discounted
cumulative gain (DCG): for a list of 𝑁 items, 𝐷𝐶𝐺 =

∑𝑁
𝑖

𝑅𝑒𝑙𝑖
𝑙𝑜𝑔2 (𝑖+1) .

𝑅𝑒𝑙𝑖 represents item 𝑖’s score in the measured or ideal list and
𝑙𝑜𝑔2 (𝑖 + 1) discounts its relevance—dividing the score by the item’s
position in the list.

Widening design space. Compared to accuracy, optimizing
for quality opens new system design opportunities. For the Criteo
dataset, Figure 3 illustrates the impact of varying the number of
items ranked (x-axis) and model architecture (i.e., RMsmall, RMmed,
RMlarge) on quality. Empirically, the improvement in quality from
increasing number of items ranked overshadows that from larger,
more accurate models. Note, the highest quality of 92.25 can be
achieved by ranking all 4096 itemswith RMlarge. However, as shown
in Figure 1, decomposing monolithic models into multiple stages,
where small models filter relevant items and large models perform
fine-grained ranking, improves computational efficiency at iso-
quality. At the frontend, candidate items are coarsely ranked with
models that incur memory and compute demands. This reduces the
list of candidate items (i.e., working set size) incrementally over
the stages. Subsequent stages use larger models for finer-grained
ranking. Going beyond accuracy, quality depends on the number
of stages, network architectures, and the number of items ranked
at run-time: widening the design space to co-optimize performance
and quality.

3 RECPIPE DESIGN: A SYSTEM TO OPTIMIZE
MULTI-STAGE RECOMMENDATION
INFERENCE

We propose RecPipe, a novel system to explore the model- and
hardware-level design space to collectively optimize recommen-
dation quality, tail-latency, and system throughput. Figure 4(left)
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shows RecPipe’s multi-step design process. The input to RecPipe is
a Pareto-frontier of recommendation models balancing model accu-
racy and complexity. To co-optimize quality and hardware efficiency
on commodity platforms, RecPipe balances multi-stage parame-
ters and statically schedules each stage across available hardware
resources (i.e., CPUs and GPUs). Going further, RecPipe exposes
distinct parallelism opportunities that are exploited by designing
specialized hardware. Figure 4(right) illustrates the multi-stage rec-
ommendation pipeline and the design space optimized by RecPipe.
The model-level and hardware-level design parameters are high-
lighted in red. We detail how RecPipe co-designs these parameters
to maximize quality and performance below.

3.1 Hardware-aware multi-stage scheduling
RecPipe implements a post-training, inference scheduler customized
for multi-stage recommendation. In step 1, RecPipe balances multi-
stage modeling parameters. In step 2, RecPipe exploits the paral-
lelism opportunities exposed from step 1, and maps stages across
heterogeneous hardware.

Algorithmic scaling (Step 1). RecPipe exhaustively explores
the design space of pairing Pareto-optimal recommendation mod-
els and number of items to rank at each stage in the multi-stage
pipeline. In the frontend, lightweight models are paired with large
working set sizes exhibiting high data-level parallelism; in the back-
end heavyweight models are paired with smaller working set sizes

exhibiting high model-level parallelism. By collectively balancing
model complexity and input working set size, RecPipe maximizes
overall quality under strict latency targets and system loads.

Heterogeneous hardware mapping (Step 2). Given the dis-
tinct parallelism opportunities from the aforementioned algorith-
mic scaling step, RecPipe exhaustively explores the mapping of
multi-stage models on available hardware at the stage granularity.
We begin by considering commodity hardware platforms i.e., CPUs
and GPUs. GPUs implement a highly data-parallel architecture
that parallelize individual queries, especially in the frontend with
large working set sizes. On the other hand, many-core CPUs can si-
multaneously process multiple queries providing high-throughput.
RecPipe exploits these architectural differences to schedule each
recommendation stage onto the underlying hardware. In fact, we
find the optimal mapping of multi-stage recommendation varies
across application-level targets (e.g., tail-latency, system load). Thus,
RecPipe schedules multi-stage pipelines onto available hardware,
based on algorithmic model parameters, architectural characteris-
tics, and application-level requirements, to maximize quality and
performance.

While achieving themaximal quality target and at iso-throughput,
the scheduling optimizations reduce tail-latency by 4× on CPUs
and a further 3× on heterogeneous hardware i.e., CPUs and GPUs
(see Section 5 for details). However, despite these performance im-
provements there remains significant room for further optimization.
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In particular, the commodity CPU-GPU platforms suffer from two
main drawbacks. First, GPUs exhibit low utilizationwhen exploiting
data-level parallelism in the frontend and model-level parallelism
in the backend, primarily due to the high overhead of embedding
lookups and memory transformation operations on GPUs [18]. Sec-
ond, between stages, high PCIe communication overheads across
the CPU and GPU limit achievable throughput. To address these
limitations, and given the importance of data center-scale recom-
mendation, RecPipe enables designing specialized hardware for
multi-stage recommendation.

3.2 Custom hardware to accelerate multi-stage
recommendation

Figure 5 illustrates the high-level architecture of the proposed
recommendation accelerator, RPAccel. On the left, we start with
a state-of-the-art accelerator baseline that minimizes inference la-
tency for a single-stage recommendation model using a TPU-like
monolithic systolic array and static cache for hot-embeddings [30].
The aforementioned software optimizations reduce workload com-
plexity by decomposing the single-stage model into a multi-stage
pipeline. Given the simplified workload, RPAccel is designed to
concurrently process multiple models and queries, end-to-end. Fig-
ure 5(right) provides an ablation study for the proposed software
and hardware optimizations, demonstrating significant latency and
throughput improvement potential (i.e., O.1 to O.5).

By exploiting unique properties of multi-stage recommendation,
RPAccel is designed to balance both inference latency and through-
put based on application-level requirements.
• (O.1) RecPipe decomposes a single-stage model into multiple
stages (2.5× latency reduction).

• (O.2) RPAccel comprises a top-𝑘 filtering unit to identify the
𝑘 highest quality items based on predicted click-through-rate
(CTR) to be ranked by subsequent stages; this eliminates host-
accelerator communication between recommendation stages (1.5×
latency reduction).

• (O.3) RPAccel implements a reconfigurable systolic array to con-
currently process multiple stages and queries (2× hardware uti-
lization and throughput). RecPipe’s software scheduler (see above)
splits the monolithic systolic array into multiple sub-arrays based
on application-level targets (quality, latency, throughput) and
multi-stage models.

• (O.4) RPAccel balances on-chip memory resources to statically
cache hot-embeddings and dynamically prefetch embeddings for
backend models (40% reduction in average memory access time).
The static cache is provisioned for both frontend and backend

Machines Cascade Lake CPU NVIDIA T4 GPU
Frequency 2.8 GHz 585 MHz
Cores 64 2560
SIMD AVX-512 FP32x64

Cache Sizes 1-16-22 MB 96-512 KB
DRAM Capacity 384 GB 15 GB
DDR Bandwidth 75 GB/s 300 GB/s

TDP 300 Watt 70 Watt

Table 2: Commodity hardware in experimental setup.

Parameter RPAccel configuration
Frequency 250 MHz

Systolic Array SRAM capacity 8MB
Systolic Array MAC units 128×128 MACs
Embedding cache capacity 16MB

DRAM capacity 16 GB
DRAM bandwidth 64 GB/s
DRAM latency 100 cycles

Table 3: Fixed resources in RPAccel.

stages; the dynamic cache prefetches embeddings for the backend
as the frontend finishes sub-batches of the input query.

• (O.5) RPAccel breaks queries into sub-batches to pipeline – and
thus – overlap computation from frontend and backend stages
(1.3× latency reduction).

While achieving the highest quality target, compared to the baseline
recommendation accelerator, RPAccel’s optimizations collectively
decrease tail-latency by up to 5× and increase throughput by up to
10× (see Section 6-7 for details).

4 EXPERIMENTAL METHODOLOGY
Figure 6 illustrates the evaluation methodology we use to study
the system design implications of multi-stage recommendation.
RecPipe encompasses a vast design space across multi-stage model-
ing parameters, hardware solutions, and application-level targets.
To foster deeper understanding, we analyze cross-sections of the
design space based on the application-level targets: iso-quality,
iso-throughput, and iso-latency. This section details the methodol-
ogy on both real, commodity hardware and simulated, specialized
hardware.

Datasets and models. We evaluate RecPipe with three open-
source datasets: Criteo Kaggle [36], MovieLens 1M [23], and Movie-
Lens 20M [23]. We train neural matrix factorization models for both
MovieLens datasets [25]. To provide intuition across the large de-
sign space studied in this work, we conduct a deep dive using Criteo
and Facebook’s DLRM [47]. On top of this deep dive, Section 8 sum-
marizes results across all datasets. All models are implemented in
PyTorch.

Application-level targets. This work optimizes recommenda-
tion based on three application-level targets:

• Quality: We use NDCG [5, 32] to quantify recommendation qual-
ity of the top sixty-four items served. For commensurate analysis,
final results are presented based on the highest quality achieved
for each model and dataset: NDCG of 92.25 for Criteo (see Sec-
tion 2).
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• Tail-latency: To maintain user-experience, recommendations
mustmeet SLAs and be served under strict tail-latency targets [18],
measured as 99𝑡ℎ percentile (p99).

• Throughput: Data-center recommendation systems must maxi-
mize throughput, measured as the queries processed per second
(QPS). Queries follow a Poisson arrival rate.

Commodity hardware systems. To study the proposed de-
signs in the context of data center scale recommendation, RecPipe runs
datasets and models directly on real CPUs (server class Intel Cas-
cade Lake) and GPUs (NVIDIA T4). Refer to Table 2 for detailed
hardware specifications. Experiments on CPUs use multiple pro-
cesses to exploit parallelism across cores—each core has a single
PyTorch/MKL thread. GPUs use CUDA/cuDNN 10.1.

Accelerator modeling. RecPipe uses a two-step evaluation
methodology to simulate specialized hardware.

First, we evaluate the latency of each query across each stage
of the multi-stage pipeline. The latency per stage is computed as
cumulative time from data transfers over PCIe, embedding lookups,
MLP operations, and the top-𝑘 filtering units. Host-to-accelerator
PCIe overheads are based on real measurements from the CPU-
GPU system (see Table 2). For embedding lookups, we compute hit
rates based on the cache locality of open-source datasets. Given
the cache hit rates, we compute the memory latency of embed-
ding operations using simple latency and bandwidth models for
SRAM and DRAM. For MLP layers, We design and implement the
systolic array and the top-𝑘 filtering unit in RTL to gather cycle-
accurate performance measurements, including overheads from
loading weights and activations from DRAM. Combining latency
for all stages forms per-query performance model.

Second, the per-query latencies are fed into RecPipe which simu-
lates the at-scale performance characteristics of RPAccel, measuring
tail-latency, system-throughput, and quality, of processing tens of
thousands of queries.

For area and power evaluations, we separately synthesize the
reconfigurable systolic array, top-𝑘 filtering unit, and memories in a
12𝑛𝑚 FinFET technology. As shown in Table 3, RPAccel implements
comparable compute and memory resources to a data center TPU
accelerator (40 Watt TDP) [35].

5 EVALUATION OF RECPIPE INFERENCE
SCHEDULER ON COMMODITY
HARDWARE

In this section we use RecPipe to efficiently schedule multi-stage
recommendation onto heterogeneous hardware available in data
centers. First, RecPipe balances themulti-stagemodeling parameters—
number of stages, models per stage, items to rank per stage—to
co-optimize tail-latency, throughput, and quality. Next, RecPipe
co-designs the multi-stage parameters for heterogeneous systems
comprising CPUs and GPUs. We show the optimal configuration
of multi-stage parameters depends on the underlying hardware.
Furthermore, we show that while GPUs enable higher throughput
and quality at low-latency targets, CPU-only execution achieves
higher throughput under more relaxed latency targets.

5.1 Mapping multi-stage pipelines to CPUs
Figure 7(left) illustrates the tradeoff between tail-latency and qual-
ity for single-stage recommendation on CPUs. Following intuition,
larger more complex models (e.g., RMlarge) achieve higher quality
at the expense of higher tail-latency.

Takeaway 1: Carefully balancing multi-stage parameters unlocks
higher recommendation quality and throughput at strict tail-latency
targets.

At a fixed system load (i.e., QPS of 500), Figure 7(center) shows
tradeoff between tail-latency and quality for one-, two-, and three-
stage designs. Exhaustively sweeping all possible combinations of
models per stage and number of items to rank per stage, we show
the Pareto-frontier results.

Compared to single-stage designs, Figure 7(center) shows multi-
stage designs achieve higher quality under strict performance con-
straints. The single-stage design ranks all 4096 items with RMlarge.
The optimal two-stage design first processes 4096 itemswith RMsmall
followed by the top 256 items with RMlarge, reducing tail-latency
by 4× given the lower compute and memory demands.

The importance of optimizing for quality, not accuracy, can be
seen by diving deeper into the two-stage design. To achieve high
quality, the backend implements the most accurate network (i.e.,
RMlarge); the frontend implements either RMmed or RMsmall. While
RMmed has higher accuracy, the benefits are overshadowed by the
additional compute and memory requirements (see Table 1). In
fact, with RMlarge in the backend, both frontend options achieve
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Figure 8: (Top) At iso-quality, mapping frontend (i.e., data-
parallel) stages to GPUs reduces tail-latency by up to 3×;
CPU-only execution achieves higher system throughput.
(Bottom) At a lower system throughput (i.e., QPS of 70), the
lower latency on GPUs can be traded off for higher quality
compared to CPU-based execution.

the same quality (NDCG 92.25). But, the combination of RMmed-
RMlarge has a 1.6× longer tail-latency compared to RMsmall-RMlarge.
Designers must jointly optimize for quality and performance.

In addition to quality, balancingmulti-stage parameters improves
throughput at strict tail-latency targets. Figure 7(right) shows the
tradeoff between tail-latency and throughput, at the highest qual-
ity target (NDCG of 92.25). Compared with the one-stage system,
the two-stage pipeline reduces tail-latency by 4.4× (QPS of 500).
However, decomposing the pipeline into three stages decreases per-
formance given additional queuing delays between stages, which
overshadow the 30% reduction in compute between two- and three-
stage designs. Note, the tradeoffs will vary across datasets—varying
model complexities and items to rank per stage will impact the
optimal configuration (see Section 8 for examples).

5.2 Mapping multi-stage pipelines to
heterogeneous systems

Figure 8(top) illustrates the tradeoff between throughput and tail-
latency while achieving the high quality target (NDCG of 92.25). Us-
ing RecPipe, we exhaustively evaluate all mappings between multi-
stage recommendation and heterogeneous hardware and show the
best configurations: one-stage GPU-only, two-stage GPU-CPU, and
the two-stage CPU-only configurations in Figure 8(top). For the
two-stage GPU-CPU design, RecPipe maps either the frontend or
the backend to the GPU, running the other on the CPU. In particu-
lar, we show results for frontend running on the GPU and backend
on the CPU as our empirical evaluations show it provides higher
performance. We also evaluate mapping two stages to the GPUwith
multi-tenant execution. Our evaluations show this configuration
is unable to extract the fine-grain parallelism from multi-stage’s
data dependency, incur longer latency than the one-stage GPU-only
configuration.

Takeaway 2: Given architectural differences, the optimal multi-
stage parameters vary on CPUs versus GPUs.

Recall from our previous analysis, for CPU-only execution the
two-stage design achieves the highest performance; on the hetero-
geneous system, however, the single-stage GPU-only configuration
(solid black) achieves higher performance than multi-stage using
both CPU and GPU (solid red). The reason is twofold. First, we
observe comparable latency for RMsmall versus RMlarge on the
GPU, overshadowing the benefits of decomposing models into
finer-grained pipelines. Second, the multi-stage GPU-CPU design
requires transferring more intermediate results across PCIe, incur-
ring heavy queuing delays and limiting system performance.

Nonetheless, the multi-stage GPU-CPU design plays an impor-
tant role. Recent work shows production-scale recommendation
model sizes are growing rapidly—by an order of magnitude in just
three years [45]. For production-scale models that are larger than
the DRAM capacity available on GPUs (e.g., ∼ 15GB on NVIDIA
T4), designers will need to decompose models into multiple stages.
Here, frontend stages run on the GPU in order to circumvent storage
capacity limits and exploit data-parallelism with the larger input
working set size; the backend models run on the CPU. Figure 8(top)
shows that this multi-stage GPU-CPU design achieves up to 3×
lower latency than the multi-stage CPU-only configuration.

Takeaway 3: By maximizing throughput at low latency, GPUs
unlock higher recommendation quality.

Despite the GPUs achieving 3× lower latency than the CPU-only
designs (see Figure 8(top)), the GPUs remain underutilized with
an occupancy of 25%, and memory and power utilization of 10%
and 45%, respectively. Improving utilization requires higher batch-
ing. Unfortunately, as we increase batching and system throughput
(x-axis), the GPU-enabled designs suffer from a sudden degrada-
tion in tail-latency due to high queuing delays; in comparison, the
CPUs sustain higher throughput by concurrently processing queries
across cores (e.g., task-parallelism).

While the latency reduction from GPU’s does not translate to
higher throughput, it can enable higher quality. Figure 8(bottom)
illustrates the tradeoff between tail-latency and quality for CPU-
and GPU-based recommendation at iso-throughput. Following our
previous results, we show the optimal configurations: single-stage
GPU-only and two-stage CPU-only designs. Given the fixed models,
RecPipe tradeoffs off latency for quality by increasing the number
of items ranked per query. At a strict SLA target of 25𝑚𝑠 , the CPU
achieves an NDCG of 87, while the GPU achieves an NDCG of
92.25. The increase in quality is a direct result of GPU’s data-parallel
architecture allowing it to rank 4096 items compared to the CPU
ranking only 3200 items at the 25𝑚𝑠 SLA. Thus, AI accelerators
for recommendation must be evaluated not only for performance
benefits but also on quality achieved under strict performance and
resource constraints.

Limitations of commodity hardware. Based on the perfor-
mance analysis above, we identify multiple limitations of commod-
ity platforms running multi-stage recommendation. In particular,
GPUs do not directly benefit from decomposing models into multi-
ple stages. This is due to the limits of multi-tenant execution, under
utilized hardware when separately exploiting data- and model-
level parallelism across stages, and high PCIe data communication
between stages. Given these limitations and the growing scale of



MICRO ’21, October 18–22, 2021, Virtual Event, Greece Gupta, et al.

Temporal mapping multi-stage rec. to RPAccel

4K items + 
RMsmall

512 items + 
RMlarge

Emb
PCIe MLPBot

MLPtop
Sort

4x1K items + 
RMsmall

4x128 items + RMlarge

Latency 
reduction

Host
CPU

RecPipe Accelerator

PCIe

DR
AM

Input
items

TopN
items

Dense-inputs 
SRAM

Fraction 
per stage

Multi-Stage 
hot 

embedding 
cache

Embedding 
gather unit

Look-
ahead 
vectors

Memory
capacity

Reconfig MLP + top-k unit

Filtered
Candidates

Weights 
SRAM

Spatial mapping multi-stage rec. to RPAccel
Frontend 

model
Backend 

modelFilter

128

12
8

Input 
items

Output 
rec.

32

32

64

64

Frontend
 query

Backend
 query

Reconfig MLP + top-k unit

Embedding caches
Embedding 
gather unit

Look-ahead 
vectors

Static
embeddings

Pipelined 
frontend & 
backend

Figure 9: (Left) Overall design of the RecPipe accelerator (RPAccel) comprising an embedding gather unit with two on-chip
caches for static and dynamic vectors, and a reconfigurable MLP and top-k filtering unit. (Middle) Static mapping of multi-
stage recommendation onto RPAccel. Frontend and backend share both memory and compute resources. (Right) Temporal
mapping of multi-stage recommendation onto RPAccel with pipelined frontend and backend models.

Look-ahead 
vectors

Static 
embedding 

cache

Embedding gather unit

Dense 
inputs

Filtered
candidates DRAM

Miss

Dense input 
SRAM

Emb.
Hit

(a) Reconfigurable MLP

Streaming 
CTR score

Buffer stored 
in weights 

mem.

Ids

Top-k Flag
e.g., k = 512

e.g., bin 1+2

(c) Multi-stage embedding partitioning

0.9, 1
0.8, 0.9

0, 0.1
…

N-Bins Count
256
384

8K
top-512 ids

Load aware HW mapping per. stage

> CTR thresh (0.5)

U
til

iza
tio

n 
(%

)
C

yc
le

s

RMsmall RMmed RMlarge

8x
8

16
x1

6
32

x3
2

12
8x

12
8

64
x6

4

8x
8

16
x1

6
32

x3
2

12
8x

12
8

64
x6

4

8x
8

16
x1

6
32

x3
2

12
8x

12
8

64
x6

4

Systolic array size (MACs)

Lower 
util.

Higher 
perf.

Baseline

Reconfig SA

Fraction of cache devoted to frontend

AM
AT

 (c
yc

le
s)

4MB, 1/8 filtering ratio
12MB, 1/8 filtering ratio
12MB, 1/16 filtering ratio

Larger 
$ size

(b) Top-k filtering unit

Larger filtering 
ratio between 

stages

Figure 10: Design space exploration of RPAccel. (a) Larger systolic arrays suffer from low utilization on smaller models, mo-
tivating provisioning resources into sub-arrays for concurrent query processing. Compared to a monolithic array with 30%
utilization, the reconfigurable array has a 60% utilization. (b) Top-𝑘 filtering unit designed to minimize area and power while
eliminating host-accelerator PCIe communication overheads. (c) On-chip embedding cache resources must be asymmetrically
provisioned across frontend and backend to minimize average memory access time.

personalized recommendation across Internet services [45, 66, 67],
we use RecPipe to unlock the opportunities from multi-stage rank-
ing by designing specialized hardware to provide high quality and
infrastructure efficiency, in the following section.

6 ANALYSIS OF RECPIPEACCEL’S DESIGN
SPACE

This section proposes RPAccel, a specialized accelerator tailored
to multi-stage recommendation models. We start with a baseline
TPU-like recommendation accelerator [30]. The baseline optimizes
for low-latency single-stage inference, but suffers from low utiliza-
tion and system throughput on multi-stage pipelines. To accelerate
multi-stage recommendation, as summarized in Section 3.2, RPAc-
cel comprises four main features that exploit distinct opportunities
enabled by RecPipe: the pipeline execution, a reconfigurable MLP
unit, a top-𝑘 filtering unit, and the partitioned embedding cache
for hot-vectors across models and prefetched backend vectors.

6.1 Mapping multi-stage pipelines to RPAccel
Figure 9(left) illustrates the high-level architecture of RPAccel. Un-
like prior art which accelerates single-stage model inferences alone,
RPAccel is designed to process queries end-to-end: model infer-
ences for multiple stages and filtering top-𝑘 user-item interactions
between stages. Figure 9(center) shows how multi-stage recom-
mendation is mapped onto RPAccel. Networks across the stages
share accelerator memory and compute resources. For each stage, to
produce predicted CTR scores for each user-item pair, RPAccel com-
prises an MLP and embedding gather unit. RPAccel implements a
set of top-𝑘 filtering units to identify high-quality user-item pairs.

Takeaway 4: Breaking queries into multiple sub-batches enables
pipelined execution of frontend and backend stages.

Figure 9(right) shows the temporal mapping of multi-stage rec-
ommendation onto RPAccel. To reduce latency, RPAccel pipelines
frontend and backend stages by breaking queries into smaller sub-
batches. As an example, Figure 9(right) shows RPAccel splitting a
single query of 4K items into four smaller batches of 1K each, over-
lapping frontend and backend stages. The degree of sub-batching
must be carefully balanced in order to maintain high utilization
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and quality. Smaller batch-sizes incur higher inference overheads
(e.g., weight loading) but can better overlap frontend and backend
stages. Furthermore, splitting queries into 𝑛 smaller batches can
degrade quality as the top-𝑘 items in each stage are set by stitching
the top-𝑘𝑛 items in each batch. Using RecPipe, we ensure the system
maintains high-quality and splits queries into four sub-batches for
workloads studied in this paper.

6.2 Customization of RPAccel
micro-architecture

Below we detail RPAccel’s micro-architectural design space.
Takeaway 5: Splitting monolithic systolic arrays into sub-arrays

improves recommendation inference throughput by concurrently pro-
cessing multiple models and queries.

As recommendation comprises large input working set sizes,
RPAccel implements a weight stationary, systolic array-based MLP
engine [7, 35, 50]. To concurrently process multiple stages and
queries, RPAccel dynamically splits a monolithic array into inde-
pendent sub-arrays [15]. Figure 10(a) illustrates the benefit of a
reconfigurable systolic array for multi-stage recommendation. We
show theMAC utilization for various array sizes and models. Larger
arrays achieve lower latency but suffer from lower utilization when
processing small models (i.e., RMsmall). In fact, when processing
a two-stage pipeline, the fixed, monolithic array has an average
utilization of only 30%, as it is overprovisioned for the frontend
(i.e., RMsmall ranking 4K items). Splitting the monolithic array into
smaller units improves utilization to 60%, doubling throughput at
comparable latency.

Note, RPAccel’s reconfigurable systolic array is inspired by prior
work which proposes a fission architecture to split monolithic ar-
rays into sub-arrays for multi-tenancy [15]. Customized for multi-
stage recommendation, RPAccel eliminates complex, omni-directional
interconnects, incurring a lower area and power penalty (i.e., 13%
area and 21% power in [15] versus 6% and 11% in RPAccel)1, and
extends the reconfigurability in response to application QPS and
SLA targets.

Takeaway 6: Implementing top-𝑘 user-item filtering units in spe-
cialized hardware eliminates PCIe overheads.

Based on the predicted CTR, top scoring user-item interactions
must be filtered and forwarded to subsequent recommendation
stages. Prior recommendation accelerators only process MLP infer-
ence [30, 33]. Thus, the filtering step is offloaded to host-processors
incurring high PCIe overheads [30]. To eliminate communication
overheads, RPAccel implements a set of on-chip top-𝑘 filtering
units (see Figure 9 middle, blue). One approach to identify the top-𝑘
user-item pairs is to sort all CTR scores. Unfortunately, sorting
latency scales with the number of items to rank, potentially con-
suming tens-thousands of cycles for recommendation given large
input sizes. Furthermore, existing hardware sorting units consume
significant area and power [44].

Instead, RPAccel exploits two unique properties of recommenda-
tion inference to simplify the filtering unit. First, between stages,
the final top-𝑘 user-item pairs need not be ordered—RPAccel im-
plements an approximate, bucketing design. Second, the final MLP

1Following the baseline [15], we exclude on-chip SRAM when comparing area and
power. Figure 11 includes SRAM overheads.
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layer produces one CTR score per cycle leading to a streaming
filtering unit design.

Figure 10(b) shows the resulting top-𝑘 filtering unit. The filtering
unit maintains 𝑁 bins (e.g., 𝑁=16). Each bin represents user-item
pairs of a specific CTR score range between 0 and 1. As a new CTR
score arrives every cycle, the filtering unit adds the user-item 𝑖𝑑

to the corresponding bin and increments its counter. For example,
Figure 10(b) shows the top bin counts user-item pairs with CTR
scores between 0.9 and 1 (high quality). Based on the CTR score, the
user-item pair 𝑖𝑑 is stored in a dedicated portion of the systolic array
banked weight SRAM. Storing all (4K) user-item 𝑖𝑑 pairs consumes
12% of the weight SRAM. To reduce this overhead, RPAccel skips
user-item pairs with low CTRs. Using RecPipe, we set a minimum
CTR threshold of 0.5, reducing the overhead on weight memory
to 3%. Once all user-item CTRs are categorized, the filtering unit
identifies and copies at least top-𝑘 user-item pairs indicated from the
highest 𝑛 bins to DRAM. These 𝑖𝑑s uniquely reference continuous
and categorical inputs for subsequent stages.

Given the streaming design, the performance overhead of the
filtering step is set by the latency it takes to identify and send
user-item 𝑖𝑑s from the highest bins to main memory. We find this
takes a couple hundred accelerator cycles, negligible compared to
model inference. Although each sub-array in RPAccel’s reconfig-
urable systolic array requires a separate top-𝑘 filtering unit, the
area and power overheads are small (see Figure 11) and there is no
degradation in quality.

Takeaway 7: Asymmetrically-provisioned embedding caches tai-
lored for each of the multi-stage models minimizes memory access
latency.

Recent work shows embedding table operations suffer from ir-
regular memory access patterns, low compute intensity, and high
storage capacities [20]. Consequently, the performance of embed-
ding table operations is bounded by embedding vector fetch la-
tency. Prior work exploits the power-law distribution of embedding
lookups to cache frequently accessed vectors on-chip [2, 30, 38].
The embedding caches in prior work however assume a single stage
recommendation model.

Instead, RPAccel implements an embedding cache customized for
multi-stage recommendation by comprising (1) a static embedding
cache that is provisioned statically for hot embedding vectors from
both frontend and backend stages, (2) a look-ahead embedding cache
that stores embedding vectors for in-flight queries. It also prefetches
lookups for later stages in RPAccel’s pipeline optimization (Figure
9(right)). As shown in Figure 9(left), input embedding IDs arrive
either from the host processor for frontend models or the output
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of top-𝑘 filtering units for backend models. Based on the IDs, the
embedding gather unit first checks if the corresponding vectors
are in the caches. If yes, the embedding vectors are returned to the
“Dense-input SRAM” to be processed by the MLP-top layers. If not,
the embedding gather unit retrieves the vectors from DRAM to the
look-ahead embedding cache.

Embedding cache provisioning. Following data center AI ac-
celerators with 24MB capacity [35], we start with 16MB for em-
bedding caches (8MB in MLP weights/activations). The size of the
look-ahead cache is bounded by the number of items ranked in
backend stages, size of embedding vectors, and maximum number
of queries in flight. For the worst case we conservatively provision
4MB for the look-ahead cache. This leaves 12MB for the static em-
bedding cache. Figure 10(c) shows the impact of asymmetrically
provisioning memory for frontend and backend models on the aver-
age memory access time (AMAT) for embeddings. With a 128 byte
cache line size, the embedding vector size of 𝑅𝑀large, we find the
fraction of storage devoted to the frontend versus backend depends
on the item filtering ratio between stages. Given a filtering ratio of
one-eighth for Criteo, we provision equal memory capacity for the
frontend and backend.

Area and power breakdown. Figure 11 illustrates the area
and power overheads of the proposed optimizations compared
to the baseline, TPU-like recommendation accelerator [30]. The
combination of the reconfigurable MLP unit, top-𝑘 filtering unit,
andmulti-stage aware embedding cache incurs a total of 7% area and
27% power overhead, moderate compared to RPAccel’s performance
benefits (see Section 7).

7 EVALUATION OF RPACCEL AT-SCALE
In this section we evaluate the performance of RPAccel at-scale.
Instrumenting RecPipe with the simulated RPAccel we study the
proposed hardware solutions in terms of quality, tail-latency, and
system-throughput. We study RPAccel using publicly available
models and datasets; and also project the quality and performance
trends for future recommendations.

7.1 RPAccel evaluation on open-source use
cases

Takeaway 8: By accelerating multi-stage recommendation, RPAccel
achieves 3× lower latency and 6× higher throughput compared to
baseline, single-stage designs.

Given fixed hardware resources, Figure 12(top) illustrates the
tradeoff between throughput and latency as we vary the RPAccel-
provisioning decisions for all stages. The baseline follows Cen-
taur [30]—a single-stage recommendation accelerator which imple-
ments a TPU-like systolic array [35] and uses the host-processor
to filter top-𝑘 interactions. The baseline achieves a 6𝑚𝑠 and 21𝑚𝑠

tail-latency at the inference throughput of 200 and 400 QPS, respec-
tively. While achieving the same quality, the single-stage RPAc-
cel design achieves a 4.5𝑚𝑠 and 9𝑚𝑠 tail-latency at 200 and 400
QPS, respectively. Furthermore, decomposing recommendation into
finer-grained pipeline enables a minimum latency of 2.1𝑚𝑠 at 200
QPS or, at 6𝑚𝑠 a throughput of 1300 QPS— 3× and 6× improvement
over the single-stage baseline, respectively. The latency reduction
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Figure 12: (Top) At iso-quality and hardware resources, co-
designing multi-stage models with hardware enables lower
tail-latency and higher system throughput. (Bottom) Asym-
metrically provisioning RPAccel resources across stages fur-
ther improves performance.

and throughput increase owe RPAccel’s software and hardware
optimizations.

Takeaway 9: Asymmetrically provisioning accelerator based on
multi-stage recommendation models resources unlocks lower tail-
latency and higher system-throughput.

Figure 12 (bottom) illustrates the benefit of asymmetrically pro-
visioning RPAccel resources across stages. For a two-stage recom-
mendation pipeline, the frontend is fixed with sub-arrays while the
backend implements two (i.e., RPAccel8,2), eight (i.e., RPAccel8,8),
and sixteen sub-arrays (i.e., RPAccel8,16). All experiments assume
iso-hardware resources while achieving the maximum quality tar-
get (i.e., NDCG of 92.25).

Compared with the homogeneous accelerator (i.e., RPAccel8,8),
aggregating the backend into fewer, larger arrays RPAccel8,2 re-
duces the latency at low throughput by 1.5×. Similarly, at high
system load, splitting the backend into multiple, smaller units
RPAccel8,16 reduces the latency by 1.4×. Given application-level
latency and system targets, asymmetrically provisioning RPAc-
cel resources across stages widens the design space of recommen-
dation services. Building on prior art, RPAccel resources are dy-
namically reconfigured to meet varying targets, given workload
demands [15, 41, 54].

7.2 RPAccel evaluation on future models
So far we have analyzed the performance of RPAccel on open-
source use-cases. However, recent literature shows production-scale
recommendation models are rapidly growing in size, outpacing
DRAM capacity and even reaching TBs in size [45]. One promising
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ing recommendation models to higher capacities requiring
SSD storage. (Bottom)Compared to the single-stage accelera-
tor baseline, RPAccel provides graceful performance trends
with futuremodel sizes by also scaling items to rank to over-
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path to enabling future, production-scale models is to use higher
capacity memories such as SSDs [13, 56]. Here we consider the
performance implications of SSDs on RPAccel.

Storing larger embedding tables in SSD lowers embedding local-
ity and degrades performance. Figure 13(top) shows the impact of
larger embedding tables on embedding locality. While frequently
accessed embedding vectors are stored DRAM, a larger portion of
these tables are stored in the SSD (x-axis). For example, increasing
the size of RMlarge by 32× requires storing 97% of the embedding
tables in SSD. This also causes increases DRAM miss rates from
17% to 28%. Recall, RPAccel pipelines frontend and backend stages—
allowing the accelerator to overlap long latency SSD accesses in the
backend. However, Figure 13(top) shows with growing embedding
table sizes, a smaller fraction of the accesses can be overlapped
causing an increase in latency.

Takeaway 10: Compared to baseline single-stage accelerators,
RPAccel achieves higher quality and performance when scaling both
frontend and backend stages towards future recommendation engines.

In addition to scaling embedding tables in backend models (e.g.,
model size), one can also increase the number of items to rank
in the frontend (e.g., compute demand). Figure 13(bottom) shows
the impact of scaling both frontend and backend stages (x-axis)
on quality. Starting from the baseline configuration, we project
increasing model size by 32× and compute complexity from ranking
4K items to 12K items improves quality from an NDCG of 92.25 to
96.

Increasing the items to rank allows RPAccel to more effectively
overlap the frontend and backend stages. Figure 13(bottom) shows
the corresponding tail-latency impact on scaling compute and mem-
ory complexity assuming iso-throughput (QPS of 500). We show
two configurations: single-stage (black) and multi-stage (red) RPAc-
cel. By overlapping frontend and backend stages, the multi-stage
design achieves higher performance for larger recommendation
engines compared to the single-stage design. More generally, we
show the importance of tightly-coupling algorithm and hardware
scaling for future recommendation engines; RecPipe and RPAccel
open such new co-design opportunities.

8 SUMMARY OF RECPIPE RESULTS
Figure 14 summarizes the performance benefits of the proposed
solutions, co-designing models and hardware for multi-stage recom-
mendation. The results show the tail-latency across three datasets
(i.e., Criteo Kaggle, MovieLens 1M and 20M [23, 36]), system loads
(i.e., QPS of 100, 500, 2000), and hardware platforms (i.e., CPU, GPU,
Accel). The colored bars distinguish between one- (black), two- (red),
and three- (blue) stage recommendation pipelines. Following our
previous analysis, CPU designs assume CPU-only execution (Sec-
tion 5.1). For GPU-based configurations, 1-stage designs represent
GPU-only execution; 2-stage and 3-stage designs represent hetero-
geneous GPU-CPU execution (Section 5.2). Accel configurations
assumes RPAccel-only execution (Section 6-7). Across the system
loads and datasets, RecPipe reduces tail-latency by an average of
3.2× on commodity hardware; compared to prior recommendation
accelerators, RPAccel reduces tail-latency by 4.3× on average.

Differences across system loads.Across different system loads,
the optimal multi-stage configuration and hardware platform varies.
For instance, with the Criteo dataset on GPU-enabled hardware,
between low (QPS of 100) and medium (QPS of 500) loads, the
optimal number of stages varies from one to two. Similarly, for
Criteo, the optimal hardware backend between low and medium
loads changes from GPUs to CPUs, respectively. Differences across
system loads owe to varying system optimization strategies for
maximizing throughput versus minimizing latency; for example,
throughput is maximized by processing multiple queries concur-
rently while latency is minimized by accelerating individual queries.

Differences across datasets. In addition to varying system
loads, the optimal multi-stage configuration and hardware platform
varies across datasets. For example with commodity hardware, on
the Criteo dataset, CPUs achieve lower tail-latency than GPUs for
system loads above 100 QPS; on the other hand, GPU-based de-
signs outperform CPU-only execution for both MovieLens datasets.
With RPAccel, tail-latency is optimized with the deeper three-stage
pipeline for MovieLens-20M at 500 and 2000 QPS and all loads for
Criteo; on MovieLens-1M however two-stage is optimal. Differ-
ences across datasets owe to the Criteo implementing DLRM [47]
with higher embedding capacities while MovieLens implementing
neural matrix factorization models dominated by MLP layers; fur-
thermore, across stages the number of items to rank reduces by
roughly 5×, 2.5×, and 4×, on Criteo, MovieLens 1M, and Movie-
Lens 20M, respectively. These differences highlight the need to
co-design multi-stage recommendation parameters with the under-
lying hardware early in the design process using frameworks like
RecPipe.
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System throughput (QPS)

1 stage
2 stage
3 stage

1 stage
2 stage
3 stage

Iso-quality Criteo Kaggle

100 QPS 500 QPS 2000 QPS
CPU GPU Accel CPU GPU Accel CPU GPU Accel

MovieLens 1M

100 QPS 500 QPS 2000 QPS
CPU GPU Accel CPU GPU Accel CPU GPU Accel

MovieLens 20M

100 QPS 500 QPS 2000 QPS
CPU GPU Accel CPU GPU Accel CPU GPU Accel

Figure 14: Summary of RecPipe results at iso-quality for the Criteo, and MovieLens 1M and 20M datasets. For each dataset, we
show the tail-latency (log scale) for three system loads and hardware platforms. Configurations are greyed out when system
load is not met. The optimal multi-stage design varies across loads, hardware platforms, and datasets.

Benefits of RPAccel. Compared with CPUs and GPUs, RPAc-
cel significantly reduces tail-latency of multi-stage recommenda-
tion across different datasets and system loads. In fact, in many
cases (e.g., Criteo and MovieLens20M datasets) RPAccel is opti-
mized with deeper pipelines compared to commodity GPUs; This is
a direct result of extracting data-level and model-level parallelism
opportunities across multi-stage recommendation and eliminat-
ing high-overhead host-accelerator communications that RPAccel
enables.

9 RELATEDWORK
While systems and computer architecture researchers have pro-
posed various solutions to optimize cloud-scale personalized recom-
mendation models, relatively little work explores co-design oppor-
tunities between models and hardware to jointly optimize quality
and performance, as well as the unique characteristics of multi-
stage recommendation.

DNN-based recommendation models. To improve content
personalization, recommendation models are growing rapidly in
size and complexity [45, 65–67]. Tackling the growing model sizes,
researchers have proposed techniques to compress embedding ta-
bles while preserving accuracy [14, 16, 52, 59]. Alternatively, one
can decompose large monolithic models into multi-stage pipelines.
Industry publications show multi-stage designs are used for serv-
ing content on Youtube [65] and Instagram [17, 31]. To balance
recommendation quality and model complexity, machine learning
researchers have explored a variety of modeling techniques to train
each stage of the multi-stage pipeline [37]. However, in prior work,
the multi-stage recommendation systems are designed to maxi-
mize quality, independent on the underlying hardware. RecPipe ex-
tends prior art by co-designing the multi-stage models and under-
lying hardware—commodity and specialized—in order to tightly
co-optimize quality, tail-latency, and throughput for data center
scale deployment.

Specialized recommendation hardware. Lots of research ef-
fort has been devoted to design specialized hardware for deep
learning—especially MLPs, CNNs, and RNNs [4, 6–8, 19, 22, 35,
48–50, 53, 61, 62]. However, recommendation systems pose dis-
tinct challenges owing to their network architectures and use
cases [20, 28, 47]. Given its importance, hardware proposals for

accelerating recommendationmodels have begun to emerge [1, 3, 9–
12, 18, 21, 29, 30, 33, 34, 38–40, 42, 43, 46, 55–57]. While prior work
focuses on improving hardware efficiency given fixed workloads,
RecPipe brings quality into the mix. Accounting for both quality
and performance, this work co-designs multi-stage models and
hardware. In addition to RecPipe’s post-training inference sched-
uler on commodity hardware, we compare the proposed RPAccel
to a state-of-the-art TPU-like baseline recommendation accelera-
tor, Centaur [30]; compared to the baseline, we demonstrate that
by co-designing models and hardware, RPAccel jointly improves
recommendation quality, tail-latency, and throughput.

10 CONCLUSION
Given the growing prevalence of personalized recommendation,
architects have invested significant resources improving recom-
mendation inference efficiency. While proposed solutions tackle
different compute and memory bottlenecks, they do not directly co-
optimize quality and performance. In this work we propose RecPipe,
a system for co-designing models and hardware to jointly optimize
quality, tail-latency, and throughput. First, RecPipe splits mono-
lithic models into multi-stage pipelines exposing unique system
optimization opportunities. Next, we design an inference scheduler
that maps multi-stage recommendation across CPUs and GPUs.
Finally, we deign a novel hardware accelerator for multi-stage rec-
ommendation which achieves high-quality while improving latency
and throughput by up to 3× and 6×, respectively, over a baseline
TPU-like recommendation accelerator.
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A ARTIFACT APPENDIX
A.1 Abstract
This section summarizes the artifact evaluation for this work. First,
we provide the check-list for this artifact. Next, we describe the
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directory structure for the code. Finally, the installation, experi-
ment workflow, and evaluation illustrate how to use the artifact to
reproduce results and extend the implementation.

A.2 Artifact check-list (meta-information)
• Program: PyTorch and Verilog RTL code.
• Model: Deep Learning Recommendation Model (DLRM) provided
in artifact.

• Datasets: Criteo Kaggle, MovieLens 1 million, and MovieLens 20
million dataset publicly available.

• OS environment: Ubuntu 16.04 with CUDA 8.
• Hardware setup: Server class Intel CPU and Inference GPU (prefer-
ably Intel Cascade Lake CPU with NVIDIA T4 inference GPU)

• Run-time requirements: Require isolated server as experiments
sensitive to resource contention, adding performance variability to
tail-latency.

• Execution: Sole user.
• Metrics: Normalized discounted cumulative gain (NDCG), tail-
latency, and throughput.

• Output format: Experiments produce console and text files. Ex-
pected output either in paper or code repository.

• Expected disk space required (approximately)?: 32 GB
• Expected time to prepare workflow (approximately)?: 32 GB
• Expected time to complete experiments (approximately)?: 24
hours

• Publicly available?: Yes
• Archived (provide DOI)?: https://doi.org/10.5281/zenodo.5146295

A.3 Description
A.3.1 How to access. Code for this paper can be accessed by cloning
the public GitHub repository: https://github.com/harvard-acc/RecPipe

We have also published the initial artifact on Zenodo. The ar-
tifact DOI is: 10.5281/zenodo.5146295 . The Zenodo DOI URL is:
https://doi.org/10.5281/zenodo.5146295 .

A.3.2 Hardware dependencies. To reproduce results found in this
paper we suggest using commensurate hardware. This includes
an Intel Cascade Lake CPU server class CPU (32 cores) with an
NVIDIA T4 inference GPU. In the absence of this hardware, we
suggest using similar hardware in terms of a many core CPU server
with NVIDIA GPU.

A.3.3 Software dependencies. To define machine learning models
the code uses PyTorch. To run on the NVIDIA GPU we use CUDA
version 8 and cudnn version 6. A docker image is provided in the
code to facilitate managing software dependencies.

We also provide the Verilog RTL for each component of RPAccel.
The RTLs are synthesized in Cadence Genus with a commercial
12nm technology node, and the memory macros are generated and
characterized with ARM SRAM compiler. Unfortunately due to the
NDAs, we are not able to grant access to the original logic synthesis
environment. As a solution, we provide the original logic synthesis
reports (power and area) with timestamps for the evaluation. Alter-
natively, the provided RTLs can be synthesized with other synthesis
tools (e.g., Synopsys DC) and open-source PDKs (e.g., freePDKs) at
the evaluators’ choice, but the exact numbers might change.

A.3.4 Datasets. The experiments use Criteo Kaggle, MovieLens 1
million, and MovieLens 20 million datasets. While the data sets are

publicly available, we cannot provide full copies of the datasets in
the final archive.

A.3.5 Models. Example pre-trained models are provided with the
artifact for evaluation.

A.4 Installation
To install the necessary packages we provide a Docker image (in
docker/) and a requirements file to be used with pip.

A.5 Experiment workflow
For the ease of artifact evaluation, we provide sample bash scripts
that automate launching and analyzing experiments. Key steps
include:

• Download code: Clone the GitHub repository:
https://github.com/harvard-acc/RecPipe

• Build docker image by running cd docker/; ./build-docker.sh
• Launch docker image in interactive mode
• Download the pre-trained models from the artifact; these
models are trained on the publicly available Criteo Kaggle
and provided by academic authors on this work. Download
the Criteo Kaggle dataset which is publicly available (see
https://www.kaggle.com/c/criteo-display-ad-challenge for
reference).

• Update DATA-DIR environment variable in bash scripts in
scripts/ directory

• Updatemodel locations in json configurations files (dim_4_0.json,
dim_16.json, dim_32_0.json) in configs/model_configs di-
rectory.

• From the repository’s root directory, run test script,
./scripts/recpipe_kaggle.sh

• From the repository’s root directory, run Figure 3 experi-
ment:
./scripts/artifact_eval/figure3.sh

• From the repository’s root directory, run Figure 7 and 8
experiment:
./scripts/artifact_eval/figure7_8.sh

• From the repository’s root directory, run Figure 10 experi-
ments:
./scripts/artifact_eval/figure10a.sh
./scripts/artifact_eval/figure10c.sh

• From the repository’s root directory, run Figure 12 experi-
ment:
./scripts/artifact_eval/figure12.sh

• From the repository’s root directory, run Figure 13 experi-
ment:
./scripts/artifact_eval/figure13.sh

• From the repository’s root directory, after having run the
experiments for Figure 7, 8 and 12, you can generate results
for Figure 14 by:
python plotting/figure14/parse_kaggle.sh
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A.6 Evaluation and expected results
Each of the artifact evaluation scripts describe in the “Experi-
ment Workflow” produce results for a specific figure in this pa-
per. The bash scripts include Python scripts to format the exper-
iment outputs for specific bars and lines in each Figure. Please
run these scripts from the repository’s root directory (e.g., python
plotting/figureX/*.py)

A.7 Experiment customization
The codebase is organized to facilitate customization and extension.
The configuration files in configs/ allow for easily specifying
experiment configurations including number of queries in at-scale
simulations, model configurations, number of CPU cores, use of
GPU, batch-configurations, and arrival rates.

A.8 Methodology
Submission, reviewing and badging methodology:

• https://www.acm.org/publications/policies/artifact-review-badging
• http://cTuning.org/ae/submission-20201122.html
• http://cTuning.org/ae/reviewing-20201122.html
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