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Abstract

Modern high-performance processors utilize multi-level cache

structures to help tolerate the increasing latency of main
memory. Most of these caches employ either a writeback
or a write-through strategy to deal with store operations.
Write-through caches propagate data to more distant mem-
ory levels at the time each store occurs, which requires a
very large bandwidth between the memory hierarchy lev-
els. Writeback caches can significantly reduce the band-
width requirements between caches and memory by mark-
ing cache lines as dirty when stores are processed and writ-
ing those lines to the memory system only when that dirty
line is evicted. Unfortunately, for applications that experi-
ence significant numbers of cache misses due to streaming
data, writeback cache designs can degrade overall system
performance by clustering bus activity when dirty lines
contend with data being fetched into the cache.

In this paper we present a new technique called Eager
Writeback, which re-distributes and balances memory traf-
fic by writing and ”cleaning” dirty cache lines prior to
their eviction. Eager Writeback can be viewed as a com-
promise between write-through and writeback policies, in
which dirty lines are written later than write-through, but
prior to writeback. We will show that this approach can
reduce the large number of writes seen in a write-through
design, while avoiding the performance degradation caused
by clustering bus traffic in a writeback approach.

I. INTRODUCTION

Caches are very effective at reducing memory bus traffic
by intercepting and handling most of the read requests
generated by the processor. However, caches must deal
with both reads and writes to memory. Support for writes
(stores) tends to be simple — on a store the data item is
either written into both the cache and through the cache
hierarchy to the memory (referred to as a write-through
policy), or it is written into the cache exclusively and the
data item is written out to memory only when the cache
line is evicted (known as a writeback policy.)

Caches employing a write-through policy generate mem-
ory traffic every time a store occurs in the program. Since
it would largely defeat the purpose of having a cache if
the processor had to block on each store until the write
completed, write-through caches use a structure known as
a store buffer or write buffer [10] to buffer writes to mem-
ory. Whenever a write occurs, the data item is written into
both the cache and this structure, allowing the processor to
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continue executing without blocking (until the store buffer
becomes full). The store buffer will send its contents to
memory as soon as the bus is idle.

Writeback caches, on the other hand, generate memory
traffic much less frequently. When a store occurs in a write-
back cache the data value is written into the correspond-
ing line in the cache, which is then marked dirty. Writes
to memory occur only when a line marked dirty is evicted
from the cache (usually due to a cache miss) in order to
make room for the incoming data item.

Whenever there are many consecutive misses (caused by
context switches, or working set changes, or by certain
graphics algorithms and applications, for example) the write-
back cache can find itself blocked waiting for a dirty line to
be written to memory. This is the same problem faced by
the write-through cache, and can be dealt with in much the
same manner by adding a writeback buffer. However, there
are certain classes of programs which suffer from mem-
ory delay penalties that even a large writeback buffer can-
not eliminate. For example, many newer applications (e.g.
3D graphics or multimedia) have enormous incoming data
streams. In these programs, the stream of incoming data
items can cause many conflict cache misses and trigger the
eviction of many dirty lines. This dirty writeback traffic
must compete for available memory bandwidth with the
arriving data, and often impedes the delivery of the data
to the processor. For programs where overall performance
is bound by memory bandwidth, this competition for band-
width can have a substantial negative impact.

In this paper we propose a modification to the writeback
policy which spreads out memory activity by selectively
writing some dirty lines to memory whenever the bus is
free, instead of waiting until that line in the cache is re-
placed. This early writing of dirty lines to the memory
system reduces the potential impact of bursty reference
streams, and can effectively re-distribute and balance the
memory bandwidth and thereby improve system perfor-
mance.

Il. BACKGROUND

As discussed in the introduction, caches that employ a
writeback policy reduce memory traffic by delaying the
transfer of data to memory as long as possible. Many mod-
ern microprocessors using a writeback cache policy incor-
porate a writeback (or cast-out) buffer, which is used as
temporary storage space for holding dirty cache lines while



the data request that caused the eviction is serviced. Upon
eviction, a dirty cache line is deposited into the writeback
buffer, which usually has the highest bus scheduling pri-
ority among all types of non-read bus transactions. Once
the writeback buffer fills up, subsequent dirty line replace-
ments cannot take place. As a result, their corresponding
data demand fetch operations cannot be committed into
the cache, and the processor pipeline stalls waiting for the
dependent data.

It is possible to alleviate this problem somewhat by using
existing cache hardware. Non-blocking caches have been
proposed by Kroft [7] which use a set of miss status hold-
ing registers (MSHRS) to manage several outstanding cache
misses. When a cache miss occurs in a non-blocking cache,
it is allocated an empty MSHR entry. Once the MSHR en-
try is allocated, processor execution can continue. If none
of the MSHRs are available (i.e. a structural hazard [6]
exists due to resource conflicts), the processor will have to
block until an MSHR entry becomes free.

By adding data fields to the MSHRs, it would be possible to
use them to temporarily store returning cache lines. This
would allow fetched data to be immediately forwarded to
the appropriate destination registers, and help overcome
the situation where the cache cannot be written to because
the writeback buffer is full. However, this scenario delays
MSHR deallocation and can lead to processor stalls on a
cache miss if there are no free MSHRs.

In addition, in a modern computer system memory band-
width is not exclusively dedicated to the host processor.
There are often multiple agents on the bus (such as graph-
ics accelerators or multiple processors) issuing requests to
memory over a short period of time. In a contemporary
multimedia PC platform with an Accelerated Graphics Port
(AGP) interface running a graphics-centric application, for
example, the graphics accelerator shares system memory
bandwidth with the host processor in order to retrieve
graphics commands and texture maps from the system
memory. A typical system architecture of a contemporary
multimedia PC system is illustrated in Figure 1.

In a common 3D graphics application, the processor reads
instructions and triangle vertices, performs the specified
computations, and then stores them with rendering state
commands back into AGP memory space. The graphics ac-
celerator then reads these commands out of AGP memory
for rasterization. In addition to the command traffic, the
graphics accelerator also reads a large amount of texture
data (which constitutes the major portion of AGP traffic
on the bus). These textures are mapped onto polygon sur-
faces to increase the visual realism of computer-generated
images.

Current cache designs have difficulty in efficiently man-
aging the flow of data in and out of the cache hierarchy
in these data intensive applications. Buffering techniques,
including write buffers and MSHRs can help, but do not
alleviate the problems of clustering bus traffic caused by
writeback data. In the next section we introduce a new
technique designed to distribute the writes of dirty blocks
to times when the bus is idle.
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Figure 1: A Multimedia PC Architecture.

I11. EAGER WRITEBACK

1 Overview

To address the performance drawbacks of a conventional
writeback policy, we are proposing a new technique called
Eager Writeback. The fundamental idea behind Eager
Writeback is to write dirty cache lines to the next level of
the memory hierarchy and clear their dirty bits earlier than
in a conventional writeback cache design, in order to bet-
ter distribute bandwidth utilization and alleviate memory
bus congestion. If dirty cache lines are written to memory
when the bus is less congested, there will be fewer dirty
lines that require eviction during peak memory activity.

In essence, we are speculating that certain dirty lines will
not be re-written before eviction and thus there is no need
to wait until eviction time to perform the cache line write.
An Eager Writeback will never impact the correctness of
the architectural state even if the operation that triggers
it was wrongly speculated - if our speculation is incorrect
and we write too often, we approach the limiting case of
write-through cache behavior. If we do not speculate often
enough, we approach writeback cache behavior. However,
in either case we do not violate any correctness constraints.

This work is similar in spirit to that of Lai and Falsafi [§],
in which they identify cache lines in a shared memory sys-
tem that can be speculatively self-invalidated in order to
hide the invalidation time and reduce the coherence over-
head. However, we are applying the idea to uniprocessor
caches instead of DSM machines, which enables us to use
a far simpler mechanism to identify which lines should be
speculatively written out.

In order to select the best “trigger” to cause an eager
writeback, we examined the probability of rewriting a dirty
line in a set-associative cache when it was in a given state
(MRU through LRU) for the well-known SPEC95 bench-
marks [5] and four applications from the lesser-known X
benchmark suite [9]. The X benchmark suite consists of
four applications representing different graphics algorithms
based on X Windows. X-DOOM, a popular video game,
uses a polygon-based rendering algorithm. POV-ray is a
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Figure 2: Probability of writing to a dirty line in
each LRU stack of L1 and L2 caches (SPEC95)

public domain ray tracing package developed for generat-
ing photo-realistic images on a computer. xlock, a popular
screen saver, renders a 3D polygonal object on the screen.
The final application is an animation viewer which pro-
cesses an MPEG-1 data stream to display an animated
sequence.

Our results indicate that cache lines that have been marked
dirty and reach the LRU (Least Recently Used) state in
a 4-way set-associative data cache are rarely written to
again before they are evicted. In Figure 2 and Figure 3,
we show the probability of a line that was marked dirty
being written to again as it moves from the MRU (Most
Recently Used) state to the LRU state for both L1 and L2
caches. The cache configurations are described in Table 1.
The graph on the top in Figure 2, for example, shows that
in the L1 cache the average probability (the solid line) of a
dirty line in the LRU state being re-written is 0.15, while
the similar probability for a dirty line in the MRU state
is 0.95. The probabilities of re-dirtying lines in the LRU
state are even lower in the L2 cache - in fact, close to 0 as
shown in the graphs on bottom of Figure 2 and Figure 3.

These figures indicate there are some programs (such as
foppp and suZcor) that have a fairly high probability of
writing to dirty lines after they have entered the LRU
state, however. In order to further evaluate these cases,
we looked at the ratio of the number of times a dirty line
in the LRU state is written to, normalized to the number
of times a dirty line in the MRU state is written to. The
results are presented in Figure 4, which shows that while
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Figure 3: Probability of writing to a dirty line in
each LRU stack of L1 and L2 caches (X benchmark)

the probabilities may be high, the actual number of these
occurrences is negligible compared to the rewriting that
occurs when a line is in other states (MRU, MRU-1, etc.).
These trends held across a wide range of cache configura-
tions, and imply that once a line enters the LRU state it
becomes a prime candidate for Eager Writeback, since it
has a very low occurrence of being written to again.

2 Design Issues in Eager Writeback Caches

There can be many different approaches to deciding when
to trigger an Eager Writeback. As was shown in the previ-
ous section, one obvious candidate is to use the transition
of a dirty line into the LRU state as a trigger point for an
Eager Writeback. For example, when a cache set is being
accessed and its corresponding LRU bit is being updated,
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Figure 4: Normalized number of writes and
rewrites to a dirty line in each MRU-LRU state




the line can be checked to see if it is marked dirty. If it is,
then a dirty writeback can be scheduled, and the dirty bit
can be reset.

If the writeback buffer is full at this point, two approaches
can be considered; (a) simply abort the Eager Writeback
- the actual dirty writeback will take place later when the
line is evicted, or (b) perform the eager writeback when an
entry in the writeback buffer becomes free. This provides
the ability to perform eager writeback anytime between
when a line is marked LRU and when it is evicted.

To provide this capability using a minimum of hardware,
we chose to implement an Fager Queue which holds at-
tempted eager writebacks which were unable to acquire
writeback buffer entries. Whenever an entry in the write-
back buffer becomes available, the Eager Queue checks the
cache set on the top of the queue to see if the dirty bit of
the LRU line in the indexed set is set. If it is, the line is
moved into the writeback buffer.

An alternate implementation considered during this re-
search was Autonomous Fager Writeback. This implemen-
tation used a small independent state machine which au-
tonomously polled each cache set in round-robin fashion
and checked the dirty bit of its LRU line, initiating eager
writeback on those lines when the writeback buffer was
not full. Whether eager queues or the autonomous state
machine is more feasible is highly dependent on the pro-
cessor and cache organization. For this study we present
results for the more conservative approach which used ea-
ger queues.

IV. SIMULATION FRAMEWORK

Our simulation environment was based on the SimpleScalar
tool set [1], a re-targetable execution-driven simulator which
models speculative and out-of-order execution. The ma-
chine employs a Register Update Unit (RUU), which com-
bines the functions of the reservation stations and the re-
order buffer necessary for supporting out-of-order execu-
tion [11]. Separate address and data buses were imple-
mented and their contentions were all modeled appropri-
ately. Writeback buffers were implemented between cache
hierarchies. All the binaries used were compiled using the
SimpleScalar GCC compiler that generates code in the
portable ISA (PISA) format.

The microarchitectural parameters used in our baseline
processor model are shown in Table 1. Table 2 lists the
latencies of each functional unit modeled in the simulation.
A non-blocking cache structure, writeback buffer and ea-
ger queue associated with each cache level were added to
the simulator for this study. The number of entries in each
buffer was re-configurable from 1 to 256, and varied from
simulation to simulation.

A pseudo-Rambus DRAM model was used in the external
memory system. This single-channel RDRAM with 64 de-
pendent banks can address up to 2GB of system memory.
In the model, 32 independent banks can be accessed simul-
taneously (contiguous banks share the same sense ampli-
fier for driving data out of the RAM cells). Row control
packets, column control packets and data packets can be

pipelined and use separate busses. RDRAM address re-
mapping [4] was modeled to reduce the rate of bank inter-
ference. The peak bandwidth that can be reached in our
RDRAM model is 1.6GB/sec.

A simplified uncacheable write-combining (or write-coalescing)

memory [2][3] was implemented as well for the purpose of
correctly simulating our benchmark behavior. Whenever a
data write to an uncacheable region results in an L1 cache
miss, the write operation will immediately request access
to the bus and drive data out to the system memory di-
rectly (skipping a next-level cache look-up). Only cache
line writes are modeled - any partial cache line update will
be treated as a full cache line write in the simulator.

For modeling multiple agents on the memory bus, a mem-
ory traffic injector was also implemented. This injector
allowed us to imitate the extra bandwidth consumed by
other bus agents by configurable periodic injections of data
streams onto the memory bus.

1 Benchmarks

In order to evaluate the effectiveness of the Eager Write-
back technique, we ran extensive simulations on the SPEC
benchmark suite and two programs representative of fu-
ture graphics and streaming applications. Concentrating
the analysis on these small, representative kernels enables
us to illustrate the potential benefits of our scheme in far
greater detail than can be achieved running an entire ap-
plication.

The first of these kernels is a 3D geometry processing
pipeline (mini-geometry), which is present in most triangle-
based rendering algorithms [13]. Two different geometric
rendering configurations were simulated, one which was
very simple (i.e. ambient light with no external light sources),
and one which included multiple diffuse light sources. The
ambient light configuration reduces the computational re-
quirements of the algorithm in order to maximize frame
rate at the expense of image realism'. The multiple light
source configuration increases the computational demands,
reducing the relative impact of bus utilization as the pro-
cessor spends more time processing between each data el-
ement request.

The second kernel represents the class of streaming data
algorithms which work with large data sets. This kernel

'This would be preferred in real-time 3D applications (e.g.
Doom or Quake) when processor performance is lacking.

i Processor Parameters [ Cycles in Processor Clocks ||

1st Level I- and D-Cache 3 clks, thruput = 1 clk
2nd Level Cache 18 clks, thruput = 10 clks

I- and D-TLBs 2 clks, thruput = 1 clk
Backside bus arbitration 4 clks
Frontside bus arbitration 10 clks
RDRAM Trcd, RAS-to-CAS 20 clks
RDRAM Tcac, CAS-to-data return 20 clks
RDRAM Trp, Row Precharge 30 clks
INT ALU latency/thruput 1/1
INT multiplier latency/thruput 371
INT divider latency/thruput 20 / 19
FP ALU latency/thruput 2/1
FP multiplier latency/thruput /1
FP divider latency/thruput 12 / 12

Table 2: Latency Table (in core clocks) of Func-
tional Units in the Baseline Processor.



I Processor Architectural Parameters

Specifications I

Core frequency

1 GHz

1st Level I-Cache

2-way 16KB, virtual-index physical-tag

1st Level D-Cache

4-way 16KB, virtual-index physical-tag

2nd Level Cache

Unified, 4-way 512KB, physical-index physical-tag

Cache line size

32 bytes

I- and D-TLBs

2-way 8KB

Backside bus

500 MHz (half-speed), 8B wide

Frontside bus

200 MHz, 8B wide

Memory model

Rambus DRAM (peak: 1.6 GB/s)

Branch predictor

2-level adaptive, 10-bit gshare

Instr. fetch/decode/issue/commit width 8/8/8/8
Load/Store Queue size 32
Register update unit size 64
Memory port size 2
INT/FP ALU size 1/1
INT/FP MULT/DIV size 1/1

Table 1: Summary of the Baseline Processor Model.

MINI-GEOMETRY ()
while ( frames )
for ( objects in each frame )
for ( every 4 vertices )

/* Transformation */
tz = mll* InV[lg + m21 « InV[ly + m31 « InV[]; + m41;
ty = m12x InV[lg + m22 * InV[ly + m32 x InV ]2 + m42;
tz =ml13 + InV[lg + m23 * InV[ly + m33 x InV[], + m43;
w=mldx InV[lpg + m24 x InV[ly + m34 » InV[]; + mad4;
OutV([]lpw = 1/w;
OutV[lteg = Xpffset +t2 * OutV(lpw;
OutV ity = Yoffser + tu * OutV[lrw;
OutVls, =tz * OutV[lpw;
/* Texture coordinates copying */
OutV(lyy = InV[lu;
OutV gy = InVu;
/* Lighting Loop */
IDy, =IDg = ID} = 0.0;
for ( every light source )

This kernel consists of three nested loops wrapped by two
outer loops which iterate through frames and 3D objects in
the world space. The first innermost loop processes vertices
for each 3D object assuming the entire object is modeled
by a single triangle strip. The basic functions performed
inside this loop are transformation, lighting, and rendering
command output.

The transformation function projects the new location of
each vertex on screen through a 4x4 matrix multiplication
and a viewport transformation. The lighting function cal-

dot = LDirlly * InV[lna + LDirlly + InV(lny + LDir[lz « InV[Inz; culates the interaction of each vertex with light sources

IDy = IDyp + Ambienty + Dif fuser * dot;
IDg = IDg + Ambientg + Dif fuseg * dot;
IDy = IDy, + Ambient, + Dif fusep * dot;

OutV[l.q = ((int)ID, << 24)[((int)IDg << 16)|((int)ID) << 8|a);

/* Device driver loop */

for ( each transformed and lit vertex )
/* Assume Tri-Strip triangles */
/* Copy entire OutV records to graphics AGP memory */
GfeCommandlvertes — 2] = OutV [vertes — 2];

if (even — numberedvertez)
GfzCommandlvertez] = OutV [vertex];
GfexCommand[vertex — 1] = OutV [vertez — 1];
else
GfexCommand[vertex — 1] = OutV [vertez — 1];
GfexCommand[vertex] = OutV[vertez];

Figure 5: Algorithm of the mini-geometry pipeline

processes a large array of data, performing both reads
and writes, generating frequent cache misses as well as
many dirty writebacks (behavior common to many current
streaming applications). In a real program the data would
have some computation performed upon it — however, in
order to highlight the behavior of the memory system in
this kernel no actual computations are performed.

1.1 Mini-Geometry Pipeline

The 3D geometry processing pipeline, shown in Figure 5,
is representative of a very frequently used algorithm in
most triangle-based rendering engines. Geometry process-
ing, consisting of intensive floating-point operations on a
large quantity of data (mostly vertices that describe the
geometry of each 3D object), is mainly performed by the
processor. It is one of the two key portions of a three-
dimensional graphics rendering pipeline (the other portion
being rasterization, which is typically performed by a ded-
icated graphics accelerator nowadays).

and generates the color intensity for each vertex. This cal-
culation involves a dot product between the light direction
vector and the vertex normal vector using a Phong illu-
mination model [12]. A single parallel light source with
diffuse only components is assumed in the lighting model.
For a parallel light source, per-vertex normal transforma-
tions can be replaced by an inverse transformation of the
light source location on a per-scene basis, thus eliminating
a large number of computations. A color packing conver-
sion then packs four single-precision floating-point RGBA
color intensities into a packed 4-byte integer. (We assume
the machine ISA of interest supports four wide SIMD com-
putation).

After finishing with all the vertices in one object, a loop
imitating the functionality of a device driver is invoked
(the command output function). This driver loop breaks
one triangle strip into individual triangles and copies these
transformed and lit vertices to the uncacheable graphics
memory.

1.2 Streaming Kernel

The Streaming kernel is presented in Figure 6, and con-
sists of three inner loops that exercise the L2 cache. The
first loop writes data into arraya. The second loop reads
data from arraya, performs some floating-point compu-
tation and passes the results to inner loop invariant ar-
ray elements. Finally the third loop accesses a new array
(arrayg), displacing elements of arraya from the cache.

This program is designed to represent the typical behavior
of many streaming applications. However, as pointed out
previously, in order to highlight the interaction of Eager
Writeback and the memory system in this uniprocessor,



STREAMING ()
float array 4 [MAX], arrayg [MAX];
for (m = 0; m < loop;m + +)
for ( array 4 [i] € each set of L2 cache )
write array 4 [i] to way 0;
write array g [i + 1+ 8 * set_size] to way 1;
write array g [i + 2+ 8  set_size] to way 2;
write array 4 [i + 3 * 8 * set_size] to way 3;
for ( array 4 [j] € each cache line in L2 cache )
read array 4 [jl;
compute array 4 [j];
write array 4 [m];
for (arraypg[k] € each set of L2 cache )
read arraypg[k] into way 0;
read arraypglk + 1 * 8 * set_size] into way 1;
read arraypglk + 2 * 8 * set_size] into way 2;
read arraypglk + 3 * 8 * set_size] into way 3;
write array 4 a[m];

Figure 6: Algorithm of the Streaming Kernel

no actual computational work is performed per data read.

V. SIMULATION RESULTS AND ANALYSIS

For each kernel studied, we present two different data sets,
one with no memory contention from other potential bus
agents, and one with artificially injected memory traffic.

1 Spec95 Benchmarks

Table 3 shows the simulation results for the SPEC95 bench-
mark suite using 3 configurations - Baseline, Eager and
Free Writeback. The Baseline case uses a single entry
writeback buffer, while Free Writeback models a system
in which dirty writebacks do not generate any memory
traffic on the bus (thus serving as an upper bound on per-
formance.)

Looking at the table it is apparent that there is little per-
formance gain possible for the programs in this suite, since
the difference in the cycle count between the baseline case
and the upper bound is negligible. This is not surprising,
since it is well-known that the SPEC95 benchmark suite
is not a good candidate for memory system performance
studies primarily due to its small working set size. For the
rest of this study we will focus on the benchmarks that
more aggressively exercise the memory system, and are ar-
guably more representative of future workloads.

2 Analysis of Mini-Geometry Pipeline
2.1 Without Injected Memory Traffic

Table 4 contains the number of mini-geometry pipeline
execution cycles for a variety of memory configurations.
In this table, each row represents a different combination
of writeback buffer size and lighting conditions, while the
columns contain different writeback strategy cycle counts.
The first column, Baseline, shows the cycle count using a
conventional writeback policy. The next 6 columns contain
the results for 3 different variations of the Eager Writeback
scheme and the speed-up of each scheme over the baseline
case, with each scheme identified by the size of its Eager
Queue (EQ). The simplest design choice is EQ=0, in which
Eager Writebacks are dismissed if the writeback buffer is
full. The other two cases can queue up attempted eager
writebacks within Eager Queues of specified sizes. The
rightmost column contains the Free Writeback case, which
as stated earlier is the upper bound to available perfor-
mance.
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There are several things of interest to note in this table.
Perhaps most significantly, it can be seen that increasing
the depth of the writeback buffer has virtually no impact
on the performance of the Baseline case. In fact, going
from 1 to 256 entries in the writeback buffer only improves
performance by 0.17%. This is because a large number of
dirty writebacks are competing for bandwidth with the de-
mand fetches, and the bus congestion can not be alleviated
by a deeper writeback buffer.

On the other hand, adding Eager Writeback scheme in-
creases the performance of the system by 4.9% to 16.2%
(depending on the light sources and the depth of the Eager
Queue). For the simplest case of no Eager Queue and a sin-
gle entry writeback buffer, the speedup ranges from 6.2%
(for no light source) to 4.9% (with 3 light sources). This
speedup is smaller than for the other cases, because many
eager writebacks are dropped due to the lack of space in the
writeback buffer. When the Eager Queue size is increased
(or the number of writeback buffer entries is increased),
the speedup achieved approaches the upper bound.

The “bandwidth shifting” effect is quite apparent in Fig-
ure 7 and Figure 8. These two figures present the uti-
lization profile of memory bandwidth requested by the
processor using the Baseline (Figure 7) and Eager Write-
back (Figure 8) configurations, running the mini-geometry
pipeline. The y-axis plots the instantaneous bandwidth
versus the execution timeline on the x-axis, which was cal-
culated by sampling the data phase on the memory bus
every 2000 core clocks (e.g. if 1600 bytes are seen on the
bus in 2000 core cycle period, its instantaneous bandwidth
is 800MB/sec for a 1GHz processor).




[ sim cycle | Baseline | Eager [ Free Writeback |
| benchmark || cycles | cycles | speedup | cycles | speedup |
go 4106741898 | 4106316586 1.000 | 4105050891 1.000
gee 1425690611 1423578223 1.001 1419981686 1.004
1i 401639628 401635232 1.000 401481752 1.000
ijpeg 2125521487 2123322070 1.001 2117908634 1.004
perl 3705579465 | 3701065936 1.001 3683430936 1.006
tomcatv 5436594306 | 5436670500 1.000 | 5436456381 1.000
su2cor 4625207540 | 4625248569 1.000 | 4625117247 1.000
mgrid 2138832527 | 2132120132 1.003 | 2061823555 1.037
fpppp 8404705112 | 8410760399 0.999 | 8404047239 1.000
waveb 2221747518 | 2208702430 1.006 | 2179225372 1.020

Table 3: Performance of SPEC95 Benchmarks.

(WB buffer = 1, EQ = 4)

[[ Baseline | Eager (EQ=0) [ Eager (EQ=4) [ Eager (EQ=256) | Free Writeback |
| write buffer size I cycles | cycles | speedup | cycles | speedup | cycles | speedup | cycles | speedup |
No light, WB Buf=1 25364637 23876911 1.062 21838002 1.162 21837952 1.162 21798206 1.164
No light, WB Buf=4 25320139 | 21820627 1.160 | 21820566 1.160 | 21820566 1.160 | 21798206 1.162
No light, WB Buf=256 25320139 | 21820566 1.160 | 21820566 1.160 | 21820566 1.160 | 21798206 1.162
3 diff. lights, WB Buf=1 30643341 | 29200004 1.049 | 27176616 1.128 | 27176333 1.128 | 27134147 1.129
3 diff. lights, WB Buf=4 30643153 27158044 1.128 27158049 1.128 27158044 1.128 27134147 1.129
3 diff. lights, WB Buf=256 30643153 27158044 1.128 27158044 1.128 27158044 1.128 27134147 1.129
Table 4: Simulated cycles of Mini-Geometry Pipeline.

The 12 broad spikes that saturate the peak RDRAM band- o Load Resoltion ime Compaison (wb=1, EQ=4, meir=8)
width in Figure 8 occur within the driver loop, where ren- g Wnarak 7

dering command output is being written into the write-
combining graphics memory while eager writebacks of dirty
lines are concurrently taking place. Since within the driver
loop there is still some computation occurring, the band-
width is not fully utilized, and eager writeback writes can
use the available idle slots and maximize bandwidth. Con-
versely, in the baseline case, the same writebacks occur
within the geometry computation loop. This means these
requests compete for the bus with the return of the data
requested by vertex loads, and thus slow down the process-
ing. This maximization of the utilization of the bandwidth
during the driver loop leads to a lower and sparser aver-
age memory bandwidth in Eager Writeback than in the
Baseline case outside the driver loop?.

The overall performance improvement is obviously gained
from the shifting of dirty writeback traffic to where this
traffic does not impede the return of any data on the crit-
ical path of performance. This can be seen in Figure 9,
which presents an execution profile of the benchmark. In
this figure the sequence of vertex data load requests ap-
pears on the y-axis, and the cycle upon which the corre-
sponding data item returns is plotted on the x-axis. As
execution begins, the profiles of Baseline and Eager Write-
back are completely overlapped, because data is returning
at the same time for both schemes. Beginning at around
2.6 million cycles, these two curves start to deviate from
one other, and continue to diverge as execution time in-
creases. The first deviation indicates the location where
data returns of the Baseline model were getting delayed
because of dirty writeback contentions. The speedup due
to Eager Writeback as measured is around 16%.

By looking carefully at this figure it is possible to dis-

It should be emphasized that the total bandwidth re-
quired by a system using Eager Writeback is not reduced;
rather, it is re-distributed by the early eviction of dirty
cache lines.
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Figure 9: Load Response Time for Input Vertex in
Mini-Geometry Pipeline

tinguish the geometry computation loop from the device
driver loop on each curve. The segments with shorter but
steeper slopes are where the driver loop is executing. The
steepness of the slope occurs because the requested data
was returned faster (since the loop read the output vertices
generated in the transformation and lighting stages from
the L2 cache directly, rather than from memory).

Table 5 shows how Eager Writeback affects the perfor-
mance bottleneck in the Register Update Unit (RUU) of
the processor. The layout of this table is similar to Table 4,
and contains the number of cycles the processor is stalled
due to the RUU being full. As the table shows, Eager
Writeback is able to remove a substantial number of stall
cycles due to a full RUU and keep the execution pipeline
running smoother. These stalls are reduced because in
conventional writeback schemes dirty writebacks are com-
peting with demand fetches for available bandwidth, caus-
ing delays in data arrival and the filling of the reservation
stations in the RUU. The eager writebacks shift the dirty
writes to an earlier time, freeing up the bandwidth to han-



[[ baseline | Eager (EQ=0) [ Eager (EQ=4) [ Eager (EQ=256) | Free Writeback |
[ RUU Full cycles [[ cycles | cycles | improved | cycles | improved | cycles | improved | cycles | improved |
[No light, WB Buf = 1 [ 8404023 | 6678659 | _ 20.5% | 4452469 |  47.0% | 4452265 | _ 47.0% | 4409553 |  47.5% |
[ No light, WB Buf = 4 || 8375679 | 4439397 | 47.00% | 4439226 | 47.00% | 4439226 | 47.00% | 4409553 | 47.35% |
[3 diffuse lights, WB Buf—1 || 8045791 | 6541028 | _ 18.7% | 4361661 |  458% | 4361250 |  458% | 4313710 | _ 46.4% |
[ 3 diffuse Tights, WB Buf=4 || 8033850 | 4344799 | 45.02% | 4344670 | 45.92% | 4344653 | 45.92% | 4313710 | _46.31% |

Table 5: Resource Hazard Improvement of Mini-Geometry Pipeline.

dle just data reads and reducing the pressure on the RUU.

2.2 With Injected Memory Traffic

In order to evaluate the effectiveness of Eager Writeback
in a real system, we implemented a memory traffic injec-
tor which we used to model other bus agents requesting
the memory bus and consuming memory bandwidth. For
this study, we injected three different external bandwidths
using two different injection frequencies onto the bus dur-
ing the simulations. The external bandwidths chosen were
400MB/sec, 800MB/sec and 1.2GB/sec. For each band-
width configuration, data was injected at a high frequency
(every 400 processor clock cycles) and a low frequency (ev-
ery 3200 processor clock cycles). Data was injected onto
the bus in blocks - for example, in the 800MB high fre-
quency case, every 400 cycles the injector took over the
bus and held it until it had completed transferring 320
bytes of data. The injections are uniformally distributed
throughout the simulation.

The results for simulations of the mini-geometry pipeline
using no light sources are shown in Table 6. The top line of
the table is the base case with no injected memory traffic,
while the other entries are for the different injected band-
widths at the different frequencies. In this table we can
see that (as expected) memory traffic injection causes ex-
tra stall cycles in the RUU. In addition, as the amount of
injected bus traffic increases, the opportunity to do Eager
Writeback decreases and the RUU stalls climb dramati-
cally.

The table also shows that Eager Writeback provides virtu-
ally no speedup when a bandwidth of 0.8GB/sec is injected
at the higher frequency, while the same bandwidth injected
at a lower frequency allows a speedup of 11%. By exam-
ining the dirty writeback bandwidth utilization profile of
this scenario ( Figure 10 and Figure 11), one can see that
many eager writebacks (i.e. the spikes) are prevented from
occurring by the higher frequency injection. The advan-
tages of Eager Writeback are lost and it performs almost
on par with the baseline scenario, due to more frequent
bus contention.

3 Streaming Kernel
The mini-geometry pipeline highlighted the problem of im-
plicit dirty writebacks causing loss of performance due to
delays in receiving data. Finite memory peak bandwidth
is another serious performance issue, which is exposed by
the Streaming kernel.

3.1 Without Injected Memory Traffic

Table 7 contains the results of simulation runs of the Stream-
ing kernel, presented in the same format used in Table 4.
For this benchmark, an eager queue of length 0 (EQ=0) is
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Figure 11: Dirty WB L2-to-Mem Bandwidth with
2560B/3200clks Injection (FEager) for Geometry

enough to approximate the optimal case of no dirty write-
back traffic at all. Further size increases of the EQ provide
only marginal performance gains.

Looking at the memory bandwidth utilization profiles for
this kernel (Figure 12 and Figure 13), we see three spikes
that appear repeatedly in both writeback schemes (because
the outer loop contains three iterations). The spikes are
much wider in the Baseline case, however, indicating the
program is spending more execution cycles in these phases.
Examining the algorithm, it is clear these spikes are related
to the time during the third inner loop where incoming
arrayp data items collide and share memory bandwidth
with the induced dirty writebacks of arraya. Because the
finite memory bandwidth (1.6 GB/sec in this study) must
be shared between both memory accesses®, the rate of de-
mand fetches for arrayp in the third inner loop is (the-
oretically) cut in half and thus the overall performance
degrades.

Figure 12 also shows three bandwidth grooves where mem-

3Read and write turnarounds between demand fetch and
dirty writeback streams also prevent peak memory band-
width from being achieved.

3.5e+07

a.5e+07



MBytes per sec

MBytes per sec

bandwidth sim cycles RUU Full cycles

injection (no light) Baseline | Eager | speed-up | Baseline | Eager | improved
0 GB/sec 25364637 | 21838002 | 1.16 | 8404023 | 4452469 | 47.0%
0.4GB/sec (160B/400clks) 27323771 | 25434535 1.07 | 10529817 8448695 19.76%
0.8GB/sec (320B/400clks) 33567580 | 33775835 0.99 | 16760998 | 17024045 -1.6%
1.2GB/sec (480B/400clks) 60699573 | 59162773 1.03 | 44206642 | 42864369 3.0%
0.4GB/sec (1280B/3200clks) 32539684 | 28636072 1.14 | 15604083 | 11364679 27.2%
0.8GB/sec (2560B/3200clks) 47365936 | 42559653 1.11 | 30356564 | 25269290 16.8%
1.2GB/sec (3840B/3200clks) 87400980 | 83426435 1.05 | 70248220 | 66015191 6.0%

Table 6: Memory Traffic Injection to Mini-Geometry Pipeline. (EQ = 4)

sim cycle Baseline Eager (EQ=0) Eager (EQ=4) Eager (EQ=256) Free Writeback

write buffer size cycles cycles | speedup cycles | speedup cycles | speedup cycles | speedup
WB buf =1 10230328 | 9054559 1.130 | 9053851 1.130 | 9053851 1.130 | 9045154 1.131
WB buf =4 10067331 | 9052957 1.112 | 9052957 1.112 | 9052957 1.112 | 9045154 1.113
WB buf = 256 10223055 9052821 1.129 | 9052821 1.129 9052821 1.129 | 9045154 1.113

Table 7: Simulated cycles of Streaming Kernel.
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Figure 12: Memory Bandwidth Distribution by
Baseline Writeback for Streaming Kernel

4e+06

8e+06 1e+07

6+06
Execution Timeline

Cache_walk Kernel: Eager Writeback (wb=1, EQ=4, mshr=8)

4e+06 6e+06
Execution Timeline

Figure 13: Memory Bandwidth Distribution by Ea-
ger Writeback for Streaming Kernel

ory bus bandwidth has dropped to zero. These correspond
to the second inner loops, where all data references hit in
the cache. To take advantage of this available resource,
Eager Writeback fills these bus idle states with early evic-
tions of dirty data cache lines (as shown in Figure 13). By
shifting these bandwidth requests to idle cycles, the mem-
ory bandwidth during the course of the third inner loop
can be fully dedicated to the demand fetches of arrays,
speeding up the cache fill requests.

As was done for the mini-geometry pipeline, we examined
how Eager Writeback interacted with internal processor re-
sources when running this benchmark. Table 8 shows that
the Load/Store Queue is used heavily by this benchmark,
and that Eager Writeback can remove more than half of

the stalls due to a full Load/Store Queue. As the LSQ is
kept less full, instructions are able to leave the Instruction
Fetching Queue (IFQ) faster and as a result cycles lost due
to a full IFQ are reduced substantially.

3.2 With Injected Memory Traffic

‘We also repeated the experiments involving injecting mem-
ory traffic onto the bus for this benchmark program. The
results are shown in Table 9, and indicate that higher fre-
quency injection seems to have a greater impact on the
Baseline case than on the Eager Writeback case. The num-
ber of simulated cycles for the Baseline case using high fre-
quency injection increases faster than for the Eager Write-
back case, while the increase stays roughly the same for
both schemes while injecting lower frequency traffic.

The reason the cycle count climbs faster for the Baseline
case than for the Eager Writeback case can be understood
by analyzing Figure 14. This figure contains an execution
profile of the Streaming benchmark, plotting the arrival
time for each load instruction. Each curve can be divided
into 3 repeated patterns, which bear the following three
piecewise line segments: flat (zero increment), steep rise,
and slowdown knee. These 3 line segments correspond to
the three inner loops in the benchmark.

The first loop contains only data stores, so the load instruc-
tion count stays flat as execution time continues. The steep
vertical climb corresponds to the second inner loop, which
has a high number of cache hits (a large number of loads
completing in a short period of time). Finally, the third
segment represents the behavior of the third loop, which
loads another array that misses in both the caches.

This third segment, shown as a knee in the curve, reveals
the reason for the performance deviation between Baseline
and Eager Writeback. Figure 15 shows a close-up view of
part of Figure 14, focusing on the knees of the curve. The
slopes (tanf) of these knees are the key - the flatter the
slope, the longer it will take to complete. Comparing the
slope changes between Baseline and Eager Writeback, it
is obvious that the slope of the Baseline segment is much
shallower than that of the Eager Writeback segment. This
means that for the same number of loads in the third loop,
the execution time of the Baseline case was more sensitive



baseline Eager (EQ=0) Eager (EQ=4) Eager (EQ=256) Free Writeback
Bottlenecks cycles cycles | improved cycles | improved cycles | improved cycles | improved
IFQ Full cycles 5770175 | 4594401 20.38% | 4594631 20.37% | 4594631 20.37% | 4587638 20.49%
RUU Full cycles || 4274868 | 4260784 0.33% | 4260703 0.33% | 4260703 0.33% | 4258811 0.38%
LSQ Full cycles 1978596 864867 56.29% 866341 56.21% 866341 56.21% 862880 56.39%

Table 8: Resource Constraint Improvement of Streaming Kernel. (Writeback buffer = 1)

bandwidth stmulated cycles IFQ Full cycles LSQ Full cycles

injection Baseline | Eager | speed-up | Baseline | Eager | improved | Baseline | Eager | improved
0 MB/sec 10230328 | 9053851 | 1.13 5770175 | 4594631 | 20.4% 1978596 | 866341 | 56.2%
0.4GB/sec (160B/400clks) 11807448 | 10039848 1.18 7340618 5576536 24.0% 2903145 | 1205358 58.5%
0.8GB/sec (320B/400clks) 15025957 | 12389159 1.21 | 10540877 7908077 25.0% 4428473 | 1882587 57.5%
1.2GB/sec (480B/400clks) 24250335 | 21412735 1.13 | 19717746 | 16880309 14.4% 8309036 | 5480188 34.05%
0.4GB/sec (1280B/3200clks) 12379290 | 10991058 1.13 7908538 6521201 17.5% 2030932 | 1417595 30.2%
0.8GB/sec (2560B/3200clks) 16593748 | 15115348 1.10 | 12101456 | 10622058 12.2% 4264295 | 2818313 33.9%
1.2GB/sec (3840B/3200clks) 29048835 | 27135235 1.07 | 24495295 | 22585042 7.8% 8903039 | 7007451 21.3%

Table 9: Memory Traffic Injection to Streaming Kernel.
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to and severely delayed by other transactions, which in this
case are composed of the dirty writebacks induced by the
loads and the periodic injection of memory traffic. For the
Eager Writeback case, the dirty writebacks were mostly
completed in the second loop, so the slope of the knee is
steeper and the third loop can be completed more swiftly
than its Baseline counterpart.

Repeating the same experiment using lower frequency in-
jection (as plotted in Figure 16 and Figure 17) reveals that
the slope of the knees of the curve are more similar to one
another. As a result, roughly the same number of penalty
cycles were added to both Baseline and Eager Writeback,
and the speedups due to Eager Writebacks are smaller in
Table 9. These results suggest higher frequency interfer-
ence can deteriorate performance in the baseline case more
in a bandwidth-limited code.

VI. CONCLUSIONS

Systems employing write-back caches have to contend with
the following two issues: (1) Dirty writebacks contend with
demand fetches for bandwidth and can impede the deliv-
ery of data, and (2) Finite memory bandwidth shared be-
tween demand fetches and implicit dirty writebacks limit
the performance of memory bound programs. These per-
formance issues are important to a large and growing class
of programs — those that consume large amounts of mem-
ory bandwidth and generate many data stores.

In this paper we have presented a new technique for dealing
with these issues, called Eager Writeback, which can effec-
tively improve overall system performance by shifting the
writing of dirty cache lines from on-demand to times when
the memory bus is idle. This time-shifting is accomplished
by identifying and speculatively writing (” cleaning”) dirty
lines whenever the bus is free. We have shown that for a
wide variety of programs, once a dirty cache line has en-
tered the LRU state it is rarely written to again. We use
this fact to identify the lines that should be speculatively
written (although this information could be of interest to
many other intelligent cache management techniques as
well).

We have shown that applying this technique can alleviate
bandwidth congestion and improve performance for two
kernels that are representative of these classes of applica-
tions. We have shown that when conventional writebacks
compete with memory loads and defer the delivery of data,
the Eager Writeback technique is able to remove the com-
petition by evicting dirty data earlier. We have also shown
that when “finite” memory bandwidth limits overall per-
formance, eager writeback can alleviate this situation by
utilizing earlier idle bus cycles. Eager Writeback can be
implemented in a number of was - for example, as an ad-
ditional programmable memory type on top of the exisit-
ing memory types provided by a processor to speed up
bandwidth-hungry applications, e.g. 3D games or content-
rich applications.

Further investigation of this Eager Writeback mechanism
will include the effect this approach has on other system
performance issues. For example, Eager writeback can be
expected to reduce context switching time overhead by
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flushing dirty lines in advance of the context switch. In
addition, Eager Writeback can push modified data closer
to the globally observable memory level earlier to reduce
coherence miss latency, and as a result, respond to other
processors’ requests faster. Similarly, the same analysis
performed in this paper can be applied to write-update
and write-invalidate protocols in a shared memory system
to reduce coherence traffic in a way similar to (but perhaps
simpler to implement than) that presented in [8].
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