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ABSTRACT
Power delivery is a growing reliability concern in micropro-
cessors as the industry moves toward feature-rich, power-
hungrier designs. To battle the ever-aggravating power con-
sumption, modern microprocessor designers or researchers
propose and apply aggressive power-saving techniques in the
form of clock-gating and/or power-gating in order to oper-
ate the processor within a given power envelope. These tech-
niques, however, often lead to high-frequency current varia-
tions, which can stress the power delivery system and jeop-
ardize reliability due to inductive noise (L di

dt
) in the power

supply network. To counteract these issues, modern mi-
croprocessors are designed to operate under the worst-case
current assumption by deploying adequate decoupling capac-
itance. With the trend of lower supply voltage and increased
leakage power and current consumption, designing a proces-
sor for the worst case is becoming less appealing.

In this paper, we propose a new dynamic inductive-noise
controlling mechanism at the microarchitectural level that
will limit the on-die current demand within predefined bounds,
regardless of the native power and current characteristics of
running applications. By dynamically monitoring the access
patterns of microarchitectural modules, our mechanism can
effectively limit simultaneous switching activity of close-by
modules, thereby leveling voltage ringing at local power-pins.
Compared to prior art, our di/dt controller is the first that
takes the processor’s floorplan as well as its power-pin dis-
tribution into account to provide a finer-grained control with
minimal performance degradation. Based on the evaluation
results using 2D floorplans, we show that our techniques can
significantly improve inductive noise induced by current de-
mand variation and reduce the average current variability
by up to 7 times with an average performance overhead of
4.0%.

1. INTRODUCTION
High-performance, power-conscious microprocessors exhibit

varying current demands depending on the execution char-
acteristics of a given program. For a high frequency micro-
processor, any abrupt change in current demand (referred
to as di/dt) will result in high-frequency inductive noise
that leads to voltage ringing in the power-supply network,
thereby posing a serious issue in circuit reliability. This is
especially a concern in high-frequency processors where the
supply-voltage needs to respond and stabilize to varying cur-
rent demands without violating stringent timing constraints.
In the worst case, overshoot or undershoot in the power sup-
ply network can adversely flip data values in the data path,

resulting in incorrect computation. To address this reliabil-
ity issue, processors are often over-designed, typically with
the use of an excessive amount of decoupling capacitors (de-
cap) that can warrant reliable operations under the worst
case current consumption scenario. For increasingly com-
plex processors, inserting an excessive amount of decaps,
however, enlarges the chip area and at the same time exacer-
bates the leakage power. Moreover, significant design effort
and cost for a worst-case design is inevitable to manage the
infrequent cases where programs exhibit the maximum level
of varying current demands during the course of execution.

Traditional technology scaling for CMOS is one reason
that causes a high variability in current flow within a pro-
cessor. As the dimension of devices keeps shrinking, the
supply voltage is reduced as well in order to meet the gate-
oxide reliability requirement. Such lowered supply voltage
imposes a smaller absolute noise margin, exacerbating the
inductive noise issue. On the other hand, the increasing
number of available transistors on chip as well as the pursuit
of ever-higher operating frequencies result in more power
consumption. To mitigate power consumption and its ensu-
ing thermal management problems, aggressive power-saving
techniques such as clocking gating and/or power gating were
widely studied and applied. Processors such as the Intel
Pentium 4, Pentium M and IBM Power5 [3, 13, 17] use dif-
ferent levels of clock gating to dynamically disable portions
of the circuits that do not change states. Meanwhile, the in-
dustry has acknowledged the di/dt issue due to the extensive
application of clock-gating and responded with architectural
solutions. For instance, the L2 cache in the Power5 proces-
sor uses progressive clock-gating in different cache banks to
mitigate the di/dt effect [13]. This is also one reason why
ideal clock-gating, limiting power dissipation to only active
modules, is difficult to attain in practical designs.

Conventionally, the worse-case current consumption can
be profiled and gauged by exercising power virus programs [9].
These programs were written with a goal in mind — vary-
ing the execution behavior from extremely high activity to
almost none for inducing drastic fluctuation of current de-
mands to stress the power-delivery network. Such exercises
provide an approximation of the maximal supply-voltage
overshoot or undershoot conceivable in a design. Designers
then allocate the appropriate amount of decaps to manage
this worst-case voltage ringing in a repetitive process until a
given module is within the noise margin. The drawback in
such designs is that a significant amount of chip area (in the
form of decaps) is devoted to the coverage of those infrequent
corner cases. For example, the Alpha 21264 reported that
roughly 15 to 20% of the die area is occupied by decaps [8]
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and the trend is going up. Also note that, these decaps
will contribute a considerable amount of leakage power in
future deep submicron processors. Clearly, the trade-off in
future processor designs can be rather complicated in deter-
mining the degree of gating sustainable by a chip, the area
overheard, and additional leakage due to decaps.

To address these shortcomings in the worst-case design
methodology, we propose a low-cost di/dt controlling mech-
anism embedded into the microarchitecture that will dynam-
ically limit high-frequency di/dt below a predefined thresh-
old. Our design can be integrated into the early microarchi-
tecture planning stages to facilitate the design of a proces-
sor for the average-case current consumption scenario. The
main contributions of this research include the following.

• We present the use of decay counters as a simple mecha-
nism to monitor the access pattern of each microarchitec-
tural module to prevent unsteady self-switching activity.

• We propose a novel microarchitectural technique using
a queue-based dynamic di/dt controller to avoid overly
prescribed simultaneous (or correlated) gating of mod-
ules that share the same local power-pins on the power
delivery network.

• To simultaneously avoid performance loss as well as re-
duce high-frequency di/dt effect, we present the inte-
gration of Preemptive ALU Gating into our queue-based
dynamic di/dt controller.

• Finally, to achieve fine-grained di/dt control for large
modules, we present an enhancement to perform progres-
sive clock-gating without violating the current demand
threshold.

Unlike prior techniques [9, 14, 15, 20, 21, 22, 23, 24] that
largely aim at providing chip-level di/dt control, our tech-
nique monitors and controls di/dt by leveraging spatial in-
formation of modules obtained from a given floorplan and
its power-pin distribution. Inductive noise is highly depen-
dent on the chip floorplan which determines the relative lo-
cation of functional modules and their distance from the
power-pins. Since power-pins will be stressed non-uniformly
across the power supply network, certain modules will have
a higher susceptibility to inductive noise. Hence, a solu-
tion at the chip-level is too coarse-grained and cannot ac-
count for the fact that certain power pins are unaffected by
a distant module. For the same reason, such designs are
also likely to generate many false alarms, resulting in unde-
sired performance degradation. In contrast, by guaranteeing
the prevention of simultaneous gating of modules that share
the same power-pins, our proposed technique can accurately
limit the current demands to be within designated bounds.

The rest of the paper is organized as follows. We begin
with an outline of prior art and their limitations in Section
2. Section 3 describes power delivery issues in processor
designs and the inefficacy of worst-case design. Section 4
describes the design of our dynamic di/dt controller. Sec-
tion 5 discusses our experimental methodology followed by
the evaluation in Section 6. Finally, Section 7 concludes.

2. RELATED WORK
The microarchitecture community has recently paid no-

table attention to di/dt issues due largely to the use of
power-saving techniques such as clock-gating, and have pro-
posed solutions to characterize and address them. Gro-
chowski et al. [9] was one of the first to illustrate the crit-
icality of di/dt and propose solutions from the perspective
of architects. Their work showed that applications exhibit
varying current characteristics in a large range and proposed
a microarchitectural solution to improve current demands

with a feedback control mechanism. Their proposed mech-
anism can dynamically estimate supply noise violations by
performing current-to-voltage calculations on the chip and
throttle instruction fetch or issue upon the detection of a
reliability emergency. This work, however, addressed the
mid-frequency di/dt problem at the chip-level and the ar-
chitecture presented is incapable of altering current demands
over a smaller clock-cycle interval (e.g. less than 25 cycles).
In contrast, our work is targeted at mitigating the high-
frequency di/dt issue to enable average-case microprocessor
design and reduce the on-die decap required.

In [14, 15], Joseph et al. analyzed power supply response
and control voltage emergencies in a processor via microar-
chitectural techniques. They concentrated on the worst case
di/dt occurring at the resonance frequency of the power sup-
ply in the 50-100MHz range. Similarly, Powell and Vijayku-
mar proposed techniques in [24] to mitigate the reliability is-
sues caused by resonant frequency. Another technique called
Pipeline Damping in [22] by the same authors throttles mi-
croarchitectural activity at the front-end and the back-end
to alter the current surges at the resonant frequency.

In contrast to pure hardware-based techniques, Hazel-
wood and Brooks proposed a hybrid hardware/software ap-
proach to address the mid-frequency di/dt issue [10]. Their
work performed dynamic optimization to alter the program
codes that induce large di/dt oscillation via a compiler’s
assistance. They showed that software pipelining, code mo-
tion and instruction padding can modify program behavior
that causes di/dt at the resonance frequency, while avoiding
performance overhead.

Different from the above mentioned work tackling the
mid-frequency di/dt issue (50-100MHz), the focus of this pa-
per is to mitigate high-frequency di/dt that requires imme-
diate response, for which the above solutions are inappro-
priate. Toward this effort, Powell and Vijaykumar proposed
Pipeline Muffling [23] which controls instruction issue and
limits the use of resources for the high-frequency di/dt con-
cerns. Tang et al. [26] proposed controlled ramping of FPUs
via scanning the IFQ for upcoming instructions. Note that
the cause of high-frequency di/dt is highly dependent on
the spatial distribution of modules across the floorplan and
their distances from the power-pins. In addition, the high-
frequency di/dt is not only dependent on a given module’s
self activity, but also correlated to gating events that stress
nearby power-pins. None of the existing works accounted
for this fact, which could result in violated current demand
guarantees or false alarms.

Outside the microarchitecture domain, several solutions
were proposed at the circuits level to address high frequency
di/dt [5, 19, 27]. Most of these techniques tried to reduce
the impedance path to individual modules in a processor,
minimizing the voltage surges and dips. Floorplanning al-
gorithms with the objective of minimizing inductive noise
were studied recently [5, 6, 18]. Unlike this work, they are
completely static solutions. Despite they can improve the
average-case noise problem, the worst-case events still needs
to be guaranteed due to the fact that static solutions can-
not exploit or react to dynamic program behavior. Note
that our technique is complementary to such circuit solu-
tions that improve the average-case voltage swing. An ideal
design, also our advocate, is to involve optimizing a floorplan
and its power supply network for the average-case inductive
noise and integrating our dynamic controller to prevent the
worst-case current demand at a given power pin domain.
Since worst-case program behavior is infrequent, our low-
overhead technique can trade off nominal performance to
meet the current demand threshold.
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3. HIGH-FREQUENCY INDUCTIVE NOISE
ISSUES

To address inductive noise issues that result from abrupt
changes in the dynamic current demands, designers typically
target a low-impedance power delivery network by deploy-
ing adequate decoupling capacitors.1 In order to meet the
impedance target across a wide range of frequencies, multi-
stage decoupling capacitors are necessary. High-frequency
noise is handled by decaps that are distributed through-
out the die. Medium-frequency decaps are typically placed
on the land side of the package, as close as possible to the
motherboard, to facilitate the lowest possible impedance.
Finally, bulk capacitors on the motherboard address the
low-frequency current fluctuations. Since our work targets
the the high-frequency di/dt issue, this section will describe
some key issues responsible for exacerbating high-frequency
di/dt in deep submicron designs.

3.1 Sources of High-Frequency Inductive Noise
General purpose processors run a wide variety of appli-

cations; the current profile for each application varies de-
pending on many factors. Generally, applications with high
ILP typically exhibit constant use of most of the modules
in the processor, resulting in less current variability. In con-
trast, applications that oscillate between high and low level
activities will display a more irregular current profile. With
dynamic clock-gating for idle functional units, the abrupt
current variation is even more prominent. The current pro-
file also correlates closely to program phases. For instance,
a program might consistently performs simple arithmetic
operations in a certain phase, leaving little activity in the
caches. From a fine-grained perspective, however, even con-
secutive instructions can vary the current demands substan-
tially if the functional units they exercise are completely dif-
ferent. Although a program appears to be in a consistent
phase with a regular instruction profile for thousands of cy-
cles, minute irregularity in-between consecutive instructions
can still cause an unexpected current surge or dip, resulting
in detrimental voltage spikes. Furthermore, the exact same
instruction can generate a different current profile due to
dynamic effects like cache misses. For instance a LOAD in-
struction that hits in the cache versus the same instruction
that misses the next time will create different module access
patterns and clock-gating activity. Therefore, understand-
ing and exploiting current profiles of applications requires a
much finer grained control.

Microarchitectural modules have non-uniform current de-
mands and it is critical to create a low impedance path to
modules demanding high current. Similarly, modules that
induce high current fluctuation can create a greater bur-
den on the power supply, if they are placed close to each
other and have a high probability of switching simultane-
ously. Note that simultaneous switching events along the
same direction raises a major issue to power delivery. A
floorplan that is resistant to inductive noise tries to gener-
ate a well balanced layout to distribute the current demand
in a more regular manner across the power-supply grid [5, 6,
18]. Nonetheless, floorplanning is a static solution. While a
noise-aware floorplan can mitigate di/dt effects to a certain
extent, it is still unable to completely eliminate the dynamic
reliability emergency due to high frequency inductive noise.

3.2 Quantifying Module Activity
To effectively manage and prevent the high-frequency volt-

age ringing at the microarchitectural level, it is imperative to

1Current designs target at sub-milliohm impedance.

understand the simultaneous switching behavior among dif-
ferent microarchitectural blocks and their relative locations
to each other (i.e. the sharing of power-pins) on a given
floorplan. To understand switching behavior of micropro-
cessor modules, we describe two metrics: the self-switching
activity and the correlated or simultaneous-switching activ-
ity of modules. The self-switching measurement is used to
quantify the number of gating occurrences of a given mod-
ule during the profiling period. Both gating on and off are
considered likely events to cause current fluctuation. The
objective of this metric is to single out the microarchitec-
tural modules of high switching activity. In addition, the
intensity of the gating activity also depends on the current
consumption of each module. In other words, even if a mod-
ule switches less frequently than the others, it still can in-
duce intolerable noise if it draws a significant amount of
current. The relative number of switching events and the
current consumption per cycle called intensity of switch are
combined into a single weight. If swi represents the rela-
tive number of switching events for module i and Ii is the
intensity of the switch, then the self-switching factor αi is
represented by the following relationship.

Self-switching factor, αi = swi × Ii (1)
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Figure 1: Correlated Switching Matrix

Correlated switching events are the gating events in the
same direction i.e. both modules are clock-gated ON or
OFF simultaneously. To measure correlation, we capture
the inter-cycle gating direction of each module in the pro-
filing process. Then each module is paired with every other
module in the processor, and checked for simultaneous gat-
ing in the same direction. The result is an upper triangular
correlation matrix with each location representing the num-
ber of simultaneous gating events encountered. An illustra-
tion of the calculation process of correlated switching events
is given in Figure 1. In the matrix, Xij is the number of raw
correlated switches that occurred over the profiling duration
and swi is the number of self-switching events for module i.
Note that the correlation metric Xij isolates only the mod-
ules in consideration. The upper bound of 100 indicates a
perfect correlation, i.e. modules i and j switched simulta-
neously every single time2 (100% of the switching events).
The forward diagonal in the same matrix represents the self-
switching factor, αi, for each module.

Using eight SPEC2000 INT benchmark programs,3 Ta-
ble 1 shows the switching correlation as a matrix for 23 mi-
croarchitectural modules considered in our processor model.
The diagonal (gray) in the matrix represents the amount
of self-switching factor. As observed from Table 1, cer-
tain modules switch far more frequent than others. On
the other hand, the weights of the modules that are likely

2Please note that the correlated switching factor was scaled
as a percentage, hence the upper bound is 100.
3Since correlation profiling was compute intensive, we
used the following subset of benchmarks for this motiva-
tional data: 256.bzip, 186.crafty, 252.eon, 254.gap, 164.gzip,
181.mcf, 253.perl and 300.twolf.
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LSQRUUBTBL2$IRFL1D$ALU1ALU2ALU3ALU4ALU5ALU6L1I$BpredDTLBITLBFALU1FALU2Freg
LSQ 28 0 20 13 20 2 10 10 10 10 10 10 11 20 0 11 10 10 12
RUU 0 26 8 4 13 2 0 0 0 0 0 0 5 8 2 5 0 0 5
BTB 20 8 18 7 29 17 13 13 13 13 13 13 37 100 17 37 13 13 13
L2$ 13 4 7 16 14 28 12 12 12 12 12 12 21 7 26 21 4 4 7
IRF 20 13 29 14 10 17 7 7 7 7 7 7 23 29 17 23 8 8 24

L1D$ 2 2 17 28 17 7 6 6 6 6 6 6 11 17 93 11 5 5 6
ALU0 10 0 13 12 7 6 3 100 100 100 100 100 15 13 6 15 66 66 4
ALU1 10 0 13 12 7 6 100 3 100 100 100 100 15 13 6 15 66 66 4
ALU2 10 0 13 12 7 6 100 100 3 100 100 100 15 13 6 15 66 66 4
ALU3 10 0 13 12 7 6 100 100 100 3 100 100 15 13 6 15 66 66 4
ALU4 10 0 13 12 7 6 100 100 100 100 3 100 15 13 6 15 66 66 4
ALU5 10 0 13 12 7 6 100 100 100 100 100 3 15 13 6 15 66 66 4
L1I$ 11 5 37 21 23 11 15 15 15 15 15 15 3 37 12 100 11 11 5

Bpred 20 8 100 7 29 17 13 13 13 13 13 13 37 3 17 37 13 13 13
DTLB 0 2 17 26 17 93 6 6 6 6 6 6 12 17 2 12 5 5 6
ITLB 11 5 37 21 23 11 15 15 15 15 15 15 100 37 12 1 11 11 5

FALU0 10 0 13 4 8 5 66 66 66 66 66 66 11 13 5 11 1 100 5
FALU1 10 0 13 4 8 5 66 66 66 66 66 66 11 13 5 11 100 1 5
Freg 12 5 13 7 24 6 4 4 4 4 4 4 5 13 6 5 5 5 0

Table 1: Self and Correlated Switching Weights of
Modules

to be accessed every cycle (turned on mostly) such as the
L1 I-Cache and the I-TLB are lower. Some modules with
smaller weights are dormant, e.g. floating-point register file
(Freg),4 only accessed once in a long while. In addition, as
expected, the branch predictor and the BTB, the I-Cache
and the I-TLB (and the D-Cache and the D-TLB) are all
highly correlated modules. In addition, it is also observed
that the first six ALU modules are also highly correlated
as concurrency exists in integer instructions. The design of
our high-frequency dynamic di/dt controller is mainly based
around the intrinsic switching behavior of microarchitectural
modules.

Our technique addresses the high-frequency inductive noise
issues directly caused by clock-gating. Clock-gating is a well
established method in dealing with the increasing power con-
cern and thermal pressure. The main issue in reliability as-
sociated with clock-gating is that there is no deterministic or
predictive way for determining whether it is reliable to gate
off modules without inducing hazardous current surges. In
addition, conventional clock gating techniques do not have
any knowledge of adjacent modules and the extent of cor-
related clock-gating activity. Our microarchitectural level
high-frequency di/dt controller is based on such fundamental
observations on the clock-gating activity of modules, their
correlation with adjacent modules, the module locations in
a floorplan, and the power-pin distribution of the chip.

4. A FLOORPLAN-AWARE, QUEUE-BASED
DYNAMIC di/dt CONTROLLER

In order to address inductive noise issues due to high
switching activity in the processor, we now present the de-
sign of our dynamic di/dt controller that aims to improve the
current profile of a processor regardless of program behavior.
Our design is easily customizable, in order to enable a given
design achieve the right balance among dynamic di/dt con-
trol, power consumption, and performance overhead. The
primary components of the di/dt controller include the fol-
lowing:

• A low-overhead modular decay counter-based clock-gating
mechanism. The objective of the decay counters is to
throttle excessive self-gating activity of modules.

• A floorplan-aware clock-gating queue that selectively dis-
ables simultaneous switching of modules in the same di-
rection. The queue-based controller is designed to limit
the maximum current surge or dip for a given set of
power-pins shared by several modules on the power sup-
ply grid.

• Preemptive activation of ALUs through pre-decoding for

4Because Table 1, used a demonstration, only profiled re-
sults of integer benchmark programs.

simultaneous di/dt and performance enhancement.

• An enhancement to queue controller in order to enable
progressive clock-gating on large modules like L2 cache
banks.

4.1 Decay Counter based Clock-Gating
The key to avoiding clock-gating induced noise lies in iden-

tifying program phases to see whether it is reliable, at a
particular moment, to gate off an entire microarchitecture
module. Although certain elaborate techniques can accu-
rately predict module requirement patterns, clock-gating re-
quires low-overhead mechanisms to justify the extra hard-
ware cost [17]. To enable a low-overhead, dynamic clock-
gating scheme while providing a tunable form of di/dt con-
trol, we propose the use of decay counters. By using low-
resolution decay counters to monitor module access pat-
terns, we can choose to save power only during long-stretches
of inactivity. To illustrate this, we use an example that
quantifies fine-grained module access patterns of certain pro-
cessor modules over a small simulation period in Figure 2.
The figure shows an example of access pattern profile for
the branch predictor, the L1 I-Cache, an Integer ALU and
the Integer Register File for bzip. The 200-cycle interval is
shown here to illustrate the potential high-frequency di/dt
effects from a fine-grained perspective. It is to be noted
that the decay counter does not require a specific access
patten to eliminate unnecessary switching activity, such as
the ones presented in the figure. The 200-cycle access pat-
tern for different modules with varying access patterns is
merely used to illustrate the significance of employing de-
cay counters in our design. Typically, it is observed that a
module that is inactive for more than 10-12 cycles is likely
to remain dormant for an extended period of time. Clearly,
there is a threshold cycle count beyond which a module can
be gated-off reliably with the least likelihood of encounter-
ing high frequency inductive noise. On the other hand, it
can be seen that when a module is not accessed for less than
5-10 cycles, it is highly likely to be accessed soon in subse-
quent few cycles. A decay counter is employed to exploit
this behavior by enabling clock-gating activity only when a
minimum turn-off threshold has exceeded. We use a 4-bit
decay counter for each microarchitecture module inside the
processor that only permits clock-gating of a module if it has
not been accessed during the last 16 cycles. For any given
module, the counter decays unless there is an access made
to that particular module, in which case the decay counter
is reset back to the maximum.

The resolution of the decay counter provides the trade-off
between high frequency inductive noise control and power
dissipation. A large decay counter will further smooth out
current spikes over time but at a cost of higher average power
consumption due to the fact that modules will be gated off
only after a long interval of inactivity. The opportunity
for power saving is also dependent on the module access
pattern. As shown in Figure 2, certain modules such as
the branch predictor or I-ALU exhibit larger potential for
power savings than others that display high activity like the
Integer Register File.

4.2 A Floorplan-aware Queue Based di/dt Con-
troller

Even though the decay counter can provide a smoother
current profile for each module by eliminating unwanted
switching activity, it is inherently incapable of avoiding di/dt
issues caused by simultaneous gating of modules that share
common power pins. To address these shortcomings, we
propose a queue-based controller which is aware of the pro-
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Figure 2: Module Access Patterns

cessor’s floorplan and power-pin distribution. In the proces-
sor’s power-delivery network, a module usually draws more
current from spatially nearby power pins, in other words,
following the path(s) with the lowest impedance. Conse-
quently, adjacent modules, if they switch simultaneously in
the same direction, will unreliably stress local power-pins.
Therefore, to guarantee the maximum current ramp at a
given time, it is necessary to be able to dynamically alter
simultaneous gating of modules that are likely to stress the
same power-pin(s). The proposed queue-based controller is
designed to overcome unreliable simultaneous switching of
adjacent modules. The salient features of the controller are
described as follows.

• A static queue with an entry for each module sharing the
same power-pin domain. Ideally, there will be no more
than eight entries in a queue resulting in a 3-bit module
identification number that is local to each queue.5

• Every queue-entry has the corresponding state of the
module that indicates either the current state or any re-
quested clock-gating transition event. This will require
2 bits for the ON/OFF states as well as the ON→OFF
and OFF→ON transitions. The state is used to drive
the pre-wired clock-gating signals to the corresponding
modules.

• Every queue entry that represents a module also has an
associated integer weight that is proportional to the cur-
rent consumed by the corresponding module. We use a
two bit integer to represent one of the four different cur-
rent consumption levels. Since weights are use to com-
pute and check for current demand violations, integer
weights are appropriate for faster current demand calcu-
lations. Fast calculations are essential for quick response
to high-frequency di/dt.

Our high frequency di/dt controller architecture is de-
picted in Figure 3. The ”+” signs on the chip floorplan (left-
hand side) indicate the power-pins locations on the power
delivery network. For simplicity, we illustrate only four
power-pins. The queue based controller works in the fol-
lowing manner. The decay counter will signal a transition
event, i.e. ON→OFF for a given module in the queue. Let
δ be the current demand threshold that is permitted for a
given power-pin domain. At any given time, a head pointer
is always pointed to one single module in the queue. Every
cycle, the queue is traversed by a window size which has a
total weight of γ. The value of γ is the largest sum of the
weights of the consecutive modules that are in the transition
states (ON→OFF or OFF→ON), such that γ ≤ δ. Since in-
teger weights can be negative as well,6 the sliding window
will attempt to permit the maximally allowed transitions

5The number of entries are limited to minimize the perfor-
mance loss as explained in Section 4.2.
6OFF→ON is a positive switch while ON→OFF represents
a negative switch.

without violating the maximum current demand constraint.
To better understand the di/dt queue-controller mecha-

nism, we use an example based on the instantaneous state
of the controller as shown in Figure 3. Let us assume that
the value of the current demand threshold, δ = 3. In the
figure shown, ALU-2 and ALU-3 are gated off (indicated by
the bigger, bold arrows that are the output of the queue
controller). Both Bpred and ALU-1 have an activation re-
quest indicated by the OFF→ON state. Therefore, the com-
bined weight of the sliding window, γ = 3.7 The queue con-
troller will therefore permit both module gating events to
occur, since the threshold constraint is not violated in this
case. After servicing the transition, the head pointer will
traverse two entries and point to the ALU-2 entry in the
queue. In contrast, consider an alternate case where ALU-1
has a higher weight that results in the weight of the sliding
window to exceed the current threshold budget. In this case,
only the Bpred transition will be serviced by the queue con-
troller. Also, the head pointer will traverse only one module
entry to ALU-1, so that it can be serviced in the next cy-
cle. Furthermore, consider yet another example where the
ALU-1 requires an ON→OFF transition which represents
a negative weight. In this case, γ=1, thus still permitting
both Bpred and ALU-1 to perform their transitions. In this
case, however, the sliding window threshold is still below the
threshold, δ, and the queue controller can potentially gate
the next ALU-2 module, if it requires a transition. These
examples are provided to illustrate how the sliding window
adjusts dynamically based on the worst-case current demand
that can be sustained in a given power-pin domain.

The example di/dt queue in Figure 3 show the modules
in the descending order of weights. It is to be noted that
the di/dt controller will enforce the current demand thresh-
old regardless of the order in which they are in the queue.
Nevertheless, the ordering of modules does affect the per-
formance overhead imposed by the design. For instance,
clustering modules in the queue that have high weights will
create a larger performance overhead since multiple modules
will not be permitted to transition simultaneously because
they consistently violate the current demand threshold. The
ordering of modules in the queue is static and presents a de-
sign choice that needs to be made by the architects for a
given floorplan.

Note that the queue in our di/dt controller is different
from a typical queue structure like the Instruction Fetch
Queue, a memory structure allocated at run-time. In con-
trast, the entries in the di/dt controller queue are pre-wired
for each module at design time to simplify the logic for driv-
ing clock-gating signals directly to the modules.8 However,

7Please note that in a real implementation, the sliding win-
dow will have an upper limit in terms of how many modules
weights can be computed in a given cycle.
8Since the queue entries are pre-wired to the clock gating
output, it is possible to apply certain heuristics to the order
of modules in the queue with asymmetric weights, in order
to permit the maximum possible transition at a given time.
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Module State/Transition Weight
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Figure 3: di/dt Controller Architecture

functional-wise the controller works like a circular queue
that traverses as many modules as indicated by the sliding
window threshold. It is to be noted that the maximum hard-
ware overhead of each microarchitectural module is merely
11 bits (including the decay counter). Also, the additional
power dissipated and the extra current drawn by the con-
troller itself are rather negligible for these small sizes.

4.3 Preemptive ALU Gating
Preemptive ALU clock-gating through pre-decoding in-

structions is another technique we propose to prevent un-
necessary gating activity. Note that decay counter based
clock-gating allows gating events to occur based on the his-
tory of module accesses. However, decay counters by itself
will be unable to predict the requirement of a module if it
is required in the immediate future for a recently fetched
instruction. For instance, it will be detrimental to perfor-
mance if an ALU is going to be gated off due to a saturated
decay counter, when in fact an incoming ALU instruction
has just been fetched. Furthermore, if an ALU instruction
is on its way, it makes sense to leave the unit “on” even
from a di/dt perspective. To achieve this goal, we include
preemptive turn-on gating of ALU modules by pre-decoding
instructions. In a typical RISC ISA, the opcode can be
determined by observing the first few bits of the instruc-
tion,9 allowing the processor to pre-decode this information
simultaneously with the instruction fetch. In the case that
an ALU instruction has been detected early on, it is used
to override the decay counter turn-off request. While in a
CISC ISA, it might not be easily possible to perform a sim-
ple pre-decode due to variable length instructions, but even
so, other techniques such as storing pre-decode information
in the L1 Instruction Cache [2] can be used to achieve this
effect.

4.4 Enhanced Progressive Gating of Large Mod-
ules

Even though simultaneous gating of multiple modules can
be prevented completely by selective gating for a given set
of power-pins in a power-delivery network, some monolithic
modules like the L2 cache can still consume large current re-
sulting in unreliable voltage swing. For this reason, certain
processors employ progressive gating of large modules like
the L2 cache to mitigate di/dt effects [13]. However, ad-hoc
progressive gating does not prevent other adjacent modules
from switching simultaneously and can still result in unreli-
able di/dt surges. To counteract this issue, our queue-based
controller can be used to generate multiple clock-gating do-
mains for even a single monolithic module by merely repli-

Such optimizations however are out of the scope of this work.
9For example, Alpha and PowerPC ISA uses the prefix 6
bits for opcode.

cating multiple entries for a module with smaller weights.
For instance, for a banked L2 cache, there can be as many
entries as the number of banks within the queue with propor-
tionally lower weights.10 Since the queue inherently throt-
tles simultaneous switching activity, it presents a much more
effective progressive gating mechanism than current solu-
tions. Thus, the queue-based controller can enable efficient
progressive gating of such modules, while maintaining the
noise-tolerant current demand threshold through mitigation
of simultaneous switching effects.

4.5 Pipeline Design Implications
The employment of any dynamic di/dt controller requires

an appropriate performance throttling mechanism to guar-
antee program correctness even if certain necessary proces-
sor components are unavailable when needed. For instance,
the instruction scheduler needs to be accurately aware of the
ALU availability before issuing the operations. The integra-
tion of a di/dt controller into a conventional architecture
will require the pipeline logic to be accurately aware of the
clock-gating state of the module as well, in order to issue
operations without affecting correctness. For this reason, it
is essential that the di/dt controller not impose impractical
design implications on the processor pipeline.

Our queue-based high-frequency di/dt controller can be
easily built into a conventional out-of-order pipeline with-
out significant additional complexity. Conventional proces-
sor modules are already capable of correctly operating under
resource contention. In the events of resource hazards such
as over-subscription of ports in register file, caches, or load-
store queue, the selection logic will appropriately delay cer-
tain operations from issuing. As indicated in Figure 3, our
queue has static entries and pre-wired logic that indicates
the availability of any given module. This makes it efficient
to integrate the additional resource availability constraint
into existing selection logic in the pipeline. Since resource
availability can be directly interpreted from the output of
the queue-based controller, an enhanced pipeline with the
di/dt controller merely needs to ensure that the resource
availability constraint overrides all conventional hazards for
correct functionality.

5. EXPERIMENTAL METHODOLOGY
Due to the fact that our design leverages spatial informa-

tion of modules and power-pins from a given chip-floorplan,
we will now briefly describe the floorplanning algorithms we
employed to create our floorplan. The specific floorplan we
used is independent of running applications, i.e. no profile-
guided optimizations were employed in the floorplanning al-

10Typically, L2 cache banks are in separate clock-gating do-
mains.

The 39th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO'06)
0-7695-2732-9/06 $20.00  © 2006



bpred btb 

lsq & ld/st

scheduler 

irf 

frf 

il1 

itlb 

dl1 

dl2 

dtlb 

ruu & inst

scheduler 

alu1 

alu2 

alu3 

alu4 

alu5 

alu6 

alu7 

alu8 

falu1 

falu2 

falu3 

falu4 

Figure 4: Floorplan. Black dots denote power pin
locations.

gorithms. The obtained floorplans along with the predefined
power-pin distribution determined the configuration of the
queue entries in the dynamic di/dt controller.

5.1 Floorplanning Methodology
Our dynamic di/dt controller is general enough to work

for any floorplan since the queue configuration is determined
by the given module and power-pin location. Thus, the ar-
chitecture of the queue-based controller is universally appli-
cable to any given floorplan to achieve reliable di/dt fluctu-
ation. To gain more insight into our floorplanning process,
we briefly describe the basics of the floorplans and provides
details on how they were obtained. Our floorplan contains
23 modules whose areas are determined by the machine con-
figuration presented in Table 2.

The goal of floorplanning is to determine the width, height,
and x/y location of the microarchitectural modules. The
objective in our case is to minimize a weighted sum of the
overall footprint area and the total weighted length of in-
terconnects for IPC optimization [7]. We use a two-step
approach: Linear Programming (LP) based floorplan con-
struction followed by Simulated Annealing (SA) [16] based
floorplan refinement. Our final floorplan along with their
power pin locations are shown in Figure 4. The black dots
“•” in alternating columns represent the power-pin locations
on the power grid.11

The basic objective of our dynamic di/dt controller is to
minimize the burden on power-pin(s) caused by adjacent
modules to a reliable level. Therefore, for any given floor-
plan and power-pin configuration, the design objective of the
di/dt controller is to place queues for effective di/dt control
in a distinct section of the floorplan. For this work, we di-
vided the floorplan into four quadrants, with each quadrant
representing a distinct power-pin domain. Note that cer-
tain power-pins can be in multiple domains. For instance,
quadrant based module separation will result in 5 power-
pins per quadrant, because the power pins on the borders
of the quadrants exist in multiple domains. The number of
distinct power-pin domains is a design choice influenced by
the degree of di/dt control that is required. A high number
of power-pin domains results in a larger number of queues
and finer grained control. On the other hand, too few power

11This is a type of power-pin configuration that certain flip-
chip IC designs use.

Parameters Values

Fetch/Decode width 8-wide
Issue/Commit width 8-wide

Combining: 16K entry Metatable
Branch predictor Bimodal: 16K entries

2-Level: 14 bit BHR, 16K entry PHT
BTB 4-way, 4096 sets

L1 I- and D-Cache 16KB 4-Way 64B line
I- and D-TLB 128 Entries

L2 Cache 256KB, 8-way, Unified, 64B line
L1/L2 Latency 1 cycle / 6 cycles

Main Memory Latency 500 cycles
LSQ Size 64 entries
RUU Size 256 entries

Functional Units 8 IntAlu (only 2 can be used for IntMult)
4 FPAlu (only 2 can be used for FPMult)

Table 2: Microarchitecture Parameters

domains will result in larger queues impacting performance,
because of the fact that the worst-case delay in transition
is higher. A queue was assigned to each quadrant for all
the modules placed in it. Since the floorplan determines the
queue configuration, different floorplans will have different
performance impact as well as distinctive di/dt characteris-
tics.

5.2 Simulation Framework
Our simulation framework is based on SimpleScalar 3.0

and Wattch [4] running SPEC2000 INT and FP benchmark
suite. To understand the access patterns of individual mod-
ules that motivated the solution of this work, we include
various profiling and instrumentation facilities in our simula-
tor. For the implementation of the dynamic di/dt controller
we extended SimpleScalar/Wattch to incorporate floorplan
aware queue configuration. We also implemented a detailed,
floorplan-dependent performance throttling model and queue
configuration for studying the performance impact of our
technique. The primary simulation parameters used in our
simulations are shown in Table 2. The power and current
consumption metrics were based on a 5GHz processor de-
veloped using a 70nm process technology [1]. Each simula-
tion was fast-forwarded by 4 billion instructions and simu-
lated for 1 billion instructions. The current signature that
was chosen to evaluate the dynamic di/dt controller was ob-
tained by profiling for the worst-case overall module activity
over the entire simulation period. To study the thermal im-
pact of our di/dt controller, we integrated Hotspot 3.0 [25]
into our simulators. Hotspot assumed the same process tech-
nology parametric as mentioned earlier. The heat-sink and
heat spreader modules were obtained from the default model
and the initial temperatures were set to 300 kelvins.

6. QUANTITATIVE ANALYSIS
In order to evaluate the effectiveness and overhead of our

dynamic di/dt controller under different scenarios, we ap-
plied our technique to the previously described floorplan.
The results presented include current profiles on a baseline
machine without a di/dt controller versus our technique and
the average current variability across all benchmarks. Since
di/dt is a reliability issue, we also quantify any potential re-
liability impact due to our technique in the form of thermals.
Finally and most importantly, we present the performance
overhead incurred due to our dynamic di/dt controller.

6.1 Current Profile of Applications
To demonstrate the effectiveness of our controller in im-

proving high-frequency di/dt effect, we now present the cur-
rent profile of the whole chip as well as for each queue clus-
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Figure 5: High ILP Benchmark Current Profile (164.gzip)
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Figure 6: Low ILP Benchmark Current Profile (181.mcf)

ter for the floorplan. Note that the effectiveness of a di/dt
controller is evaluated by observing its effect on the worst-
case current profile of a given application which represents
the maximum switching activity of modules. Due to the
staggeringly huge amount of current profiles of all bench-
mark programs, we epitomize their representative charac-
teristics using two types of benchmark programs for this
specific study as a demonstration of our analysis. Note that
the crucial information conveyed in this section is to show
the effectiveness of our proposed mechanism.

To explain the current profiles, we profiled one high-ILP
benchmark (164.gzip) and another low-ILP (181.mcf, memory-
bound) benchmark. The current profiles shown in Figure 5
and Figure 6 were obtained by profiling for the worst-case
switching activity during the course of execution. A 4-bit
decay counter was used for each module in all experiments.12

Each graph shows the current profile for both the processor
with ideal clock-gating as well as the decay counter based
clock-gating mechanism. We also provide their close-up ver-
sions (right-hand side) of the representative portions, highly
active region of the graph for better visibility.

It can be seen that both 164.gzip and 181.mcf exhibit a
repetitive current profile during the worst-case switching pe-
riod. This is especially prominent in the current profile of
mcf where there is a period of high activity for a few hundred
cycles, followed by a stable current profile for approximately
500 cycles. This is due to the long-familiar cache misses to
main memory that occur in mcf. During which period most
modules are inactive and can be clock-gated off to save dy-

12The resolution of the decay counter was based on the mo-
tivational data discussed in Section 3.

namic power. The effectiveness of the di/dt controller in im-
proving the current ramp is obvious in the zoomed versions
of the graphs. It shows that with the decay counter, our
system (shown in dashed lines) successfully prevents unnec-
essary oscillating swing in the current profile and produces a
much smoother down-ramp. For gzip in Figure 5, we observe
large current variation in the ideal-clock gating scheme due
to high activity across all modules. Since there is no signif-
icant duration of time where reasonable power savings are
possible Because that modules are never inactive for ex-
tended periods of time, the decay counters rarely clock-gate
off most modules. The current profile is extremely stable
for this reason. In short, the decay counter based technique
finds the optimal power envelope right above the ideal clock-
gating mechanism and allows clock-gating only when there
is significant likelihood that the given modules will unlikely
be accessed again soon.13

Next, we present the current profile with the integration of
the complete queue-based controller. Note that this is the
complete controller that incorporates prevention of simul-
taneous switching, decay counter based feedback for clock-
gating, preemptive ALU gating and progressive gating of L2
cache banks. Figure 7 shows the current profile for all four
queues for gzip and mcf. In all cases it can be observed that
the current profile is significantly improved by eliminating
excessive switching activity. In addition, it can be observed
that both the upward ramp and downward ramp effects due

13Note that the chip level current is with the decay counter
based technique alone, which alone does not prevent simul-
taneous switching. Large upward ramps are resolved by the
queue-based controller.
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Figure 7: Queue Controller Current Profile
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Figure 9: Thermal Impact of Dynamic di/dt Controller

to multiple modules in the same power pin domain (i.e. us-
ing the same module queue) are spread out across multiple
cycles. This is more prominent in the upward ramp of the
current with the di/dt controller between cycle 20 and cycle
50 for Queue 1 in mcf. For Queue 3 in mcf we observe a dif-
ferent trend whereby the di/dt controller ramps up current
repeatedly compared to the baseline, which is stable. This
is due to the preemptive ALU gating effect that ramps up
additional ALUs which are otherwise unused in the baseline
clock-gating scheme due to low ILP. We observe a repetitive
pattern where ALUs are gated preemptively only to later de-
cay after approximately 20-25 clock cycles. However, these
ramps are still spread out over many cycles and do not vi-
olate the current demand threshold. In the case of Queue
4, although there is a significant current decay towards the
end, it is to be noted that the simultaneous gating is pre-
vented even in this case (the slope of the drop is less steep,
which is not obvious in the graph due to the scale). For
gzip, where there is high ILP/switching activity, we notice
that the queue-based controller ramps up to the required
current levels and do not saturate the decay counters for
long enough. For this reason, the queue current profile is
almost always stable, except for the few cases where the de-
cay counters decay long enough to enable clock-gating. It
is important to note that this does not mean that there is
no opportunity for power-savings in such a design without
di/dt control. The presented phase of gzip is the highest
ILP portion in our simulation and it is simply not worth
it to clock-gate elements during this phase because of the
di/dt as well as the performance penalty.

Since presenting detailed current profile is infeasible for
all benchmarks, we now present the current variability per
cycle for the complete duration of the benchmark execution.
Unlike the worst case profile that was presented earlier, this
metric presents the average variability of current per cycle
for both the baseline and the processor with our dynamic
di/dt controller. Figure 8 shows the comparison for various
SPEC2000 INT and FP benchmark programs. The cur-
rent variability is calculated by measuring inter-cycle cur-
rent fluctuations (in absolute value of the swing) over the
entire simulation period, as a fraction of the total number
of simulation cycles. It can be observed that the baseline ar-
chitecture shows a higher degree of current variability across

the board. The data show that 186.crafty exhibits the high-
est variability whereas 171.swim has the lowest variability.
In any case, regardless of the native current variability, our
dynamic di/dt controlling mechanism can significantly mit-
igate the dynamic oscillating behavior of current profile of
running applications. The di/dt controller pushes the cur-
rent variability below 0.5 amps/cycle for all the benchmark
programs we studied. Note that, a traditional power-virus
will no longer be able to stress the power delivery network
in the presence of our di/dt controller.

6.2 Thermal Impact
In typical high-performance processor design, high-frequency

inductive noise issue is handled through the worst-case de-
sign method (e.g. using on-die decaps). In contrast, the
goal of our technique is to guarantee this reliability by en-
abling an average-case design, while meeting the stringent
reliability requirements via dynamic control mechanisms.
Therefore, it is critical that our di/dt controller must not
induce other forms of reliability vulnerability. Since our
technique provides fine-grained di/dt control at the expense
of increased power consumption, it is necessary to quantify
any potential adverse thermal effect due to our technique.
Thermal issues are particularly critical in newer processors
for their higher power density as well as the greater difficulty
in dissipating heat across multiple die layers.

We used Hotspot 3.0 [25] to evaluate the thermal impact
of our high-frequency di/dt controller on the given floor-
plan. We compared our architecture against the baseline
designs that uses ideal-clock gating, which represents the
scenario of the least power and current consumption. Fig-
ure 9 presents the thermal analysis for all 23 modules in our
processor model for SPEC2000 benchmark suite.

Overall, we observe nominal thermal impact across all
modules. We observe an average temperature increase of
3.15 kelvins over the baseline counterparts for the floorplan.
The highest temperature rise (over 5 kelvins) is observed in
the L1 Data Cache, Branch Predictor, BTB and LSQ mod-
ules. Majority of the remaining modules exhibit an average
temperature increase below 3 kelvins. Note that it is possible
to further mitigate these worst-case thermal effects by using
a thermal-aware floorplanner described in [11, 12], however
this is outside the scope of this paper. (Our floorplans were
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Figure 10: Performance Degradation of dynamic di/dt controller

generated with a goal of minimum total wirelength and die
area.) Our thermal analysis results indicate that the integra-
tion of the di/dt controller does not pose any large adverse
thermal effect on our overall design.

6.3 Performance Impact
We now present the performance analysis of our di/dt con-

trolling mechanism. Figure 10 shows the IPC degradation
for SPEC2000 INT and FP benchmark suite with the di/dt
controller over the baseline machines without any di/dt con-
trol. The di/dt-w/Pre configuration shows the queue con-
troller with preemptive ALU gating turned on to differen-
tiate the type of applications that can benefit from pre-
decoding ALU instructions. Progressive gating in the L2
cache was applied to all cases.

In general, we observe minimal performance degradation
for most of the benchmark. Note that the performance over-
head is also dependent on the floorplan because it affects the
queue configuration. A more optimized floorplan will result
in a better balanced queue configuration. However, if the
floorplan results in a configuration where one queue carries a
significantly larger number of modules than the others, IPC
will be adversely affected due to the fact that the worst-
case module activation time is longer. We observe an an
average performance overhead of 4.0% for the floorplan we
simulated. The worst performance degradation is shown in
252.eon, at 9.2% for the controller without preemptive ALU
gating. One explanation for the increased performance im-
pact is due to the fact that the ray-tracing algorithm in eon
is ALU intensive. Since modules in the floorplan are asym-
metric, the floorplan results in locally clustered ALUs that
are not symmetrically distributed in all queues. Highly ALU
intensive applications will suffer a performance loss in such
cases, since a quick ramp-up of modules will take longer
if most of the ALUs are clustered in the same queues. A
strong indicator of this fact is evident from the higher sensi-
tivity eon shows to preemptive ALU gating, compared with
the other benchmarks. Most of the other benchmarks only
exhibit little performance loss that is below 5%.

We also observe that preemptive gating of ALUs improves
the performance for certain benchmark programs such as
252.eon, 254.gap, 253.perl and 168.wupwise. This is due in
part to the fact that the 4-bit decay counter saturates con-

sistently for ALUs (resulting in turning off the module) right
before ALU instructions are issued. It is in these scenarios,
that the preemptive gating provides simultaneous perfor-
mance and di/dt benefits. The decay counters predict future
likelihood of module access solely based on the past activity
profile. In contrast, preemptive gating can ”look-ahead” and
override unnecessary gating that the decay counters them-
selves cannot prevent, thereby inhibiting unnecessary per-
formance loss. The minimal IPC overhead illustrates the
practical potential of employing a low-overhead technique
to control high-frequency di/dt.

7. CONCLUSION
The exponential increase in current consumption by newer

generations of processors coupled with aggressive power sav-
ing techniques have exacerbated the high-frequency di/dt
issue that forces designers to elongate the design time in the
analysis and implementation of the power delivery network.
As long as the current trends in process and performance
scaling continue, ad-hoc solutions to mitigate di/dt effects
using an adequate decoupling capacitance will not suffice
eventually. Decaps not only occupy considerable chip area
but also but also contribute the already problematic leakage
power issue. Current microarchitecture based solutions are
inadequate for deep submicron designs where high-frequency
di/dt is intricately intertwined with the chip floorplan as well
as the power-pin distribution. In addition, the high mod-
ule density facilitated by deep submicron technologies will
stress the power delivery network even further, worsening
reliability due to di/dt.

To address the high-frequency di/dt issues and maintain
high reliability while alleviating the design effort of creat-
ing a low impedance power delivery network, we propose a
dynamic queue-based di/dt controller for reliable processor
design. By using decay counters to limit clock-gating activ-
ity based on module access patterns and by using this feed-
back in a queue-based di/dt controller, we show how current
demands can be guaranteed for modules in the same power-
pin domain. In addition, we also present a preemptive ALU
gating mechanism as a performance enhancement technique
and integrate an enhanced progressive gating technique for
large modules (e.g. L2 cache) into our queue-based con-
trol mechanism, without violating current demand thresh-
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olds due to simultaneous switching. In addition, we also
explain how the di/dt architecture can be integrated into a
conventional out-of-order pipeline in a complexity-effective
manner. The experimental results show that our di/dt con-
troller can improve the current variability of applications by
an average of 7x with a mere 4.0% IPC degradation for the
simulated 2D floorplan.

The high-frequency di/dt noise will keep deteriorating due
to the continuing CMOS scaling that drives down the op-
erating voltage while simultaneously increasing peak power
consumption. In overall, our design provides a realistic mi-
croarchitectural approach that can be used to alleviate the
effort of design afterthoughts and reduce the use of extensive
decoupling capacitors that consume larger chip area. Our
technique also incurs little performance overhead and does
not have any adverse thermal impact.
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