
Authentication Control Point and Its Implications For
Secure Processor Design

Weidong Shi Hsien-Hsin S. Lee
Motorola Application Research Lab School of Electrical and Computer Engineering

Motorola, Inc. Georgia Institute of Technology
Schaumburg, IL 60196 Atlanta, GA 30332
larry.shi@motorola.com leehs@gatech.edu

ABSTRACT
Secure processor architecture enables tamper-proof protec-
tion on software that addresses many difficult security prob-
lems such as reverse-engineering prevention, trusted com-
puting, secure mobile agents by providing a secure comput-
ing environment that is resistant to both physical tamper-
ing and software exploits. Two essential features offered
by a secure processor are software encryption for protect-
ing software privacy and integrity verification for prevent-
ing tampering of the protected software. Despite a number
of secure processor designs have been proposed, the delicate
relationship between privacy and integrity protection in the
context of modern out-of-order processor design is not well
understood. This paper aims to remedy this research de-
ficiency by evaluating different designs that integrate soft-
ware decryption and integrity verification into an out-of-
order pipeline. Our paper provides an in-depth analysis of
the security and performance trade-offs, implications of sev-
eral designs in the context of memory fetch side-channel ex-
ploits. Among the evaluated spectrum of design alternatives
are (1) authentication-then-issue, (2) authentication-then-
commit, (3) authentication-then-write, (4) authentication-
then-fetch, and (5) authentication-then-commit + address
obfuscation. Performance of various designs was evaluated
using a cycle based processor model and SPEC 2000 bench-
mark suite.

1. INTRODUCTION
According to the US Department of Defense, 80% mis-

sion critical information are stored in various memory de-
vices of high tech military or communication systems. Those
systems, when falling into the hands of hostile parties, the
critical information stored in their memory devices may be
eavesdropped or disclosed. Secure processors such as those
described in [5, 12, 13, 21, 22, 27, 28, 25] come to the
rescue because they provide tamper-resistant protection for
information stored in regular memory devices and support a
tamper-proof computing environment. In addition, a general-
purpose secure processor can also create a strong trusted
computing environment, enabling digital rights protection.

Secure processors offer two main cryptographic services
for protecting both the static and dynamic image of valu-
able software or data stored in regular memory devices: en-
cryption and authentication. Encryption protects privacy
of information while authentication protects information in-
tegrity and detects tampering for the protected data. At the
first glimpse, the task of integrating a cryptographic engine
into an out-of-order high performance processor for informa-
tion security may seem deceptively straightforward. Never-
theless, in-depth investigation reveals that many design and
security issues have not been fully understood based on ex-

isting literature. Particularly, the role of integrity protection
and its relationship with privacy protection in the context
of secure processor design was not sufficiently addressed.

Due to the complexity and performance consideration, it
is common to disassociate decryption and authentication op-
erations in a secure processor architecture, e.g. issuing de-
crypted instructions before the completion of verifying their
authenticity. Justification of such disassociation becomes
even stronger because the latency of authenticating fetched
data is often significantly longer than the latency of decrypt-
ing them when a performance optimized decryption design is
applied for privacy protection. This type of disassociation
has been proposed or suggested in many published secure
processor designs [12, 18, 23] with little or no investigation
on the security implications of decoupling decryption and
authentication.

In this paper, we explore and scrutinize the design space
of decryption and authentication disassociation with the
objective to find a solution that is secure, fast, and sim-
ple to implement. We investigated and evaluated five de-
signs, (1) authen-then-issue, (2) authen-then-commit, (3) au-
thentication -then-write, (4) authen-then-fetch, and (5) ad-
dress obfuscation plus authen-then-commit. Under authen-
then-issue, a secure processor does not issue instructions or
operands whose integrity has not been fully verified. Authen-
then-issue is a conservative solution that allows almost no
decryption and authentication disassociation. Although it is
secure, the downside is that it may incur significant perfor-
mance overhead. Under authen-then-commit, a secure pro-
cessor speculatively issues unverified instructions and data
to the pipeline and commits finished instructions only after
both the instruction itself and its operands are authenti-
cated. Another design is authen-then-write. Under authen-
then-write, all permanent changes to memory state have to
be made based on the results derived from the authenticated
instructions and operands. In contrast to authen-then-write,
under Authen-then-fetch, a secure processor allows bus cy-
cles to be granted to a memory fetch only if all the instruc-
tions and data that the memory fetch depends on due to
data or control dependency were authenticated. In addi-
tion, we also examine address obfuscation and its relation
to the aforementioned authentication designs.

The contributions of this paper are:

• Identify and discuss the security risks and implications
of decoupling decryption and authentication in the con-
text of using memory fetch as a side-channel for violating
content confidentiality and privacy;

• Propose a range of design choices that allow different
degree of decryption and authentication disassociation;

• Evaluate the security trade-off, design complexity and
performance of the proposed range of designs that de-

The 39th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO'06)
0-7695-2732-9/06 $20.00 © 2006

couple decryption and authentication.

The rest of the paper is organized as follows. Section 2
discusses secure processor architectures. Section 3 describes
several exploits based on the memory fetch side-channel.
In Section 4, we present a range of design choices and ad-
dress each’s pros and cons. It also describes architecture
details of how to integrate authentication mechanism into
a processor pipeline. The performance of the proposed de-
signs are evaluated in Section 5, followed by related work
in Section 6. Finally, Section 7 concludes this work.

2. SECURE COMPUTING MODEL
A secure processor architecture ensures that applications

will be executed in a tamper-proof manner. To achieve these
goals, two techniques are commonly employed. The first one
is data encryption. Encryption, for protecting confidential-
ity and privacy, aims to eliminate the possibilities of disclo-
sure of sensitive data. As the data or software stored in the
off-chip memory are encrypted, adversaries should be unable
to reveal them even if the contents of the external memory
could be eavesdropped via exposed interfaces. Secure pro-
cessor can choose any standard encryption mode for mem-
ory encryption. Since memory decryption has a significant
overhead, encryption modes that allow parallel decryption
or pre-computation are preferred over the encryption modes
that demand serial decryption operations. Recently, a vari-
ety of counter mode based techniques have been applied to
secure processor designs [19, 23, 27].

The second technique is integrity verification or also called
authentication. Integrity verification, achieved by employ-
ing Message Authentication Code (MAC) [15], guarantees
the detection of any unauthorized modification of the pro-
gram or data. The MACs are stored along with each data
block such as a cache line. On-die caches are considered
part of the trusted environment, hence, the instructions and
data can be kept in plaintext when residing inside the on-
chip caches during execution. There are several approaches
and standards for generating a MAC, e.g. HMAC [10], CBC-
MAC [2], etc. It is up to the discretion of the secure pro-
cessor’s designer to choose the one that is most efficient and
secure.

In general, in a secure processor that uses optimized de-
cryption mode for decrypting fetched instructions or data,
the authentication process may take longer time than the
decryption because in theory a secure processor can only
start verification after data is fetched from memory. In con-
trast, under some encryption modes such as counter mode,
decryption can start in many cases when a memory fetch
address is generated [19, 23, 27]. This creates a latency
gap between the time when the instructions and data are
decrypted and the time when they are authenticated or ver-
ified. Note that some authentication schemes such as CBC-
MAC have both long decryption latency and authentica-
tion latency. Though those schemes have a narrower gap
between the decryption latency and the authentication la-
tency, they are less favorable because the ability to decrypt
critical words fetched from the memory within a minimal
latency plays a critical role in the performance of a secure
processor. Table 1 shows the latency gap between decryp-
tion and authentication under two different memory protec-
tion schemes, [Counter mode + HMAC] and [CBC + CBC
MAC], where N is the number of 128-bit data chunks in a
cache line and n (>=0) is the index of a data chunk. De-
cryption latency denotes the latency of the decryption cipher
used such as the AES.

3. MEMORY FETCH AS INFORMATION
DISCLOSING CHANNEL

A typical secure processor may encrypt information stored
in an external memory device. But, memory fetch address
shown on the front side interface between a secure processor
and the memory device is usually not encrypted. Encrypting
fetch address is neither practicable nor necessary because as
long as the system still uses regular DRAM modules, an
adversary can always eavesdrop at the final interface where
fetch addresses themselves are not encrypted. Since a secure
processor discloses fetch address in plaintext, an adversary
may comprise information privacy by tricking the system to
send sensitive information as fetch addresses. In fact, there
are many possible hacking scenarios that allow an adversary
to achieve such a feat.

3.1 Threat Model
Previous research on memory fetch security adopts a nat-

ural execution threat model where memory fetch trace (both
data and code fetch) created by natural execution of a pro-
gram may comprise a side-channel for leaking sensitive in-
formation due to possible partial reconstruction of program
control flow [29, 24]. However, there are some more serious
security risks if the disclosed fetch addresses are induced by
tampered program or data.

For attaining high performance, a modern out-of-order
processor often speculatively issues and executes instruc-
tions, speculatively fetches instructions or data. These spec-
ulative execution techniques when combined with secure pro-
cessor design can lead to overly aggressive disassociation of
the decryption and the authentication, which may induce
potential new security risks. An adversary may deliber-
ately alter software or data in some specific way and the
altered software or data, if executed or used speculatively,
may disclose sensitive information via the memory fetch ad-
dresses. Shi et al. in [20] documents some exploit scenarios
that could occur when authentication is not performed in a
timely fashion. In this paper, we further demonstrate the
necessity of using decrypted yet authenticated information
with scrupulous caution. To be self-contained, we briefly
describe some vulnerabilities associated with loose coupling
between the decryption and the authentication in the fol-
lowing subsections. Additional details can be found in [20].

Most standard encryption modes including CBC mode,
counter mode and many others are malleable. A malleable
encryption mode is a mode where flipping certain bits in a
ciphertext will induce certain bits of the decrypted plain-
text to flip as well. In the counter mode encryption, flip-
ping a particular ciphertext bit will make the same bit of
the corresponding decrypted plaintext to flip. In the CBC
mode, flipping a ciphertext bit will induce plaintext bit flip
at certain offset depending on the encryption unit size of
the underlying cipher. Through bit flipping, an adversary
may transform a piece of protected program or data in such
a way that the altered code or data may either directly or
indirectly disclose sensitive information as fetch addresses.
It is a standard practice to provide non-malleability to a
malleable encryption mode by adding authentication [3].
However, disassociation or decoupling of the decryption and
the authentication in an out-of-order processor may leave
large enough security holes for the hackers. The authenti-
cation may lag behind the decryption with a latency rang-
ing from tens of cycles to even hundreds. This provides
a security-blank execution window where tens of unverified
instructions or more may be speculatively executed without
their integrity completely verified. In general, those spec-
ulatively executed instructions are not allowed to modify
processor and memory state before they reach the commit
stage. Unfortunately, memory fetches are not architecture
state change operations. A standard processor will grant
bus cycles to speculative memory fetches before the commit
stage. This makes memory fetch a side-channel for leaking

The 39th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO'06)
0-7695-2732-9/06 $20.00 © 2006

Decryption Latency Authentication Latency

Counter Mode+HMAC MAX(memory fetch latency, decryption latency) memory fetch latency + HMAC hash latency
CBC + CBC MAC memory fetch latency+decryption latency*(n+1) memory fetch latency+decryption latency*N

Table 1: Latency Gap Between Decryption and Integrity Verification (approximate estimate)

����� �

�������
	
� �

���� �

������ ������� ��

����� �

�������
	
� �

���� �

������� ��

����� ��� �

��� � ���

����� !#" "

$�%���� &'�� �(*) �����+��,+-�.0/ ���#� !#" "�1 $2%���� &�'�� ��(3) �#�#� !#" " ,

4 57698�:7;
< =7> 4�? @ > 8�8 > A�B�C

D�E+E�F�G �IH+� F�J � ��� G ��K2�
� J H
� L�M
� N � J

Figure 1: Point Conversion Exploit

out sensitive information.

3.2 Side-Channel Exploits via Fetch
Now we briefly describe some of the exploits of memory

fetch side-channel for breaking data confidentiality protec-
tion provided by a secure processor. It is worth pointing out
that the list given below is by no means comprehensive.

3.2.1 Pointer Conversion
The basic idea of pointer conversion exploit is to convert

encrypted sensitive data into pointers such that its value
will be automatically disclosed when the pointers are de-
referenced. There may exist many variations of this exploit.
Here we give only one example, called “linked list attack” to
illustrate how to recover encrypted data by only altering pro-
gram data. Linked list is commonly used in programming.
One property of linked list is that the last node is always
terminated with a NULL. Assume that an adversary knows
where the linked list ends (the last node). An adversary may
use input manipulation or control flow reconstruction based
on fetch trace to either force a linked list to end at some
known location or discover when and where a linked list ter-
minates. Further assume that there is a secret data value x
stored in memory location l, which the adversary wants to
discover. The adversary can alter the NULL pointer into l -
node size + 4 so that the secret data becomes a node pointer
as shown in Figure 1. To convert a counter-mode encrypted
NULL pointer into an encrypted pointer value pointing to
l - node size + 4 requires only one simple XOR operation
of the encrypted NULL pointer with the address as shown
in Figure 1. When the linked list is traversed, the program
will try to use the secret data as a node pointer (i.e. an ad-
dress) and issue a corresponding memory load that reveals
its value as a (bogus) fetch address. There are many ways
for an adversary to recover memory locations of sensitive
data. For example, an adversary may run a local copy of
the same system and discover the likely position where sen-
sitive data may be stored [11]. An adversary may also use
control flow leaked from the memory fetch to find out likely
memory locations of sensitive data.

3.2.2 Binary Search
If there is some comparison that compares some secret

data with some constant stored in the memory and the con-
stant value is known by an adversary. The adversary may
launch so called binary search exploit. The adversary may
alter the constant value in the power-of-2 basis and eaves-
drop how the modification will affect the comparison result
(control flow). If the secret data is 32-bit long, according to
the principle of binary search, at most log2(2

32) = 32 tri-
als will be enough to recover the sensitive data. Figure 2

O�P*Q�R PS�TVU�W X
Y Z�[#\ Z]

^ _ Y#Z�[#\ Z] `7[a7b Y] c7b]�] d#Z�b
e e eZ7f Y#Z
e e e...

g P+Oh+i

O�P+QR P+S
TVU*j k
g P+Oh+i

O�P*Q�R PS
T�U
l
g POh+i

...
... ...

[a�b#Y] c7b]

m�no#p q nr s r n7t
u�v#w7u7x7yq nz

p v7{0z7u�q
| }�~ p�s r ~ z�z ~ o����

Figure 2: A Binary Search Exploit

illustrates such an exploit.
Binary search exploit requires tampering of constant or

constant string values or any other value that is used for
comparison with a secret. To launch bit flipping attack on
constant or strings, an adversary must first recover their
plaintext values. This will not be too difficult because lots
of strings or constants are either outputs that can be eaves-
dropped or input supplied by the users. For example, con-
stant zero is frequently used for testing and comparison. If a
program tests a secret value against value zero, an adversary
could launch aforementioned binary search by tampering the
zero value that the secret is compared with.

3.2.3 Disclosing Kernel
Disclosing kernel is a short piece of malicious code that

may disclose possibly arbitrary data to a side-channel. The
simplest disclosing kernel comprising only two RISC instruc-
tions is one that loads some arbitrary data into a secure
processor, then uses the data as a fetch address. An ad-
versary may insert a disclosing kernel into either the code
space or data space by tampering either code or data. Then
by altering one more instruction or function return address,
the adversary may hijack program control to the disclosing
kernel. A slightly sophisticated version of disclosing kernel
such as the one that has a loop can potentially disclose the
entire application’s memory space to a side-channel.

Inserting a disclosing kernel into an application’s code
space is in fact much easier than people thought. An ad-
versary needs to first guess or recover a short sequence of
encrypted instructions’ plaintext whose size is large enough
to hold the disclosing kernel. Then by applying two XOR
operations — disclosing kernel XOR encrypted instruction
sequences XOR recovered/guessed instruction plaintext, the
adversary will be able to embed the disclosing kernel. In-
jecting or embedding disclosing kernel requires recovery or
guess of a short piece of code or data, which is not hard at
all because RISC instructions even in encrypted format are
highly predictable. One source of predictability comes from
invariant code sequence. Compiler always does code gener-
ation in a predictable way. The binary codes produced by a
compiler comprise many short code sequences that are either
invariant or predictable. Such invariant or predictable short
code sequence can be found in a program’s entry point, func-
tion epilogue or prologue, compiled loop structure, etc. An
adversary can replace one of those predictable or invariant
code sequences with a disclosing kernel.

Inserting a disclosing kernel into an application’s data
space could also be very simple because of the existence
of frequent data values [26]. Research shows that a large
percentage of data values are zeros. An adversary may have
a very high success rate of inserting a disclosing kernel into
a counter mode encrypted memory space by simply XORing

The 39th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO'06)
0-7695-2732-9/06 $20.00 © 2006

�*�+� ��������*� �+�+� ���0���+�*� �+�� �������*�*�

���+�*�0���+�+�2��� �����2�+�+�V��� � ����
��� ���

���+��� �+�

Figure 3: Shift Window

the disclosing kernel with ciphertext whose plaintext is most
likely to be zeros. If a disclosing kernel is inserted into data
space, the adversary needs to hijack the program control
flow into the disclosing kernel.

Finally, a disclosing kernel can alternatively output sen-
sitive data to a standard output channel such as I/O ports
instead of using it as a fetch address. The difference be-
tween those two types of exploits is that output to an out-
put channel is generally considered as operations that have
to wait until the completion of integrity verification. This
means that authen-then-commit could be sufficient to pre-
vent a disclosing kernel from outputting sensitive data to an
I/O channel.

3.3 Impact of Virtual Memory Translation
The aforementioned exploits represent an ideal situation

where sensitive data always show up directly as memory
fetch addresses. Most high performance processors support
virtual memory. A piece of sensitive data when used as
fetch address may map into invalid address space and trig-
ger memory translation exception. It is noteworthy that
many embedded processors do not use virtual memory for
a variety of reasons such as meeting real-time constraints.
Those exploits can thus be applied straightforwardly. On
the other hand, the aforementioned exploits such as pointer
conversion and disclosing kernel are still effective when a
secure processor uses virtual memory address translation.
First, an adversary may try to disable virtual address trans-
lation if possible. Second, an adversary may try to tamper
the address translation table to fool the system and avoid
translation fault. Third, many processors throw exception
and log the faulty address. For example, the MS Windows
throws a window that displays the invalid address to the
user. If this is the case, an adversary can recover the sensi-
tive data easily by reading the log or the displayed address.
If all the above do not work, an adversary can use the fol-
lowing two techniques.

3.3.1 Shift window and page address mask
For many processors, the page size is at least 4KB. This

means that the lower 12 bits of a 32-bit address will be unaf-
fected by address translation. An adversary can use a shift
window to recover 12 bits at a time. Figure 3 illustrates this
technique. For the higher-order bits, the adversary can mask
them out to make sure that the result can always be trans-
lated. Given that a piece of sensitive data is first loaded
into a register, the adversary can mask out or transform
the page address before the data is used as fetch address.
For instance, assume that there is a 32-bit secret, 0xdead-
beef, stored at byte location p, and a 24-bit data, 0x000102,
stored at byte location p-3. Further assume that the data
are encrypted using counter mode and the corresponding
ciphertext for the 32-bit secret is 0xa07613ec and the corre-
sponding ciphertext for the 24-bit data is 0xbc6911. If an
adversary can modify encrypted instructions by tampering
invariant code sequences such as program or function pro-
logue or epilogue, they can use the disclosing kernel in Fig-
ure 4 to disclose the 32-bits secret through 4 load instruc-
tions. Note that in an out-of-order processor using authen-

/* given base virtual page address 0x01ebc000 is valid */
R0 ← LOAD[p] /* load secret into R0 */
Loop:
R1 ← R0 & 0x000000ff
R1 ← R1 | 0x01ebc000
LOAD [R1] /* disclose 8 bits */
R0 ← R0 >> 8 /* right shift 8 bits */
JMP Loop

Figure 4: Example of Disclosing Kernel

then-commit, the example disclosing kernel could be specu-
latively executed and all the loads may be carried out even
though the disclosing kernel itself fails integrity verification.

3.3.2 Brute force or random page address tampering
If all the previously described techniques fail, an adversary

can resort to brute-force or random page address tampering.
For example, in the pointer conversion exploit, an adversary
may either randomly or systematically flip ciphertext bits
that map to a page address. Assume that the page address
size is 20 bits and the application has 100MB memory space
mapped with virtual address translation. Using brute force
or random page address tampering, the adversary on aver-
age has a chance of one out of about 40 (220/(100MB/4KB))
trials to have some random data correctly translated. Con-
sidering the disproportional distribution of frequent or pre-
dictable values, an adversary can speed up the process by
exploiting frequent or predictable values.

4. AUTHENTICATION ARCHITECTURE
It is not the objective of this paper to discuss how to

design or choose a MAC standard for integrity protection.
This issue has been addressed in other recent works [22, 23].
Rather, the main focus of this paper is to investigate dif-
ferent schemes of integrating the integrity verification logic
into an out-of-order processor pipeline. In this section, we
will provide detailed information on how to tie the authen-
tication results with instruction execution and discuss the
security and performance implications for each method in
the context of memory fetch side-channel exploits. We treat
the specific MAC verification logic as a black box which re-
turns a binary verification result for each piece of fetched
data.

4.1 Authentication Queue
Figure 5 illustrates a block diagram of an out-of-order

processor pipeline augmented with integrity verification and
cryptographic functionality. For every block of code or data
fetched from the memory, the secure processor decrypts the
information and verifies its integrity. We assume that au-
thentication in general is falling behind decryption. For each
fetched block of data or code, a secure processor sends a
request to a component, called authentication queue. An
integrity verification unit reads request from the queue, au-
thenticates data in the requesting order and returns the au-
thentication result. Since each request is associated with a
queue entry, the entry index provides a way for identifying
authentication requests. There is a register called LastRe-
quest Register that always points to the index of the most
recent authentication request.

4.2 Authentication Architecture
In this subsection, we will explore four design alternatives

that integrate authentication results with the instruction ex-
ecution.

4.2.1 Authen-then-issue
Authen-then-issue is a conservative approach. According

to authen-then-issue, the fetched instructions can be issued

The 39th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO'06)
0-7695-2732-9/06 $20.00 © 2006

����� �+�*�� � ����� � �
�
 ��¡�� �+�

¢¤£ � � �+¥ ¦�*��§
¨���© © �+£

ª �+«7� £ ���� � �
�3¬*�+� ���

��
��
®��¯¬2� ° �

��*�*£ ±+�
£�¨���© © �+£

ª «�«��
² ��
�+�

��«��*£ ³��+� � �+�
´ � �� � �+�+«

¬�µ

ª «�«��+�
² ��*��

��+«��*£ ³�� � �*�
´ � �� � �
��«

¶ ² ´�²

±�¶*·�¸

¶�¹
¸

º £ »¼� �
 ��+¡
� �+�

º �+®3®¯� �

� ¶*·�¸
����� �+�*�� � ����� � �
�

² ��
��

¬
£ �
��� ´ � ±*�
º �+�� £ �
°

¬
��� ���
² �+�
��

½�¾7¿ À7Á�Â�¿ Ã Ä#Å#¿ Ã ÆÂ�Ç ¿ À7Á�Â7Ç Ä7Æ�È9È0Ã ¿

½�¾�¿ À7Á�Â�¿ Ã Ä#Å#¿ Ã ÆÂ�Ç ¿ À�Á�Â�Ç É Á#¿ Ä7À

½�¾#¿ À7Á�Â#¿ Ã Ä#Å#¿ Ã Æ+Â7Ç ¿ À7Á�Â7Ç Ê�Ë Ã ¿ Á

½�¾�¿ À�Á�Â�¿ Ã Ä#Å�¿ Ã Æ�Â�Ç ¿ À7Á�Â�Ç Ã Ì�Ì¾�Á

¶�¹*¸¯®3� «�«

Figure 5: Secure Processor Block Diagram

and the fetched data can be used as operands only after
integrity verification is completed. This approach is simple
to implement and can prevent all the runtime side-channel
exploits as described earlier. However, it gains security at a
significant cost on performance because in this case integrity
verification is on the critical path.

4.2.2 Authen-then-write
Authen-then-write is the most optimistic (or the least re-

stricted) of the four. In which, integrity of memory state is
guaranteed if for every piece of data written to the memory,
the secure processor is certain that the data is generated
based on the authenticated code and data. Detailed imple-
mentation of this approach may vary.

In one implementation, when a STORE instruction is
ready for issuing (all its operands are fetched), the secure
processor will read the LastRequest Register and associate
the index value as a tag of the STORE instruction, called
”authentication tag”. The store value that should be written
back to memory will remain in the store queue until it re-
ceives a broadcast result that indicates that the authentica-
tion request referenced by the store’s authentication tag has
been successfully verified. This ensures that the secure pro-
cessor only updates cache and memory with values produced
by the authenticated code and data. Note that authentica-
tion engine sends verification result in the natural request
order. Upon the receipt of a matching authentication tag,
the secure processor can be certain that all the codes and
data before the waiting store are also authenticated.

Under authen-then-write, the secure processor guarantees
that at any moment, the information stored in the memory
can be trusted in the sense that they are produced based
on authenticated code and data. However, this approach
does not prevent any of the aforementioned active exploits
of memory fetch side-channels. It does not guarantee privacy
of software and data from being disclosed through the side-
channel exploits.

4.2.3 Authen-then-commit

Í Î Ï Ð Ñ Ò Ó Î Í

Ô�Õ Ö0×*Ø Õ Ù�×

Ú Û Û Ü Ý�Þ�Ý ß à á#â ã Ý Þ
ä å Û ã æ ç#â Ý�à è�å Þ

é ê Ó ë Î ì Ó í Ï é Ó Î Í Î î Ó Î Ð ì é ï ð Î ð�ñ Ð Ñ�ò Î Ó Ï ë

Ú Û Û Ü Ý�Þ�Ý ß à á#â ã Ý Þ
ä å Û ã æ ç#â Ý�à è�å Þ

Í Î Ï Ð Ñ Ò Ó Î Í é ê Ó ë Î ì Ó í Ï é Ó Î Í
Î î Ó Î Ð ì é ïð Î ðñ Ð Ñò Î Ó Ï ë

Í Î Ï Ð Ñ Ò Ó Î Í é ê Ó ë Î ì Ó í Ï é Ó Î Í
Î î Ó Î Ð ì é ïð Î ðñ Ð Ñò Î Ó Ï ë

Ú Û Û#Ü Ý�Þ�Ý#ß à á#â ã Ý Þ
ä å Û ã æ ç�â Ý�à è�å Þ

ó è ã Ý�å#ß á�ç ô7å Ý õVô Ý ã ß ö�è Þ#Þ�à Ý#Û Û
ô à ç�÷Vã ö Ý�â#à Ý ø#ä ç�Ü Û2ô Ý ã ß ö

ó è ã Ý7å ß á�ç ô�å#Ý õ3ô Ý ã ß ö2è Þ�Þ7à Ý Û Û
ô à ç�÷3ã ö Ý�â#à Ý ø ä ç�Ü Û�ô Ý ã ß ö

Î î Ó Î Ð ì é ï ð Î ð�ñ Ð Ñ�ò Î Ó Ï ë Í Î Ï Ð Ñ Ò Ó Î Í é ê Ó ë Î ì Ó í Ï é Ó Î Í

Ú Û Û Ü Ý�Þ�Ý ß à á â ã Ý Þ
ä å Û ã æ ç#â#Ý�à è�å Þ

Ú Û Û Ü#Ý�å#Ý õVô Ý ã ß ö

Ú Û Û Ü Ý�å Ý õ3ô Ý ã ß ö

ù
ä ô ô Ý�à Ý�å ß Ý

è#Ü ã ö Ý�å ú ã ö Ý�å ú ô Ý ã ß ö�Û ã è�û û

ü�ý�þ ÿ�×+Ù�þ Õ ����þ Õ �Ù�� þ ÿ�×Ù�� Õ ����ý�×

ü�ý�þ ÿ�×+Ù�þ Õ ����þ Õ �+Ù�� þ ÿ�×+Ù�� � ×�þ ��ÿ

Figure 6: Timeline of Authen-then-fetch vs.
Authen-then-issue

In modern out-of-order processors, instructions wait in
a the Re-Order Buffer for handling precise exception and
mis-speculation before they are committed. According to
authen-then-commit, a secure processor will not commit an
instruction until both the instruction itself and its operands
are authenticated. In some aspects, authen-then-commit is
similar to authen-then-write. For example, Authen-then-
commit also guarantees that the secure processor only up-
dates memory states based on authenticated code and data.
However, there are several fundamental differences between
these two approaches. First, authen-then-write deals with
only memory state, sometimes only the external memory
state while authen-then-commit handles both the memory
state and the processor state. Second, Authen-then-commit
provides precise exception for authentication exceptions while
authen-then-write does not. Though seemingly a very sound
design, authen-then-commit does not prevent any of the afore-
mentioned memory fetch side-channel exploits either be-
cause it allows unverified memory fetches to be speculatively
issued.

4.2.4 Authen-then-fetch
According to authen-then-fetch, a secure processor must

not grant bus cycles to an external memory fetch until cer-
tain authentication conditions are met. Those include data
fetches issued by fetch instructions and instruction fetches
triggered by program execution. For data fetch, authen-
then-fetch requires three conditions to be satisfied before the
data fetch can be issued to the bus: 1) the fetch instruction
itself be authenticated; 2) the fetch address be authenti-
cated; 3) all the data or previously executed instructions
for which the data fetch has data or control dependency
be authenticated. Those include data and instructions for
computing the fetch address. For instruction fetch triggered
by a control transfer instruction, authen-then-fetch requires
that, 1) the control transfer instruction be authenticated;
2) all the data or previously executed instructions that the
control transfer has data or control dependency with be au-
thenticated. To reach a particular data fetch or instruction
fetch point, there is an execution path, also called program
slice, that includes all the previous dependent instructions.
In other words, according to authen-then-fetch, a secure pro-
cessor is allowed to issue fetch address on the front side bus
only after all the instructions and data involved in the path
or program slice have been authenticated.

A precise implementation of this approach requires dy-
namic tracking of control and data dependency that may
be too complex and expensive. Fortunately, there are many
alternate implementations that sufficiently satisfy all the re-
quirements of authen-then-fetch without resorting to depen-

The 39th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO'06)
0-7695-2732-9/06 $20.00 © 2006

dency tracking. In one variation, memory fetch is not issued
until the secure processor drains the authentication queue
which we call drain-authen-then-fetch. For a new memory
fetch, the secure processor stops sending more authentica-
tion requests to the authentication queue, waits for the cur-
rent authentication to be drained, issues the memory fetch
afterward, and then resumes sending more authentication
requests. Alternatively, a secure processor may associate
the current value of the ”LastRequest Register” with each is-
sued instruction. If the instruction triggers a memory fetch,
the fetch is stalled until the authentication queue has com-
pleted authentication of the associated request. Figure 6
uses an example to illustrate the difference between authen-
then-issue and authen-then-fetch. The example shows two
external memory fetches where the second fetch is based
on the first fetch. There is an assumed fixed latency be-
tween the time when the data/instruction based on the first
fetch result is issued to the pipeline and the time when the
second fetch address is ready. The dotted line highlights
the time difference between the two schemes and shows the
latency advantage of the authen-then-fetch over the authen-
then-issue. Note that under the authen-then-fetch policy, a
new external memory fetch only stalls on already issued, re-
cently decrypted instructions or operands. Instructions or
data that are decrypted after the new memory fetch is cre-
ated or outstanding external memory fetches will have no
latency impact on this new memory fetch.

4.3 Fetch Address Obfuscation
Fetch address obfuscation [4, 6, 29, 30], in general, in-

cludes techniques that eliminate the fetch address side-channel
or obscure the disclosed fetch addresses. Perfect address ob-
fuscation is hard to achieve because of the high cost asso-
ciated with address obfuscation [6]. In [6], an approximate
address obfuscation solution was described with a very high
memory bandwidth requirement [4]. Since an ideal address
obfuscation scheme is hard to establish, solutions providing
only limited address obfuscation are recently proposed [4,
29].

Address obfuscation is related to the authentication archi-
tecture because it tries to eliminate the memory fetch side-
channel. Nonetheless, address obfuscation will not replace
authentication architecture because integrity verification is
indispensable for a tamper-evident, tamper-proof design.
For instance, address obfuscation alone will not prevent a
disclosing kernel from leaking sensitive data to an I/O port.
This suggests that it be used together with authen-then-
commit to offer sufficient security protection. The availabil-
ity of address obfuscation will certainly improve a secure
processor’s strength against certain malicious tampering on
privacy but it should be kept in mind that address obfus-
cation is not a panacea for all the exploits, neither is it
absolutely needed for preventing active exploits/tampering
based on memory fetch side-channel.

In addition to authentication architecture, address obfus-
cation such as the one in [29] requires some extra significant
memory or area overhead such as memory randomization
or memory re-shuffle cache. Address obfuscation based on
memory randomization or re-shuffle also has significant im-
pact on how an OS loads software or swaps memory pages
since it will very likely destroy memory operation locality
and coherence. In certain cases, address obfuscation may
increase the number of page faults by several factors [4].

Table 2 compares different authentication architectures in
several aspects. It is recommended that authen-then-fetch
be used together with authen-then-commit to guarantee au-
thenticated memory/processor state and to support precise
exceptions on security and authentication related faults.

5. PERFORMANCE ANALYSIS

Parameters Values

Frequency 1.0 GHz
Fetch/Decode width 8
Issue/Commit width 8

L1 I-Cache DM, 16KB, 32B line
L1 D-Cache DM, 16KB, 32B line
L2 Cache 4way, Unified, 64B line,

write back cache, 256KB and 1MB
L1 Latency 1 cycle
L2 Latency 4 cycles(256KB), 8 cycles(1MB)

I-TLB 4-way, 128 entries
D-TLB 4-way, 128 entries
RUU 128, 64 entries

Memory Bus 200MHz, 8B wide
Memory Latency X-5-5-5 (core clocks)

X depends on page status
CAS latency 20 mem bus clocks

Precharge latency (RP) 7 mem bus clocks
RAS-to-CAS (RCD) latency 7 mem bus clocks

Decryption latency 80ns

Table 3: Processor model parameters

5.1 Simulation Framework
Our simulation work is based on SimpleScalar running

Alpha binaries compiled with -O3 option. Each benchmark
is fast-forwarded according to SimPoint [17] and then simu-
lated for 400 million instructions in performance mode. Dur-
ing fast-forwarding, L1 and L2 caches were warmed up. Ta-
ble 3 summaries the processor parameters. We integrated
a more accurate DRAM model [7] to improve the system
memory modeling, in which bank conflicts, page miss, row
miss, page miss are all modeled following the PC SDRAM
specification. Eighteen SPEC2000 INT and FP benchmarks
with high L2 misses and memory throughput requirements
were used for evaluation.

5.2 Implementation
The latency of decryption or integrity verification varies

substantially depending on many factors such as encryption
mode, cipher, authentication scheme, process technology,
architecture design, etc. To best justify our performance
conclusions, we use reference implementations. In simula-
tion study, we conduct sensitivity study to capture different
variations and design scenarios.

5.2.1 Cipher
The Rijndael cipher can process data blocks of 128, 192,

or 256 bits by using key lengths of 128, 196 and 256 bits.
It is based on a round function, which is iterated 10 times
for a 128-bit length key, 12 times for a 192-bit key, and
14 times for a 256-bit key. For high throughput and high
speed hardware implementation, Rijndael is often unrolled
and with each round pipelined into multiple pipeline stages
(4-7) to achieve high decryption/encryption throughput [14,
9, 8]. The minimal total area of unrolled and pipelined Ri-
jndael is about 100K - 150K gates to achieve 15-20Gbit/sec
throughput [9]. Based on a synthesized Verilog implementa-
tion, each decryption round of pipelined AES-Rijndael takes
around 5-6nsec using 0.18µm standard cell library. In this
study, unless specified, the default reference latency is 80ns
for 256-bit Rijndael.

5.2.2 Encryption Mode
Encryption mode has a major impact on secure processor

performance. A few recent published works provided de-
tailed evaluation and comparison of ECB, CBC, and counter
mode [19, 22, 27]. In all the studies, counter mode delivers
the best performance because it allows pre-computation of
decryption pads in parallel with memory fetch. Our refer-
ence implementation of encryption mode is based on [19].

The 39th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO'06)
0-7695-2732-9/06 $20.00 © 2006

Table 2: Characteristics Comparison of Different Schemes
prevent active fetch address precise exception authenticated authenticated

side-channel disclose (authentication exceptions) memory state processor state

Authen-then-issue
√ √ √ √

Authen-then-write
√

Authen-then-commit
√ √ √

Authen-then-fetch plus commit
√ √ √ √

Address obfuscation plus commit
√ √ √ √

5.2.3 Integrity Verification
MAC-based integrity verification is a standard operation.

In the reference implementation, we use the standard HMAC [10]
for protecting integrity of data blocks stored in the external
RAM. The default MAC size is 64 bits (truncated HMAC
MAC). The reference HMAC uses standard SHA-256 algo-
rithm [16]. The simulation study is based on a Verilog im-
plementation of SHA-256, synthesized using Synopsys. The
latency for this design is 74ns for 512 bits of padded input
(padding with the required padding in SHA-256).

In addition to per-data block based integrity verification,
a secure processor sometimes also applies a hash tree or
MAC tree [13, 22] for preserving the overall memory space
integrity and preventing replay attacks of data blocks. This
causes substantially additional amount of latency overhead.
The CHTree scheme in [22] constructs an m-ary hash tree
where m is the number of child nodes per parent node has
and is equal to the size of the cache line divided by the size
of hash values.

5.2.4 Address Obfuscation
The implementation of address obfuscation is based on a

revised model of [29]. Each time, a cache line is written
to the external memory, its memory location will get re-
mapped or reshuffled. When a cache line is fetched from the
external memory, the secure processor will look up a re-map
cache to retrieve the current re-mapped location of the mem-
ory cache line. To prevent adversaries from reconstructing
re-mapped locations, re-map data are encrypted when they
are stored in the external memory device or evicted from
the on-chip re-map cache. Note that both instructions and
data blocks are re-mapped.

5.3 Performance Analysis
In this section we summarize performance results. The

results were collected on two L2 cache sizes, 256KB and
1MB.

5.3.1 Performance of Authentication Architectures
Figure 7(a) and Figure 7(b) show the normalized IPC of

six schemes of using the authentication results under 256KB
L2 for both the SPEC2000 integer and floating benchmark
programs. The IPC is normalized against the IPC of a base-
line situation of decryption only without integrity verifica-
tion. The results suggest that authen-then-issue and authen-
then-commit + address obfuscation have the worst perfor-
mance where the average IPC for authen-then-issue is about
87% of the baseline IPC and the average IPC of authen-
then-commit + address obfuscation is about 86% against the
baseline of no address obfuscation. For some benchmark
programs such as ammp, bzips, mgrid, twolf, and vpr, their
IPCs under authen-then-issue are below 80% of the their
respective baselines’. In contrast, authen-then-write shows
the best performance. On average, IPC under authen-then-
write is more than 98% of the baseline IPC, which means
less than 2% performance penalty due to integrity verifica-
tion. The next one is authen-then-commit, its average IPC
is more than 96% of the baseline IPC. For most benchmark
programs, IPC under this scheme is over 90% of the base-
line IPC except mgrid whose normalized IPC is 86%. Under

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

ammp
applu

apsi
art bzip2

gap
gcc

gzip
mcf

mesa
mgrid

parser
perl

swim
twolf

vortex
vpr

wupwise

average

IP
C

Im
pr

ov
em

en
t

commit_over_issue
commit+fetch_over_issue

write_over_issue

Figure 8: Comparison of IPC Speedup Over
Authen-then-issue, 256KB L2

authen-then-fetch, the average IPC is 92% of the baseline
IPC. Combination of authen-then-commit and authen-then-
fetch yields average IPC performance of 90% of the baseline.

Figure 7(c) and Figure 7(d) show the normalized IPC
performance with a 1MB L2 cache. Since there are fewer
memory accesses when the L2 size quadruples, the perfor-
mance impact of different schemes is less than the scenario
of 256KB L2. However, the performance ranking of the six
schemes is almost the same where the authen-then-issue and
the authen-then-commit + address obfuscation policies have
the lowest performance and the authen-then-write has the
highest performance.

As discussed earlier, authen-then-issue and authen-then-
commit + address obfuscation are relatively more secure.
Figure 8 compares authen-then-commit, authen-then-write,
and authen-then-commit plus authen-then-fetch with authen-
then-issue by showing the IPC speedup of the three schemes
over IPC of authen-then-issue. The results indicate that
on average, authen-then-commit improves IPC by 12%. For
four benchmark programs, the improvement is over 20% and
three of them show more than 30% improvement. Six bench-
mark programs show an improvement from 10% to 20%.
For authen-then-write, the performance improvement on av-
erage is about 14%. However, as discussed before, both
authen-then-commit and authen-then-write are less secure
than authen-then-issue. In contrast, combination of authen-
then-commit and authen-then-fetch provides much better se-
curity and it does not suffer from the previously described
exploits just like authen-then-issue. For five benchmarks,
authen-then-commit plus authen-then-fetch provides about
10% performance improvement over authen-then-issue.

Figure 9 shows that the impact of re-map cache size when
address obfuscation is applied together with authen-then-
commit. As expected, IPC improves with the size of re-map
cache.

5.3.2 RUU Size
The size of Register Update Unit (RUU) may have some

impact on performance of the studied schemes. To under-

The 39th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO'06)
0-7695-2732-9/06 $20.00 © 2006

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

bzip2
gap

gcc
gzip

mcf
parser

perl
twolf

vortex
vpr

average

N
or

m
al

iz
ed

 IP
C

authen_then_issue
authen_then_commit

authen_then_write
authen_then_fetch

authen_then_commit+fetch
authen_then_commit+addr_obfuscation

(a) SPEC2000 INT (256KB L2)

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

mmp
applu

apsi
art mesa

mgrid
swim

wupwise

average

N
or

m
al

iz
ed

 IP
C

authen_then_issue
authen_then_commit

authen_then_write
authen_then_fetch

authen_then_commit+fetch
authen_then_commit+addr_obfuscation

(b) SPEC2000 FP (256KB L2)

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

bzip2
gap

gcc
gzip

mcf
parser

perl
twolf

vortex
vpr

average

N
or

m
al

iz
ed

 IP
C

authen_then_issue
authen_then_commit

authen_then_write
authen_then_fetch

authen_then_commit+fetch
authen_then_commit+addr_obfuscation

(c) SPEC2000 INT (1MB L2)

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

ammp
applu

apsi
art mesa

mgrid
swim

wupwise

average

N
or

m
al

iz
ed

 IP
C

authen_then_issue
authen_then_commit

authen_then_write
authen_then_fetch

authen_then_commit+fetch
authen_then_commit+addr_obfuscation

(d) SPEC2000 FP (1MB L2)

Figure 7: Normalized IPC Under Different Authentication Schemes, 256KB Re-map Cache for Address
Obfuscation (Baseline: decryption only with no authentication)

stand its sensitivity, we reduce the number of the RUU en-
tries by half. Figure 10 shows the results. The results indi-
cate the same performance pattern. The performance rank
of four schemes from the lowest to the highest are, authen-
then-issue, authen-then-commit plus authen-then-fetch, authen-
then-commit, and authen-then-write. Figure 11 shows the
IPC improvements of the authen-then-commit and the authen-
then-commit plus authen-then-fetch over the authen-then-
issue. The authen-then-commit plus authen-then-fetch pol-
icy shows a performance improvement about 10% for 5 bench-
mark programs while the authen-then-commit scheme im-
proves IPC in the range from 10% to 50% for 10 benchmark
programs.

5.3.3 Impact of Hash Tree Authentication
Hash or MAC tree can prevent replay attacks. One side-

effect of using hash or MAC tree such as the CHTree ap-
proach is the additional latency overhead for integrity ver-
ification. We evaluate five authentication schemes under a
hash tree authentication using the implementation described
in [22]. Our implementation performs the verification of the

internal hash tree nodes concurrently when it is allowed.
Authenticated and verified tree nodes are cached inside the
processor using a dedicated 8KB hash tree cache. Figure 12
shows the normalized IPC of authen-then-issue,authen-then-
write, authen-then-commit, authen-then-fetch and authen-
then-commit plus authen-then-fetch. Again, the average per-
formance results indicate similar ranking of performance
among the five schemes with authen-then-issue being the
slowest scheme and authen-then-write being the fastest scheme.
However, the performance difference among authen-then-
write, authen-then-commit and authen-then-fetch become very
small due to significantly increased authentication latency.
For almost every benchmark, the normalized IPC decreases
because of the potential lengthy processing of hash tree
nodes. Figure 13 shows the performance improvements
of the authen-then-commit and the authen-then-commit plus
authen-then-fetch over the authen-then-issue policy. For authen-
then-commit, 7 benchmark programs show their performance
improved from 10% to 35%. For the authen-then-commit
plus authen-then-fetch, 5 benchmark programs have their

The 39th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO'06)
0-7695-2732-9/06 $20.00 © 2006

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

ammp
applu

apsi
art bzip2

gap
gcc

gzip
mcf

mesa
mgrid

parser
perl

swim
twolf

vortex
vpr

wupwise

averageN
or

m
al

iz
ed

 IP
C

(o
ve

r b
as

el
in

e
of

 n
o

ad
dr

es
s o

bf
us

ca
tio

n)

256K_remap_cache
128K_remap_cache

64K_remap_cache

Figure 9: Normalized IPC for Three Settings of Ad-
dress Obfuscation Re-map Cache Size, 256KB L2

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

ammp
applu

apsi
art bzip2

gap
gcc

gzip
mcf

mesa
mgrid

parser
perl

swim
twolf

vortex
vpr

wupwise

average

N
or

m
iz

lie
d

IP
C

authen_then_issue
authen_then_commit

authen_then_write
Figure 10: Normalized IPC with 64-entry RUU
(256KB L2)

performance improved by more than 10%.

6. RELATED WORK
To prevent adversaries from compromising trusted ap-

plications is becoming a major challenge not only to soft-
ware developers but also to processor architects and system
designers. To combat malicious exploits, alliance such as
Trusted Computing Group (TCG) [1] was formed across a
variety of industry segments to tackle the information secu-
rity issues. In mission critical and military embedded ap-
plications, requirements for protecting software privacy and
integrity are even more strenuous where reverse engineering
and hardware tamper pose inherent threats.

XOM [12] pioneered the design of a security processor
architecture to protect trusted software from physical tam-
per. The security of the XOM architecture is achieved by
a tamper-resistant processor design. Suh et al. improved
XOM’s approach with the AEGIS security processor archi-
tecture design [22] in which both privacy and integrity of
applications are protected. They also described the imple-
mentation of a secure environment with a block cipher en-
cryption and a CHTree integrity checking scheme [5]. Later,
Lu et al. proposed an improved integrity checking scheme
for achieving better performance in [13].

In [23], the performance of confidentiality protection was
improved by replacing the block cipher encryption with a
counter mode class encryption. Yang et al. proposed a
similar scheme in [27] for performance improvement for pro-
tecting privacy. In addition, Shi et al. exploits the tem-

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

ammp
applu

apsi
art bzip2

gap
gcc

gzip
mcf

mesa
mgrid

parser
perl

swim
twolf

vortex
vpr

wupwise

average

IP
C

Im
pr

ov
em

en
t

commit_over_issue
commit+fetch_over_issue

Figure 11: Comparison of IPC Speedup Over
Authen-then-issue Under Different Authentication
Schemes (256KB L2, 64-Entry RUU)

 0

 0.2

 0.4

 0.6

 0.8

 1

ammp
applu

apsi
art bzip2

gap
gcc

gzip
mcf

mesa
mgrid

parser
perl

swim
twolf

vortex
vpr

wupwise

average

N
or

m
al

iz
ed

 IP
C

authen_then_write
authen_then_issue

authen_then_commit
authen_then_fetch

authen_then_commit_fetch

Figure 12: Normalized IPC Under Different Au-
thentication Schemes, Memory Authentication Tree
(Baseline: decryption only with no authentication)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

ammp
applu

apsi
art bzip2

gap
gcc

gzip
mcf

mesa
mgrid

parser
perl

swim
twolf

vortex
vpr

wupwise

average

IP
C

Im
pr

ov
em

en
t

commit_over_issue
commit+fetch_over_issue

Figure 13: Comparison of IPC Improvement Over
Authen-then-issue, Memory Authentication Tree

The 39th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO'06)
0-7695-2732-9/06 $20.00 © 2006

poral and spacial localities exhibited by software execution
and devised prediction techniques [19] to improve perfor-
mance for counter mode encryption. More recently, Yan
et al. in [25] evaluated and compared from performance
aspect several types of integrity checking schemes, partic-
ularly, the lazy authentication and the authentication then
commit. The lazy authentication scheme as defined in [20,
25] is a weak integrity verification scheme. It verifies in-
tegrity of code or data as a group over a large, vulnerable
time window (weaker than any approach described in this
paper). Performance comparison between lazy authentica-
tion and authentication then commit was presented in [25].
The issues of the lazy authentication was addressed in [20]
from the security aspect. The risks of losing privacy through
the memory fetch side-channel in security processor design
are also discussed in [20].

7. CONCLUSIONS
In this paper, we explored the design spectrum and ana-

lyzed their implications on performance and security when
integrating integrity verification and decryption into an out-
or-order processor pipeline for providing a secure comput-
ing environment. We provided an in-depth analysis of the
risks associated with memory fetch side-channel in the con-
text of a secure processor design. We first classify the types
of authentication integration. Then, based on both secu-
rity analysis and performance evaluation, we show that the
authen-then-issue policy and the authen-then-commit + ad-
dress obfuscation policy provide better protection against
the side-channel exploits but has the worst performance
overhead. Authen-then-write guarantees the integrity of pro-
cessing results stored in an un-trusted external memory.
Furthermore, authen-then-commit ensures the integrity of
both memory and processor states at any moment and sup-
ports precise interrupt for security exceptions. But nei-
ther approach can completely prevent violation of software
and data confidentiality through runtime exploits of mem-
ory fetch side-channel. In conclusion, the analysis and the
results of this paper provides valuable risk assessment and
the design trade-off information for guiding the design of a
tamper-proof secure processor.

8. ACKNOWLEDGMENT
This research was supported by NSF Grants CCF-0326396

and CNS-0325536 and a DOE Early CAREER PI Award.

9. REFERENCES
[1] Trusted Computing Group.

http://www.trustedcomputinggroup.org/.
[2] John Black and Phillip Rogaway. CBC MACs for

Arbitrary-Length Messages: The Three-Key Constructions. In
J. Cryptol., volume 18, pages 111–131, 2005.

[3] Danny Dolev, Cynthia Dwork, and Moni Naor. Non-malleable
Cryptography. In Proceedings of the 23rd ACM Symposium
on Theory of Computing, 1991.

[4] Lan Gao, Jun Yang, Marek Crobak, Youtao Zhang, San
Nguyen, and Hsien-Hsin S. Lee. A Low-cost Memory
Remapping Scheme for Address Bus Protection. In Proceedings
of the 15th International Conference on Parallel
Architectures and Compilation Techniuqes, 2006.

[5] B. Gassend, G. E. Suh, D. Clarke, M. van Dijk, and
S. Devadas. Caches And Merkle Trees For Efficient Memory
Integrity Verification. In Proceedings of the Int’l Symp. on
High Performance Computer Architecture, 2003.

[6] Oded Goldreich and Rafail Ostrovsky. Software Protection and
Simulation on Oblivious RAMs. J. ACM, 43(3):431–473, 1996.

[7] Matthias Gries and Andreas Romer. Performance Evaluation of
Recent DRAM Architectures for Embedded Systems. TIK
Report Nr. 82, Computer Engineering and Networks Lab
(TIK), Swiss Federal Institute of Technology (ETH) Zurich,
1999.

[8] Alireza Hodjat and Ingrid Verbauwhede. Minimum Area Cost
For a 30 to 70 Gbits/s AES Processor. In IEEE Computer

Society Annual Symposium on VLSI (ISVLSI ’04), pp.
498-502.

[9] Alireza Hodjat and Ingrid Verbauwhede. Speed-Area Trade-off
for 10 to 100 Gbits/s. In 37th Asilomar Conference on
Signals, Systems, and Computer, 2003.

[10] H. Krawczyk, M. Bellare, and R. Canetti. HMAC:
Keyed-Hashing for Message Authentication. United States,
1997. RFC Editor.

[11] Abhishek Kumar. Discovering Passwords In the Memory.
http://www.infosecwriters.com/text resources/.

[12] D. Lie, C. Thekkath, M. Mitchell, P. Lincoln, D. Boneh,
J. Mitchell, and M. Horowitz. Architectural Support For Copy
and Tamper Resistant Software. In Proceedings of the 9th
Symposium on Architectural Support for Programming
Languages and Operating Systems, 2000.

[13] Chenghuai Lu, Tao Zhang, Weidong Shi, and Hsien-Hsin S. Lee.
M-TREE: A High Efficiency Security Architecure for Protectign
Integrity and Privacy of Software. Journal of Parallel and
Distributed Computing for a special issue on Security in Grid
and Distributed Systems, (66):1116–1128, 2006.

[14] M. McLoone and J. V. McCanny. High performance single-chip
fpga rijndael algorithm implementations. In Proceedings of the
Third International Workshop on Cryptographic Hardware
and Embedded Systems, pages 65–76. Springer-Verlag, 2001.

[15] Alfred J. Menezes, Scott A. Vanstone, and Paul C. Van
Oorschot. Handbook of Applied Cryptography. CRC Press,
Inc., 1996.

[16] National Institute of Science and Technology. FIPS PUB 180-2:
SHA256 Hashing Algorithm.

[17] Timothy Sherwood, Erez Perelman, Greg Hamerly, and Brad
Calder. Automatically Characterizing Large Scale Program
Behavior. In Int’l Conf. on Architectural Support for
Programming Languages and Operating Systems, 2002.

[18] Weidong Shi, Hsien-Hsin S. Lee, Mrinmoy Ghosh, and
Chenghuai Lu. Architectural Support for High Speed
Protection of Memory Integrity and Confidentiality in
Multiprocessor Systems. In IEEE Parallel Architecture and
Compilation Techniques, 2004.

[19] Weidong Shi, Hsien-Hsin S. Lee, Mrinmoy Ghosh, Chenghuai
Lu, and Alexandra Boldyreva. High Efficiency Counter Mode
Security Architecture via Prediction and Precomputation. In
Proceedings of the 32nd Annual International Symposium on
Computer Architecture, pages 14–24, 2005.

[20] Weidong Shi, Hsien-Hsin S. Lee, Chenghuai Lu, and Mrinmoy
Ghosh. Towards the Issues in Architectural Support For
Protection of Software Execution. SIGARCH Comp. Arch.
News, 33(1):6–15, 2005.

[21] Weidong Shi, Chenghuai Lu, and Hsien-Hsin S. Lee.
Memory-centric Security Architecture. In 2005 International
Conference on High Performance Embedded Architectures
and Compilers, 2005.

[22] G. E. Suh, D. Clarke, B. Gassend, M. van Dijk, and
S. Devadas. AEGIS: Architecture for Tamper-Evident and
Tamper-Resistant Processing. In 17th Annual ACM
International Conference on Supercomputing, 2003.

[23] G. Edward Suh, Dwaine Clarke, Blaise Gassend, Marten van
Dijk, and Srini Devadas. Efficient Memory Integrity
Verification and Encryption for Secure Processors. In 36th
Annual International Symposium on Microarchitecture, 2003.

[24] Neil Vachharajani, Matthew J. Bridges, Jonathan Chang, Ram
Rangan, Guilherme Ottoni, Jason A. Blome, George A. Reis,
Manish Vachharajani, and David I. August. RIFLE: An
Architectural Framework for User-Centric Information-Flow
Security, Dec 2004.

[25] Chenyu Yan, Brian Rogers, Daniel Englender, Yan Solihin, and
Milos Prvulovic. Improving Cost, Performance, and Security of
Memory Encryption and Authentication. In Proc. of the
International Symposium on Computer Architecture, 2006.

[26] Jun Yang and Rajiv Gupta. Frequent Value Locality and Its
Applications. In ACM Transsactions on Embedded Computing
Systems, volume 1, pages 79–105, 2002.

[27] Jun Yang, Youtao Zhang, and Lan Gao. Fast Secure Processor
for Inhibiting Software Piracy and Tampering. In Proc. of the
Int’l Symp. on Microarchitecture, 2003.

[28] Xiangyu Zhang and Rajiv Gupta. Hiding Program Slices for
Software Security. In Proceedings of the 2003 Internal
Conference on Code Genration and Optimization, pages
325–336, 2003.

[29] Xiaotong Zhuang, Tao Zhang, Hsien-Hsin S. Lee, and Santosh
Pande. Hardware Assisted Control Flow Obfuscation for
Embedded Processors. In Proceedings of the International
Conference on Compilers, Architecture, and Synthesis for
Embedded Systems, pages 292–302, 2004.

[30] Xiaotong Zhuang, Tao Zhang, and Santosh Pande. HIDE: an
Infrastructure for Efficiently Protecting Information Leakage on
the Address Bus. In Proc. of the Int’l Conf. on Architectural
Support for Programming Languages and Operating Systems,
2004.

The 39th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO'06)
0-7695-2732-9/06 $20.00 © 2006

