
SHARK: Architectural Support for Autonomic Protection Against Stealth by
Rootkit Exploits

Vikas R. Vasisht
School of Electrical and Computer Engineering

Georgia Institute of Technology
Atlanta, Georgia 30332

vvasisht3@gatech.edu

Hsien-Hsin S. Lee
School of Electrical and Computer Engineering

Georgia Institute of Technology
Atlanta, Georgia 30332

leehs@gatech.edu

Abstract
Rootkits have become a growing concern in cyber-security. Typi-
cally, they exploit kernel vulnerabilities to gain root privileges of a
system and conceal malware’s activities from users and system ad-
ministrators without any authorization. Once infected, these mal-
ware applications will operate completely in stealth, leaving no
trace for administrators and anti-malware tools. Current anti-rootkit
solutions try to either strengthen the kernel by removing known
vulnerabilities or develop software tools at the OS or Virtual Ma-
chine Monitor levels to monitor the integrity of the kernel. Seeing
the failure of these software techniques, we propose, in this paper,
an autonomic architecture called SHARK, or Secure Hardware sup-
port Against RootKit by employing hardware support to provide
system-level security without trusting the software stack, includ-
ing the OS kernel. SHARK enhances the relationship between the
OS and the hardware architecture, making the entire system more
security-aware in defending rootkits.

SHARK proposes new architectural support to provide a secure
association between each software context and the underlying hard-
ware. It helps system administrators to obtain feedback directly
from the hardware to reveal all running processes, even when the
OS kernel is compromised. We emulated the functionality of SHARK
by using x86 Bochs and modifying the Linux kernel version 2.6.16.33
based on our proposed architectural extension. Several real rootk-
its were installed to compromise the kernel and conceal malware
processes on our emulated environment. SHARK is shown to be
highly effective in identifying a variety of rootkits employing dif-
ferent software schemes. In addition, the performance analysis
based on our Simics simulations shows a negligible overhead, mak-
ing the SHARK architecture highly practical.

1. INTRODUCTION
The security of a computing system highly depends on the vul-

nerability of its underlying operating system. As the complexity of
the modern OS increases, its vulnerability to attacks also multiplies.
To warrant a highly secure computing system, the kernel security
becomes crucial. Currently, thrusts towards providing kernel-level
security are mainly in the software, either through the redesign of
an OS or adding security patches to reduce the number of known
vulnerabilities. Yet designing a monolithic OS with zero vulnera-
bility is unrealistic due to its growing complexity and sheer size,
often in many million lines of codes. On the other hand, many
research activities are devoted to the design of intrusion detection
systems that aim at detecting malware by checking the integrity of
various critical software components periodically. Although these
techniques are partially successful in strengthening a system’s se-
curity, defending against malware in the software stack is neither
a proactive nor an effective solution for desirable security. This is
because, the vulnerable software stack is a common battle ground
for both malware and intrusion detection systems — both run with
the same privilege, trying to counteract each other. In fact, it is al-
ways a losing battle for software intrusion detection systems as it
is not difficult for malware to circumvent the defense mechanism
based on software, which results in a never ending loop in pro-

viding more software solutions for new threats attacking different
vulnerabilities. To address these issues more effectively, it is neces-
sary to enhance the relationship between the OS and the hardware
architecture, making hardware more security-aware, in particular
when interacting with the OS.

Rootkits are gaining more attention these days, as they are detri-
mental, tenacious, and difficult to identify. Typical applications
of rootkits include key loggers that collect passwords, utilities to
conceal any malware, network traffic sniffers, utilities to gain con-
trol of zombie machines and devise other attacks such as denial-
of-service, email spamming, etc. Note that all these applications
run in a stealthy mode and the system administrator will be fooled
with an illusion of maintaining a clean system. As shown in re-
cent McAfee reports, there has been an exponential growth in the
number of rootkit techniques, rootkits will conceal an overwhelm-
ing (84%) majority of malicious code by 2008 [5]. After an ini-
tial kernel-level attack, the rootkit installs itself and conceals all
the spawned malware processes without leaving any trace for the
system administrators and software anti-malware tools. Rootkits
achieve this by manipulating the compromised kernel to hijack all
the utilities used by system administrators. Once this attack suc-
ceeds, malware applications will be free to exploit the entire sys-
tem with no limit. The most common objective of a rootkit is to
run malware applications on the compromised machine in stealth
to (illegally) collect private, vital information.1

A number of researchers have proposed techniques to address
the rootkit issues at the OS and virtual machine monitor levels [15,
32]. However, these software-based solutions can be easily circum-
vented and are still susceptible to certain attacks. As mentioned
earlier, this type of approach combats the problem at the same priv-
ilege level with the kernel rootkits, which is ineffective for solving
the issue once and for all. For example, detecting virtualization-
based rootkits [26] that work at the hypervisor level is impossible
using software anti-rootkit solutions. Addressing these shortcom-
ings necessitates architectural support to provide a direct feedback
path between the hardware and the system administrator, bypass-
ing the compromised kernel. In this paper, we propose a process
context-aware architecture, called SHARK, that can identify pro-
cess contexts that are utilizing hardware resources without the OS’
decree. By making use of such an architecture, system administra-
tors can directly examine the feedback provided by the underlying
hardware and compare it against the OS retrieved data to know the
state of the un-trusted OS. In this work, we focus on techniques to
reveal malware applications, malware virtual machines and hyper-
visors running in stealth. To the best of our knowledge, this is the
first effort using a synergistic microarchitecture and OS technique
to address the rootkit exploits.

The rest of this paper is organized as follows. Section 2 overviews
rootkits, the nature of stealth, the existing anti-rootkit solutions.
Section 3 introduces the solution space exploration we performed.
Section 4 details the proposed architecture, SHARK, and Section 5
discusses the implementation details and analyzes our experimen-
1It is debatable whether it is legal or not for managers to install
stealth adware to monitor their employees’ web-browsing history.

tal results. Section 6 talks about the related work and Section 7
provides the conclusion.

2. ROOTKITS AND STEALTH
Rootkit is a program or a set of programs used by adversaries to

hide their presence after a successful, initial exploit. The rootkit’s
main purpose is to hide processes, files, network connections, and
registry entries used by malware from the system administrators’
utilities. Malware uses rootkits as an enabler to hide its existence
on the machine while abusing all the hardware resources. Rootkits
are of two types — memory-based rootkits and persistent rootk-
its. Memory-based rootkits cannot survive a system reboot because
they operate only on the system memory, but persistent rootkits
change the persistent data to load itself during a system reboot. It is
easier for anti-rootkit tools to catch persistent rootkits by checking
the integrity of critical disk data before shutting down the machine.
Rootkits are receiving more attention these days as they are becom-
ing serious security threats to all classes of computing, including
embedded devices, desktop users, and server farm machines. A no-
torious example is the Sony rootkit incident of 2005 [6], in which
Sony installed hidden software to spy on end-users’ playback ac-
tivities without their consent.

In the next few sections, we classify different types of rootkits,
followed by an overview of existing anti-rootkit techniques today
and their insufficiency for dealing with increasingly sophisticated
rootkits.

2.1 Common Exploit Techniques by Rootkits
Rootkits modify the OS execution flow and data to hide malware

processes, net connections, and files from the utilities for detect-
ing suspicious activity. Depending on the level of exploitation, a
rootkit can operate in the user space and the kernel space. Kernel
mode rootkits are more detrimental than user mode rootkits as they
can obtain unrestricted accesses at the root privilege level and thus
can freely manipulate any component of the system via the compro-
mised OS. The following techniques are commonly used by kernel
rootkits to achieve malware’s stealth and subvert the targeted sys-
tem:
• System Service Descriptor Table Hooks (SSDT): SSDT, also

known as the system call table, is the kernel table containing
function pointers to handle system calls. A kernel mode rootkit
can modify the SSDT entries, replace a function pointer with
an address of its own, and hijack the system. This is a sim-
ple and popular type of attack accomplished by any Loadable
Kernel Module (LKM). As all the utilities used by the adminis-
trators perform system calls to obtain the system state, it is easy
for the rootkit to intercept these calls and compromise the data
confidentiality.

• Interrupt Descriptor Table Hooks (IDT): IDT is another ta-
ble used for storing the interrupt handlers in the kernel. The ker-
nel mode rootkit can replace a legitimate interrupt handler with
the rootkit’s fake handler. This technique is used by keylogging
malware that intercepts keystrokes of interest, e.g., passwords,
social security numbers, banking accounts, without any knowl-
edge of the user.

• Direct Kernel Object Modification (DKOM): With the DKOM
technique, the rootkit will modify some OS data objects directly
and remove the information pertaining to the processes the mal-
ware intends to hide. For example, the rootkit can delete ele-
ments that correspond to the malware’s processes from a certain
linked list maintained by the OS to represent active processes
on the system. The utility tools of the system administrators
only see this modified linked list and will not observe any sign
of unintended use of computing resources.2 This technique is

2Note that this linked list is maintained separately from the one
used by the OS to schedule processes. Otherwise, the malware’s
process will not get CPU time for execution.

hard to detect because it is very difficult to track changes in
the OS data. Although people have proposed software tools
like Klister [21] to identify processes by reading critical data-
structures maintained by the scheduler that cannot be modified,
these tools still cannot track changes to the kernel data. Also,
the assumption with Klister is that the list of processes main-
tained by the scheduler is complete and should include all mal-
ware processes. This assumption is flawed, as critical scheduler
data structures can delicately be manipulated by removing mal-
ware processes from the linked list prior to Klister tool com-
parison and adding back to the list prior to scheduling these
malware processes.

2.2 Sophisticated Rootkits
In a technique called Virtual Memory Subversion, the Shadow

Walker rootkit [34] fakes memory reads from the integrity-checking
utilities. Typically, integrity-checking utilities read memory con-
tents periodically to indicate any modification by malware. This
rootkit tries to return the original legitimate data when it detects
that some integrity checker is accessing the pages. When it reaches
its time to execute, the malware uses modified contents of the mem-
ory. To accomplish this, the pages used by malware are marked as
non-present in the page table and the page fault handler is hooked
to intercept accesses to malware’s pages. The rootkit differenti-
ates between memory read and execute operations in the handler,
returns the original legitimate data if it is a non-execute memory
access or modified contents of the page where the malware code is
resident if it is a memory-execute operation.

A complex rootkit called SubVirt [20] was recently demonstrated.
It can be installed as a virtual machine monitor beneath the host
OS, making it a guest OS. As the rootkit operates beneath the host
OS, it cannot be detected by the host. Also, this Virtual Machine
Based Rootkit (VMBR) installs other guest malware OSs that are
protected from the original host and run many malware applications
completely isolated from the original host OS. Another conceptual
rootkit called Blue Pill [30] makes use of the advanced hardware-
assisted secure virtual machine (SVM) support in the AMD-V tech-
nology and is claimed to be similarly applicable to Intel’s VT-x
technology. Unlike SubVirt, BluePill is capable of installing a thin
hypervisor on-the-fly and downgrades the host OS to become a
guest OS. It becomes extremely challenging to detect them using
any off-line detection mechanism. In [26], Rutkowska showed that
today we cannot effectively prove or detect virtualization-based
rootkits. In another recent work, Cloaker [11] demonstrated a rootkit
that exploits hardware to conceal itself without modifying the OS
code and data. One of the hardware configuration registers of an
ARM-based platform is modified to change the location of interrupt
service routines and a virtualized environment from the host OS is
created without modifying the kernel image. Our proposed scheme
works at the micro-architectural level and controls all software lay-
ers running over the bare hardware. It is effective in identifying
hidden contexts in all the layers of software, including the VMM
or hypervisor level. More details are described in Section 4.5

2.3 Software Anti-Rootkit Techniques
Software-based anti-rootkit techniques use one of the following

techniques to examine the corrupted system:
• Signature-based detection: The system memory is scanned

to identify a sequence of bytes that form a fingerprint that is
unique to a particular rootkit. This technique is only effective
in detecting rootkits with known signatures.

• Heuristic/Behavioral detection: In this approach, deviations
in the expected normal system behavior are used to identify po-
tential rootkits. Patchfinder [27] works based on the observa-
tion that a rootkit should inject additional, spurious code, which
will increase the execution time and the number of instructions.
Given this rationale, it makes use of instruction count for rootkit
detection. The drawback is that false positives are often gener-

ated due to the complexity of the OS, with many possible exe-
cution paths that lead to non-deterministic instruction counts.

• Cross View-based detection: This technique compares a low-
level system view obtained by low-level OS data and functions
with the high-level view obtained by compromised high-level
OS calls. Any mismatch in the comparison will help to detect
rootkits. Rootkit Revealer [25], Klister [21], Blacklight [8] and
StriderGhostbuster [16] use this technique.

• Integrity-based detection: This approach compares the cur-
rent snapshot of system memory with a trusted baseline. Any
difference in comparison is taken as evidence of malicious ac-
tivities. Tripwire and System Virginity Verifier [28] are devel-
oped based on this technique.

All the existing software techniques until now are inherently
flawed because they are executed together with the same corrupted
software stack. This gives rise to an endless battle between the
rootkit camp and the anti-rootkit camp, each trying to overtake the
other. On the other hand, the increasingly complex rootkits such as
SubVirt, Shadow Walker, BluePill make it much more difficult for
such software anti-rootkit techniques to be effective.

2.4 Hardware Anti-Rootkit Techniques
The Copilot [24] hardware detection scheme aimed at provid-

ing a more reliable, OS-independent hardware solution. It relies on
hardware-based RAM acquisition to check the integrity of RAM
by a co-processor in an isolated environment inaccessible to the
compromised machine. A snapshot of the system memory is sent
through the PCI bus to a co-processor where the system’s integrity
is continuously checked. An attack against this system was demon-
strated by Rutkowska in [31]. It creates different views of the sys-
tem memory to the processor and the PCI device to subvert this
hardware solution.

3. EXPLORING ARCHITECTURAL SOLU-
TIONS

As discussed earlier, none of the existing solutions are strong
enough to defend a system against rootkits. Worse yet, detecting
hidden VMMs has been claimed to be impossible using software
techniques [26], which calls for an OS-independent hardware solu-
tion. As stealth is the most common and detrimental exploitation
of rootkits, we focus on the stealth execution of contexts achieved
by non-persistent kernel rootkits in this work. Viewing the prob-
lem from a hardware perspective, if the hardware is given the ca-
pability to identify running contexts, it can surely help to solve the
problem of stealth. The main goal was to identify processes run-
ning on hardware and create a master list of processes in hardware.
Motivated by the Cross View-based approach, the next step is to
compare this master hardware list with the manipulated list of pro-
cesses obtained by the compromised OS. Any difference in the lists
implies that there are hidden processes in the system. Having many
constraints in mind, we investigated different ideas that could be
employed and discussed their weaknesses before introducing our
final approach.

3.1 Tagged TLB
First, we considered using a tagged TLB that contains the pro-

cess identifier(PID) information of the running processes. In fact,
many processors today employ PID (or ASID) in their TLB to avoid
TLB flushing upon context switches. For example, in the MIPS
processor, the CP0 register is loaded with the ASID of a process
before context switching. Upon a context switch, using PID in CP0
register, a secured hardware list of processes can be exported with
the PIDs of all running processes, including the stealth ones. In
the beginning, this appeared to be effective in tracking every active
process in hardware and in identifying processes in stealth. Un-
fortunately, this does not prevent an OS, compromised by rootkits,
from manipulating the hardware PID list since these PIDs are en-

tered by the faulted OS. The compromised OS can easily hijack a
legitimate process’s PID to masquerade the malware’s true iden-
tity before the mapping is loaded from the page table entry to the
TLB. Note that using a different PID does not affect the correct-
ness of the malware’s execution. To circumvent the falsely matched
address translation issues, the compromised OS can invalidate the
TLB entries pertaining to the hijacked process or simply flush the
entire TLB prior to switching to the malware’s process. For exam-
ple, in the x86 architecture (our target platform in this study), such
operations can be done by executing an INVLPG <address> in-
struction or writing to certain flags of the control register (e.g., PG
or PE bit in the CR3).

3.2 Tracking based on PDBA
In x86 architectures, upon each context switch, the page direc-

tory base address (PDBA) of the candidate process will be loaded
into the CR3 register. Using CR3 makes context switching sim-
pler by simply changing the pointer to the corresponding page ta-
ble base of the process to be executed. On a TLB miss, a hardware-
assisted page table walk uses CR3 to look for the virtual-to-physical
address mapping in its own page table. Since each PDBA is unique
for a process, one can consider using it to create the hardware list
of active processes to detect rootkits.

At first glance, this approach seems to be more secure than the
tagged TLB scheme as the malware process cannot use the PDBA
of a legitimate process; otherwise it will not execute correctly due
to incorrect mappings. The dependency between CR3 and the exe-
cution context of the malware process appears to make the security
scheme strong. Nevertheless, again, it is not very difficult for a
compromised OS to circumvent this. A simple attack is that the
OS can swap the page tables between the malware and a victim le-
gitimate process before the malware is ready for execution. Once
this is done, the malware process can use the PDBA of the hijacked
legitimate process as its page table base, which now points to the
malware’s page table. As such, the hardware list will not contain
the PDBA of the malware’s process.

4. SHARK: A PROCESS CONTEXT AWARE
ARCHITECTURE

After exploring possible architectural solutions, it is evident that
all the shortcomings were due to the tightly coupled dependency
of these mechanisms with the OS itself, which could have already
been compromised. As such, detecting rootkits with OS’s direct
intervention will always fail. To address this issue once and for all,
we saw the need to design a processor architecture to be process
context-aware, i.e., adding minimal support for process manage-
ment in the hardware. The rationale behind our ideas includes:
(1) use the hardware’s assistance during the creation of a process,
(2) isolate and protect the context information within a hardware-
hardened sandbox that cannot be circumvented by a compromised
OS, and (3) provide the capability of identifying active processes
without any knowledge from the OS. The information about each
process can be directly obtained through the hardware without any
reliance on a vulnerable software stack.

Toward these objectives, we propose a novel processor archi-
tecture called SHARK, which stands for Secure Hardware support
Against RootKit. In a SHARK processor, the master control of
processes is delegated to the hardware for enforcing the security
of process contexts. The OS simply carries out the regular re-
quired operations, e.g., TLB lookup, page translation, etc., under
SHARK hardware’s supervision and assistance. Figure 1 gives an
overview of our proposed system extension, including hardware
support and software mechanism, to construct a SHARK proces-
sor. The rootkit detection capability is accomplished by integrating
Hardware-Assisted PID Generation, Process Page Table Encryp-
tion and Decryption, and Process Authentication into one proces-
sor. These mechanisms are implemented within the SHARK secu-
rity manager, a hardware-based microarchitectural extension while

Memory
Access

TLB Miss

TL
B

H
it

to
 th

e
Pr

oc
es

so
r

...............

PageTable
Decrypt

Counter Mode

Engine (AES)

Software Stack

......

....

SHARK Secure Manager (Microarchitectural Extension)

...........................

..................

Counter Mode

Secret Key
Processor

Decryption

Get PID

PID
Generation

HPID Register

Scheduler
Update

EV

Engine (AES)
Encryption

 Page Table

Per−Process
Encrypted Page Table

E(PTE)

PPNTag
TLB

......
V

Memory Pages

 SHA−256
 Hash Engine

Figure 1: Architectural Support for SHARK Processor

working seamlessly with the OS (the Software Stack). The follow-
ing sections detail each component in SHARK.

4.1 Hardware-Assisted PID Generation
Conventionally, the process PIDs are generated and maintained

solely by the OS. As discussed earlier, the software-generated PIDs
are vulnerable and subject to exploitation by rootkits to conceal
malware’s identity. Under such schemes, it is impossible to devise
a secure mechanism to reveal all active process contexts within the
vulnerable software stack. Seeing this deficiency, the first attribute
we introduce in SHARK is to perform Process ID registration upon
a process’ creation before it is given permission to make use of any
hardware resource. In other words, a PID value will be assigned
by the SHARK Security Manager (SSM), part of our microarchi-
tectural extension, rather than by the vulnerable OS. Note that this
hardware-generated PID value need not be a secret, as it is simply
used as a nonce or a counter value in our counter-mode encryp-
tion [12], to be described later. Whenever the process and its page
tables are being created, a new 64-bit PID value for the newly cre-
ated process will be assigned directly by the hardware. By using
a 64-bit PID counter and just incrementing the counter for a new
process, even if a new process is created every cycle on a 1GHz
processor, it takes 584 years to overflow. This is long enough for
a system to reboot and initialize the counter. Because of this, the
hardware PID generator becomes very simple without any internal
buffers and PID pool management logic. The size of the PID value,
64 or 128 bits, will not affect the security strength of our scheme;
this will be further explained in the following section. Thereafter,
the OS needs to use this value as the PID for this newly created
process. For each context switch, the OS will load the PID of the
scheduled process into a Hardware PID (or HPID) register in the
hardware to indicate the running process. In essence, this is simi-
lar to loading the page directory base into CR3 in an x86 machine
upon context switches. The HPID is an integral part of our pro-
posed encryption/decryption mechanism, described in Section 4.2.

4.2 Process Page Table Encryption and De-
cryption

The proposed hardware-generated PID and its associated HPID
register are not the solution for rootkit prevention or detection.
Generating the PIDs in the hardware and asking the OS to load the
HPID register with this PID will not solve the problem of stealth,
as the untrusted OS can still employ the threat models described
in Section 3 and load a hijacked PID to misguide the hardware and
conceal malware’s presence. What we need is to establish a de-
pendency using this HPID between the SHARK hardware and the
software stack in such a way that if the software stack, i.e., the
compromised OS, attempts to circumvent or break the enforced de-
pendency, the execution of malware’s process will be affected. This

 128−bit
Plaintext

 128−bit
Encrypted
Ciphertext

 128−bit
Plaintext

key
128−bit AES128

 128−bit counter 128−bit counter

 128−bit counterkey
128−bit AES128

 128−bit
Encrypted
Ciphertext

(a) Counter Mode Encryption (b) Counter Mode Decryption

(c) Counter for Valid Bit Array

64−bit HPID 64−bit HPID

 and Page Table Encryption

Figure 2: Counter Mode Encryption and Decryption

0

0

1

0

0

0

0

0

0

+HPID HPID
Counter Base

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

Translation Array

Counter= (HPID || HPID)+1

Counter= (HPID || HPID)+N−1

Translation ArrayV

Offset

Enc(Valid Bit Array)

stored in Memory(1st level Page Table)

Counter= HPID || HPID

Actual Page Directory

Pipelined

Counter Mode
Encryption

Engine

(AES−128)

1st 128−bit Valid Bit Block

EV

Hardware Secret Key

2nd 128−bit Valid Bit Block

Page Directory − 1 Page Frame

Last 128−bit Valid Bit Block

Figure 3: Valid Bit Array Encryption

dependency between the HPID and the execution of the process is
achieved via Process Page Table Encryption. Using this scheme,
the page table of each process kept by the OS will be encrypted in a
unique way (proposed below) using counter mode encryption hard-
ware in the SHARK Security Manager illustrated in Figure 1. Be-
fore we detail the encryption process, we briefly review the counter
mode encryption.

4.2.1 Counter Mode Encryption
Counter mode encryption is a common symmetric-key encryp-

tion scheme [12]. It uses a block cipher (e.g., AES [13]), a keyed
invertible transform that can be applied to short fixed-length bit
strings. To encrypt with the counter mode, one starts with a plain-
text, a counter, a block cipher, and a secret key. An encryption
key bitstream is generated as shown in Figure 2(a). This key bit-
stream is XORed with the plaintext bit string, producing the en-
crypted string ciphertext. To decrypt, the same encryption pad is
computed based on the same counter and key, XORs the pad with,
and then restores the plaintext, as shown in Figure 2(b).

Counter mode is known to be secure against chosen-plaintext
attacks, meaning the ciphertexts hide all partial information about
the plaintext, even if some a priori information about the plaintext
is known. This has been formally proven in [7]. Security holds
under the assumptions that the underlying block cipher is a pseudo-
random function family (this is conjectured to be true for AES)
and that a new unique counter value is used at every step. Thus a
sequence number, a time stamp, or a random number can be used
as a counter value. Note that the counter is not a secret and does
not have to be encrypted.

4.2.2 Decoupled Valid Bit Array Encryption
When a new process is created, the OS requests the SHARK Se-

curity Manager (SSM) to issue a new PID for the process providing
the page directory (the first level page table) base address of the re-
spective process. The SSM generates a new PID for the process,
as mentioned in Section 4.1, using this PID, encrypts the valid bit
array of the first level page table (Page Directory) and the newly
mapped Page Table Entry (PTE) in the last level page table (i.e.,
the leaf node). In this section, we describe the valid bit array en-

cryption in the page directory. In Section 4.2.3, we describe the
PTE encryption details. First, we implement a hardware secret key
that can never be read out by any means similar to what was used
in prior secure processors [22, 33, 35]. Using the newly generated
PID and this burn-in secret key in the SSM, the first step is to en-
crypt the entire valid bit array in blocks of 128 bits (i.e., every 128
entries) of the first level page table using the encryption engine in
the SSM. We propose to concatenate the HPID value of a process,
shown in Figure 2(c), as the counter value for encryption. This
guarantees a different encrypted valid bit array for each individual
process. The counter value will then be incremented by one for
each encrypted block starting at 0 for the first 128-bit block.

The entire encryption process is illustrated in Figure 3. The re-
sult is an encrypted bitstream stored in the original valid bit struc-
ture of a page table. Once the valid bit array is encrypted, the SSM
returns the hardware-generated PID to the OS for future execution.
With regard to the initial valid bit array encryption overhead, for
every new process that is created, one 4KB page is allocated as
the first level page table. This adds 4KB/128 (input block size for
AES) * 80ns = 2560ns in a worst case scenario without using a
pipelined AES implementation.3 This one-time overhead is almost
negligible compared to the lifetime of a process. The significance
of this initial valid bit array encryption is that it is how we estab-
lish the dependency or trust needed between the SSM and software
stack using the HPID and the hardware key. For any subsequent
page table walks to be valid, the OS cannot hijack a fake PID, as
the same PID must be used to decrypt the valid array prior to ob-
taining or modifying page allocation information. The importance
of valid-bit array encryption will be explained again in Section 4.5.

4.2.3 Page Table Translation Encryption and Up-
dates

Second, the translation (i.e., the content) of the last level page
table (PTE) is also encrypted. Again, we employ the counter mode
encryption and use a counter value as shown in Figure 2(c). Similar
to the counters used in Section 4.2.2, there is no memory overhead
or extra lookup logic involved for storing and searching the counter
values, as they are generated at runtime using process context infor-
mation. The encryption granularity of translations depends on the
maximum physical memory that can be supported in an architec-
ture. For example, the current maximal physical address supported
for the x86-64 architecture is 40 bits when PAE is enabled in IA-
32e mode [18]. Given a 4KB page, the physical base address of the
page will be 28 bits. According to the AES standard, the standard
block size is 128 bits. Hence, we propose to encrypt four consecu-
tive page table entries (PTEs) at once. It also implies that we may
need to pad 4-bit null data for each physical address translation to
make it up to 32-bit, which appears to incur 13% memory space
overhead for each allocated page table entry. However, it is un-
conventional to declare a PTE using 28 bits. In fact, the current
Linux declares 32 bits (a 4-byte integer) for each PTE; therefore,
there is no overhead at all introduced by our scheme in an actual
implementation. Figure 4(a) shows the encryption process.

When the OS needs to update the page table of a process, addi-
tional work needs to be performed within the page fault handling
mechanism. Since the page table is encrypted, to insert a transla-
tion into the PTE, the SSM first decrypts the corresponding 128-bit
valid bit block in the page directory using the corresponding HPID
and performs a hardware page table walk to reach the last level page
table. Next, the SSM will examine the four PTEs that contain the
target translation. If none of them is valid, the SSM can simply set

3Our 80ns is based on our own synthesized AES-128 design. In
fact, this assumption is much slower than what was reported in a
more recent AES engine implementation fabricated using a 0.18µm
process in [17]. This AES coprocessor, a non-pipelined implemen-
tation, has an AES-128 encryption datapath running at 330MHz.
The total number of rounds is 11; each round can be finished in one
coprocessor cycle. With a pipelined implementation, the overall
encryption latency will be shortened.

0

0
0

1

Actual Page Table
stored in Memory

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

���
���
���
���
���
���
���
���
���
���
���
���
���
���

���������������������
���������������������
���������������������
���������������������

���������������������
���������������������
���������������������
���������������������

V

0x00000000
0x00000000
0x00000000

Concatenated Pipelined

Counter Mode

Encryption

Engine

(AES−128)

Counter

EV

Hardware Secret Key

HPID HPID

0x00C00000

Page Table Entry

4 PTEs

Encrypted PTE

(a) Encryption Process

Pipelined

Encryption

Engine

(AES−128)

0

0
0

1

0

0
0

1

EV

0x00011FF0
0x00000000
0x00000320

0x00000000
0x00000000
0x00000000

Ctr Mode
Encryption

Counter Mode

EV

Ctr Mode
Decryption

Ctr Mode
Decryption

Counter
HPIDHPID

Hardware Secret Key

 Encrypted PTE Encrypted PTE

�	�	�
�	�	�
�	�	�
�	�	�
�	�	�
�	�	�
�	�	�

	
	

	
	

	
	

	
	

	
	

	
	

	
	

�	�	�	�	�	�	�	�	�	�	�	�
�	�	�	�	�	�	�	�	�	�	�	�
�	�	�	�	�	�	�	�	�	�	�	�
�	�	�	�	�	�	�	�	�	�	�	�
�	�	�	�	�	�	�	�	�	�	�	�
�	�	�	�	�	�	�	�	�	�	�	�

�
�
�
�
�

���
���
���
���
���
�����������������
�����������������
���������������
���������������

0 0

0

1

 −−> 00012040
New Translation

1
Co

un
te

r f
or

H
W

 K
ey

V
al

id
 b

it
bl

oc
k

HW Key

0x00012040

0x00012040

Counter for Valid bit block

(b) Decryption Process

Figure 4: Page Table Update in SHARK

the valid bit, re-encrypt the 128-bit valid bit block, and encrypt the
assigned PTE with its neighboring three invalid mappings. How-
ever, if any of the other three are valid, this implies that the 128-
bit encrypted PTE (EPTE) contains some valid address mappings.
To maintain correctness, the SSM has to retrieve and decrypt the
EPTE, add the new translation, and re-encrypt four PTEs to insert
the new translation successfully. Figure 4(b) details the procedures.
This process is required for every page table entry update request
from the OS. In other words, all the page table updates by the OS
will completely be managed by the hardware-based SSM.

4.2.4 SSM-managed TLB updates
During a TLB miss, the TLB needs to be refilled by a hardware

page table walk in memory. We target the widely distributed ma-
chines such as x86 and PowerPC that use hardware-managed TLBs
and build our security module on top of them. We assume that the
TLB cannot be tampered with and stores plaintext translation like
a regular TLB. Since the page table is encrypted in SHARK, the
mappings must be decrypted when performing a page table walk
and refilling the TLB. Using the counter values generated from this
process context, the SSM will first decrypt the corresponding 128-
bit valid bit block in the page directory, performs a hardware page
table walk to reach the last level page table, decrypts the corre-
sponding 128-bit valid bit array of the last level page table, and
then decrypts the EPTE to obtain the correct decrypted mapping,
which is loaded into the TLB. Again, the right HPID must be used
to perform the decryption correctly. This makes it compulsory for
the compromised OS to load the PID of the malware’s process and
has to reveal its PID to the hardware whenever it executes. Figure 5
depicts this process for a TLB update.

4.2.5 Instructions supported in SHARK

Tag
TLB

PPNV

x0023 x0000F001

4 Encrypted
PTEs
(128 bit)

HW Key

Counter Mode
Decryption
(AES−128)

Counter
HPID HPID

Encrypted PTE

Encrypted Page Table

HPID
Counter

1

0

0
0

1

EV

(AES−128)

HW Key

Counter Mode
Decryption

 Encrypted PTE

Encrypted Page Table

HPIDHPID+nHPID
Counter

1

Encrypted Page Directory

0

0
0

1

EV

(AES−128)

HW Key

Counter Mode
Decryption

 PDE

Page Table
Walk

���������������
���������������
���������������
���������������

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

Figure 5: TLB update handled by the SSM

Table 1: Privilege Instruction Support in SHARK
Instruction Definition Functions
GENPID Generate a new PID Initial Valid-bit array and PTE encryption is performed,

M-bit of the respective PTE is set, hardware generated PID is returned
MODPT Update the page table of a process Useful when the kernel directly updates page tables of processes

(a) If the page is swapped-in for the first time (M-bit = 0),
it sets the M-bit and updates the PTE with the new mapping
(b) If M-bit = 1 and MODPT is used to invalidate a
memory page (swap-out), SHA-256 hash of the memory page
is computed and encrypted before swapping the page out
(b) If M-bit = 1 and MODPT is used to validate a
memory page (swap-in), SHA-256 hash of the memory page
is computed, encrypted and compared with the stored encrypted
hash to check whether the memory page is owned by the process
before updating the PTE

DECPT Decrypt a process’ page table entry. Useful if the kernel needs to know the physical addresses
by directly reading the page tables

Three new privilege instructions supported in SHARK are listed
in Table 1. The GENPID instruction is used by the OS when the
first memory page is assigned to a process’ address space. As men-
tioned in Section 4.2.2, the PID for each new process is generated
by the SSM and the same PID is used to encrypt the following: (1)
valid bit array of the page directory, (2) valid bit array of the last
level page table, and (3) page table translation (VPN-to-PPN) in
the last level page table. The MODPT instruction is required by the
virtual memory management module to directly update the page ta-
ble every time the kernel swaps out and swaps in memory pages.
MODPT first decrypts the encrypted PTE, updates the PTE with
the new mapping, and then re-encrypts back. In addition, if we are
invalidating the PTE (e.g., when swapping a page out), MODPT
needs to compute the SHA-256 [4] checksum of the memory page
and stores the encrypted checksum before swapping the page out.
This is illustrated in Figure 6(a). The resulting 256-bit cipher text
accounts for 0.8% memory space overhead for every 4KB page, to
prevent a type of attack which hijacks a legitimate process’s page
table and deliberately remaps malware’s pages to PPNs of the hi-
jacked page table described in Section 4.5. This operation is de-
signed to further strengthen the association of a memory page and
its legitimate owning process. If MODPT is used to validate a pre-
viously mapped page table entry (swapping a page in), before up-
dating the PTE, it checks whether the memory page is owned by the
process 4. This authentication is achieved by computing the check-
sum of the memory page, encrypting the checksum, and comparing
it with the stored encrypted checksum. If the checksums match, this
implies that the memory page is truly owned by the process. After
this authentication, the PTE mapping in the page table is modified.
This is illustrated in Figure 6(b). Note that because of page table

4Note that this check is not performed while swapping-in the mem-
ory page for the first time. MAPPED bit (M-bit) in every PTE keeps
track of this and cannot be modified by OS and is completely man-
aged by SSM. Also note that there is no extra memory overhead
to have this extra bit, as this is present in the today’s Linux kernel
implementation.

encryption and SHA-256 checksum encryption, the malware pro-
cess cannot modify a PTE of a legitimate process and map it to a
malware’s page to conceal its activity. The DECPT instruction is
required if the kernel wants to read the page table contents directly.
This is again useful for page management in the kernel.

4.3 Process Authentication
In the SHARK processor, if the compromised OS tries to load

the HPID with a hijacked PID from a different process, the decryp-
tion will result in an incorrect physical page frame number, which if
used, will prevent the malware from executing. The proposed page
table encryption and decryption are novel ideas that offer one more
level of virtualization provided by the secure hardware for the OS,
putting all processes under examination by SHARK. From a se-
curity standpoint, this consolidates the binding between the hard-
ware and OS, giving the hardware the capability of controlling and
authenticating the execution of software contexts through the ad-
dress translation process. The whole scheme of PID generation in
hardware, page table encryption based on this PID, and decryption
based on the same PID in hardware enables the system to perform
Process Authentication.

4.4 Stealth Checker
The last component of SHARK is the Stealth Checker. With the

SHARK hardware support, we now have the information of every
running process controlled and revealed by the hardware. The hard-
ware extensions provided by Shark Security Manager will make
sure that the hardware is not fooled by the OS. But it does not pre-
vent OS from manipulating software utilities like ”ps” and ”top”
to hide malware processes from system administrators. The final
action for rootkit detection is to compare the golden list of pro-
cesses revealed by hardware with the software list returned by the
tampered utilities and evaluate the differences. This functionality
is implemented by Stealth Checker and it triggers an alarm to the
system administrator when the information revealed by software
utilities like ”ps” and ”top” is not consistent with the information
from bare hardware. For this operation to be secure, tamper-free,

�������������������
�������������������
�������������������
�������������������

 Memory Page

Secondary Storage

4KB

(AES−128)
HW KeyEncryption

Counter
HPID HPID

Counter Mode

Checksum 256 bits
SHA−256

32B

(a) Swapping Out Memory Pages

�������������������
�������������������
�������������������
�������������������

 Memory Page

Checksum

Secondary Storage

4KB Counter Mode

(AES−128)
HW Key

Counter
HPID HPID

Encryption

=?
Valid Page Table Update

Illegal Page Table update

SHA−256
256 bits

32B

(b) Swapping In Memory Pages

Figure 6: Security Enhancement for Using MODPT Instruc-
tion

and effective, again the system has to prevent the compromised OS
from intervening. Designing a trusted passage between the hard-
ware and anti-rootkit software is very crucial for identifying pro-
cesses running in stealth.

The stealth checker is implemented in firmware and is called
prior to each context switch. Every write to the HPID register trig-
gers this exception. The exception handler in the firmware, reads
the HPID register to obtain the PID of the upcoming process. There
are no security implications up to this stage because everything is
controlled by the hardware or firmware. Even though the firmware
can be upgraded by the OS, it requires a system restart that clears
out the memory-based rootkits that we target. After the HPID read,
the PID with previously buffered PIDs are encrypted and sent to
a remote system administrator for examination. The data will be
128B to accommodate 64-bit PIDs of 16 processes. To reduce
the network activity, the firmware can send this data once in ev-
ery 10 context switches. Unlike the prior CoPilot technique, which
sends memory pages for examination unprotectedly, our firmware
encrypts this data using a 128-bit key given by the system admin-
istrator upon a clean firmware installation. Note that the OS can-
not compromise these encrypted PIDs even though our firmware
uses the potentially compromised OS to send these PIDs over an
insecure channel. We also randomized the PID order sent by the
firmware to confuse the OS in case the OS can keep track of the
sent PIDs and then block the communication containing the mal-
ware’s PID. To make it more secure, we employ sequence numbers

in the packets sent to the remote machine to track if the OS has
blocked any packet. If the OS attempts to block or replay the pack-
ets sent by the handler, the system administrator can conclude that
the OS is compromised and take appropriate actions. Once the re-
mote machine receives these encrypted PIDs, it can decrypt and
create the golden list of processes. This list is an event log regis-
tered in the remote machine, which can be examined by the system
administrator. He can use ssh to remotely connect to the suspected
machines and execute ”ps” like commands to check the process list
returned by their OS. This procedure can be completely automated.
Any mismatch will alert one to a probable security breach.

The major sources of overhead for the exception handler are (1)
time taken by the kernel network stack to update NIC buffers, and
(2) network bandwidth utilized. The minimum time slice in the
Linux kernel 2.6 is 5ms, the maximum is 800ms and the average
being 100ms. Taking into account the maximum context switching
frequency, we have to send 128B data over the network every 50ms
(once in 10 context switches). Based on our measurements, the
average kernel TCP stack overhead to send 128B is less than 0.1
ms and the network bandwidth utilized is negligible.So the overall
overhead of Stealth Checker is less than 0.2% and is highly practi-
cal.

4.5 Strength of SHARK
This section discusses potential threat models and analyzes the

strength of our SHARK processor. Knowing that the OS cannot
be trusted, we have thought about the following mechanisms that
might be used by future exploits to subvert SHARK. As we will
show, SHARK can prevent all these malicious attempts carried out
by an untrusted OS.

First, rootkits could hijack a legitimate process’ PID instead of
its own to conceal the PID of the malware process. As analyzed
previously, this will result in the failure of malware process exe-
cution, as it cannot decrypt the address mappings correctly using a
different PID. Note that the encryption is seamless, established us-
ing the HPID when the process and its page directory are created.

Another attack is that a rootkit may plan to encrypt the page ta-
bles of a malware process using the hijacked PID of a legitimate
process. This attack will also fail because the page tables are en-
crypted using the HPID generated by the hardware SSM in the very
beginning before the PID value is revealed to the process. As the
valid bit array of the page table is also encrypted based on the
HPID, it must be decrypted prior to any page table update. This
initial decryption of the valid bit array will fail and confuse the ad-
dress mapping of the malware if the malware uses a hijacked PID.

Now, we will talk about the significance of valid-bit array en-
cryption of the first level page table. If we do not encrypt the
first level page table, and just encrypt the last level translations,
one attack model can successfully break the defense mechanism of
SHARK and use a legitimate process’ PID for malware’s execution.
The attack model is described here- We know that the last level
page tables are constructed on-demand, depending on the memory
footprint of the application. When the second last level page table
is constructed, the contents will not be encrypted by SSM and the
OS can use MODPT instruction to encrypt the contents based on a
legitimate process’ PID. From this point, all the subsequent transla-
tions, will be encrypted based on the other process’ PID. This will
result in just one last level page table, encrypted using malware’s
PID and the rest encrypted based on some legitimate process’ PID.
If the malware application uses page tables other than the first one
(encrypted based on malware’s PID), it can successfully execute
by using the legitimate process’ PID. To defend against this attack,
we encrypt the root node of the page table (first level) so that, all
the subsequent modifications (on-demand construction of last level
page table) should be first authenticated by the successful decryp-
tion of the first level page table. This makes sure that malware’s
page tables are not constructed using other legitimate process’ PID.

Yet another attack model is to have the malware invalidate all of
the allocated pages and swap all malware process’ pages to the disk.

Then the malware will start over and encrypt the blank page table
using a hijacked PID of a legitimate process before it is brought
back to the memory. This is not possible, again, due to the sep-
arate encryption of the valid bit array. The PTE invalidation will
also cause page table updates that will subsequently encrypt the
valid bits of the page table. Even if the pages are swapped out,
the page table will still have valid bits encrypted and the hardware
page walk mechanism will exercise the SSM-enforced decryption
for invoking page faults. If they are not decrypted and re-encrypted
correctly, the page table will never be updated properly.

One may wonder why the compromised OS cannot simply up-
date the page table with its own encrypted valid bit array and trans-
lation using hijacked PID since the page tables are all in memory.
This is impossible in SHARK since the counter mode encryption
relies on a hardware burn-in secret key, which can never be read
out by any means. It is hardwired into the AES engine for perform-
ing encryption and decryption. Therefore, this threat model is not
feasible, either.

Another attack could manipulate a legitimate process’ page table
and address space to run malware. Two types of this attack could
be launched: (1) Using the MODPT instruction, modify a dupli-
cate copy of a legitimate process’ page table to map to malware’s
physical pages. Note that the OS has all the information required
— physical pages used for malware and legitimate processes’ de-
crypted page table structures; (2) Use legitimate process’ address
space to run malware— swapping malware code and data to le-
gitimate process’ memory pages and using manipulated legitimate
process’ page tables to run malware. Note that this attack is an ex-
treme strategy to hide malware and is very difficult to achieve. Even
if the above attacks can be somehow devised by malware, SHARK
will be successful in defending against them. This is achieved by
the SHA-256 checksum mechanism described in Section 4.2.5 and
its encryption, which gives SSM the capability to track the owner-
ship of memory pages. This will not allow the OS to manipulate the
page tables to point to memory pages used by other processes on-
the-fly or take other process’ PID and use its memory pages while
it is still executing.

Last but not least, we know that virtual machine-based rootk-
its [20, 30, 26] are emerging these days; we discuss the implications
of SHARK scheme against these rootkits here. In virtual machine-
based rootkits, the malicious software uses either hardware virtu-
alization support or changes the boot sequence to load itself as a
VMM under the host OS. Once the host OS starts operating above
a layer of malicious VMM, it is completely compromised. Now let
us concentrate on the unsolved problem of identifying the nested
VMMs installed using hardware virtualization support in [26]. By
using SHARK, we can effectively combat the problem of identi-
fying these hidden virtual machines. Private page tables, shadow
page tables and nested page tables using hardware technology in
AMD processors are the techniques used by BluePill malware to
hide the malware VMMs in memory. By using SHARK hardware,
the new page tables created in the hypervisor must be registered
to obtain a key and then pass through SSM process authentication
before executing these contexts. Using this technique, even if the
malware is able to hide its page tables from the host OS and in-
tegrity checking tools, it cannot fake its identity to the hardware. In
this way, the proposed SSM has control over the VMMs, too. The
PIDs of contexts inside VMMs are logged continuously in hard-
ware and hence the execution of unintended VMMs is revealed to
the system administrator.

5. EXPERIMENTAL ANALYSIS
We conducted two sets of experiments to evaluate the proposed

SHARK Security Manager. First, we evaluated the practicality and
strength of the proposed scheme against malware running in stealth
using real kernel rootkits available on Linux. Following that, we
performed performance experiments to quantify the overheads in-
curred by the SHARK architecture.

5.1 Functionality Evaluation
As a proof of concept, we installed several rootkits on a Linux

OS running on top of an emulated SHARK processor. Bochs, a
highly portable open source x86 PC emulator, was used to emulate
the entire system, including the SHARK security manager and the
infected OS.

To verify that the proposed scheme is practical, memory man-
agement unit, process management unit, and scheduler of the Linux
kernel versions 2.2.14 and 2.6.16.33 were modified and recompiled
to use the SSM implemented in Bochs to support our proposed
mechanism. Using the new instructions (shown in Table 1) sup-
ported by SHARK, the kernel was modified. Note that these in-
structions are safe to use, because page tables are not updated or
decrypted correctly if a different HPID value is used. The modi-
fied kernel boots and executes all the processes perfectly with en-
crypted page tables. To support pointers to kernel page tables in
all user page tables, on a TLB miss, we differentiate between ker-
nel space and user space memory accesses to use the appropriate
key for decryption. Shared libraries is not an issue because even
if two mappings of different processes take you to the same phys-
ical frame, different PIDs will be used to encrypt their respective
page tables. As the kernel has a fixed range of virtual addresses for
these shared pages, SHA-256 hash is not maintained and checked
for these pages. In the case of virtualization systems, the lowest
layer, i.e., the hypervisor, must use the ISA support provided by
SHARK.

To evaluate security, we installed rootkits over the modified ker-
nel for SHARK running over the emulated SHARK hardware archi-
tecture. The following five rootkits collected from [3] were inserted
into the base kernel as Loadable Kernel Modules (LKMs): Adore
0.42, Knark 2.4.3, Phide, Enyelkm.en.v1.1, and Mood-nt-2.3. Note
that, not all these rootkits are compatible with different Linux ker-
nels. The first three rootkits were aimed at the Linux 2.2 kernel,
while the last two were developed particularly for subverting the
Linux 2.6 kernel. These rootkits inserted as LKMs can access the
kernel space and will modify the system call table, interrupt de-
scriptor table to alter the execution flow of the compromised OS,
and provide utilities to conceal malware’s processes from the sys-
tem administrator’s utilities (e.g., ps, top). Under such a setup, we
contrived a compromised software stack to be able to assess the ef-
fectiveness of our SHARK architecture. The scheduler of the base
kernel was modified to load the HPID register with the PID of the
process prior to a context switch. Every write to this HPID register
results in an exception serviced by the SSM. As described in Sec-
tion 4.4, this exception handler resides in the firmware and can-
not be tampered by the compromised OS. In this way, the PIDs of
running processes are read by the firmware and a golden list of pro-
cesses is created. The compromised utilities such as ps or top were
queried to obtain a list of processes. As these utilities were com-
promised, the information of malware processes were concealed.
By comparing the two lists, hidden malware processes were de-
tected. For all these functional experiments, our SSM succeeded in
all scenarios by triggering security alarms to reveal the processes
running in stealth, demonstrating the effectiveness of our SHARK
architecture.

5.2 Performance Evaluation
Since SHARK introduced extra encryption/decryption overhead

to protect the process page tables, we now evaluate the overhead’s
impact on performance. We obtained cycle information from Vir-
tutech’s Simics [23] with its gcache model enabled.5 A staller will
stall the cycle accounting mechanism whenever a cache miss oc-
curs. Since Simics does not provide an out-of-order cycle-level
single-processor model and the staller essentially implements a block-
ing cache, our overhead estimation may be somewhat pessimistic.
5The reason we did not use Simics for functionality evaluation is
due in part to the fact that some modules, e.g., Page Table Walks,
in Simics are not open-sourced; thus we could not modify them to
model our SHARK implementation.

Table 2: Processor System Configurations
Configuration freq L1 L2 AES latency SHA-256 latency Memory latency

Config1
2GHz

2MB, 12 cycles 80
138 200Config2 32KB, 8-way, 64B line 8-way, 64B line 160

Config3 2 cycles 4MB, 19 cycles 80
Config4 16-way, 64B line 160
Config5

4GHz
2MB, 25 cycles 160

276 300Config6 32KB, 8-way, 64B line 8-way, 64B line 240
Config7 3 cycles 4MB, 38 cycles 160
Config8 16-way, 64B line 240

To model a modern processor, we chose our cache and TLB con-
figurations to closely resemble those in the Core microarchitecture
such as Conroe core from Intel. The cache access times were esti-
mated based on Cacti 4.2 [2] with two target frequencies specified
in Table 2. We assume there are two read/write ports for L1 and one
unified read/write port and one snoop read port for the L2. Note
that, x86 ISA supports mixed page sizes; thus there are two TLBs
for two different page sizes: 4KB and 2MB, used for each ma-
chine. We also varied the number of TLB entries to study their sen-
sitivity. Furthermore, we studied the sensitivity of the AES engine
latency. We assume that a baseline 10-round AES-128 takes 80 cy-
cles on a 2GHz processor, similar to an optimized design reported
in [19]. Then we increase the latency for different machine con-
figurations. We assume that a baseline pipelined SHA-256 hashing
engine takes 138 cycles on 2GHz processor, similar to the imple-
mentation in [10]. Then we increase this latency for the faster pro-
cessor. The entire configurations are listed in Table 2.

We chose 28 SPEC 2006 programs as our benchmark, using a
reference input set. For each simulation, we emulated the first two
billion instructions including instructions from the OS code. We
did not fast-forward instructions, in order to obtain more page faults
and TLB updates. In reality, the overall overhead should be much
smaller. Linux kernel 2.6.16.33 was recompiled to send requests
to the SHARK security manager whenever a page table update and
PTE decryption were needed. When the SSM gets a request to up-
date PTE, it encrypts the PTE and updates the page table. This
requires one valid bit array decryption + one PTE decryption + one
PTE re-encryption + one valid bit array encryption. Also on every
page table update, we need to compute SHA-256 hash of the 4KB
page and encrypt the 32B hash. This adds an overhead of SHA-256
hashing latency + two AES Encryptions. The overall overhead for
a page table update will be six times the AES latency + SHA-256
hashing latency. Also, we have to decrypt the the corresponding
PTE for each TLB refill. This requires two valid bit array decryp-
tions + one PTE decryption. A TLB miss to handle hardware page
table walk is conservatively assumed to be 30 cycles. More penalty
in the baseline TLB miss will dilute our overhead. The actual page
faults are handled by the OS code and these explicit OS instructions
were accounted for in the emulation. The page table updates, page
table decryptions, and the TLB updates account for the sources
of overhead. Also, we need to flush the TLB upon every context
switch as in x86 machines.

Figure 7 shows the cycle time overhead for all the benchmark
programs running with six different TLB organizations using Pro-
cessor Config1. We observed that TLB organizations are critical
to the overheads. Obviously, some benchmark programs such as
401.bzip2, 410.bwaves, 459.GemsFDTD, 470.lbm, 998.rand,
and 999.rand require more than 2MB page mappings in the TLB.
For these applications, when we increased the number of entries in
the large TLB (for 2MB page) from eight to 32, the overhead was
drastically reduced below 1%. To gain further insight, Figure 8
shows the number of data TLB updates for TLB Config1 and TLB
Config2.6 The only difference between these two configurations

6We found the numbers of i-TLB updates of different TLB sizes
almost remain the same.

is the number of TLB entries for 2MB pages. It is evident that the
same benchmark programs show a huge reduction in the d-TLB up-
dates when more translation entries are employed in the 2MB-page
TLB.

In Figure 7, 401.bzip2, 410.bwaves, and 470.lbm also demon-
strate higher overhead than the others. This can be explained by ex-
amining the context switch frequencies shown in Figure 9. These
three show a much higher number of context switches, a few orders
or magnitude higher than the others. As the TLBs are flushed dur-
ing each context switch, we will need to refill the TLB more often,
causing the extra overheads in decryption.

Finally, in Figure 10, we show the average overhead for all bench-
marks across the eight processor system configurations described
in Table 2 with six TLB organizations. For the same generation
processor, moving to a larger L2 cache tends to lower the overhead
(e.g., Config1 vs. Config3). This is because the longer L2 latency
for a larger cache penalizes the baseline and shrinks the overhead
proportionally. In general, SHARK merely introduced 4.7% over-
head in the worse case, and the overhead is below 1% when a larger
TLB (e.g., 4-way, 256 entries) is used.

6. RELATED WORK
Many software techniques have been proposed for kernel mode

rootkits detection [9, 27, 36, 29, 28]. These software solutions
operate in the same compromised software stack and expect that
some kernel components will not be compromised. This assump-
tion is somewhat flawed because the upcoming kernel rootkits can
always subvert these trusted components to defeat anti-rootkit solu-
tion. Although these software anti-rootkit solutions were depend-
able when they were released, they are not considered to be secure
after release, as the complexity of the rootkits continues to evolve.
Coming to the hardware solution proposed, CoPilot, as mentioned
in Section 2.4, was proven to be insecure by Joanna Rutkowska
in [31]. Also, note that this is not a microarchitectural approach,
but rather a system-level solution that was proposed to deal with
the problem.

Researchers have proposed using virtual machine monitors (VMMs)
to check the integrity of the host OS [14, 32]. These VMMs are
typically designed to have minimum code sizes and have a security
manager inside the VMM verifying the integrity of the host OS.
These techniques are no longer considered to be safe because of
rootkits that are exploiting the hardware virtualization support like
Blue Pill [30]. In [26], it is shown that, none of the techniques
proposed until now can detect virtualization-based rootkits. As
SHARK is a microarchitectural solution, it can address these vir-
tual machine-based rootkits effectively, as discussed in Section 4.5.

The microarchitectural research community has dealt with the
problem of untrusted OSs [35, 22]. These architectures were pro-
posed to have a secure execution environment without a secured
kernel. The main applications that they consider here do not need
interactions with the host OS. Their goal is to protect the applica-
tion’s code and data from being tampered with, including the un-
trusted OS. The attack model that we are considering in this work is
different in that the malicious kernel will not try to manipulate the
code and data of other applications. Instead, malware uses comput-
ing resources stealthily and persists in the system as long as possi-

0
1
2
3
4
5
6
7
8
9

10

40
0.

pe
rlb

en
ch

40
1.

bz
ip

2

40
3.

gc
c

41
0.

bw
av

es

41
6.

ga
m

es
s

43
3.

m
ilc

43
4.

ze
us

m
p

43
5.

gr
om

ac
s

43
7.

le
sl

ie
3d

44
4.

na
m

d

44
5.

go
bm

k

44
7.

de
al

II

45
0.

so
pl

ex

45
3.

po
vr

ay

45
4.

ca
lc

ul
ix

45
6.

hm
m

er

45
8.

sj
en

g

45
9.

G
em

sF
DT

D

46
2.

lib
qu

an
tu

m

46
4.

h2
64

re
f

46
5.

to
nt

o

47
0.

lb
m

47
1.

om
ne

tp
p

47
3.

as
ta

r

48
2.

sp
hi

nx
3

48
3.

xa
la

nc
bm

k

99
8.

ra
nd

99
9.

ra
nd

CP
I o

ve
rh

ea
d

(%
)

TLB Config 1
4 KB Page, 128 Entries, 4 Way
2 MB Page, 8 Entries, 4 Way

TLB Config 2
4 KB Page, 128 Entries, 4 Way
2 MB Page, 32 Entries, 4 Way

TLB Config 3
4 KB Page, 256 Entries, 4 Way
2 MB Page, 8 Entries, 4 Way

TLB Config 4
4 KB Page, 256 Entries, 4 Way
2 MB Page, 32 Entries, 4 Way

TLB Config 5
4 KB Page, 512 Entries, 4 Way
2 MB Page, 8 Entries, 4 Way

TLB Config 6
4 KB Page, 512 Entries, 4 Way
2 MB Page, 32 Entries, 4 Way

Figure 7: Performance impact with different TLB organizations (Config1)

0

2000000

4000000

6000000

8000000

10000000

40
0.

pe
rlb

en
ch

40
1.

bz
ip

2

40
3.

gc
c

41
0.

bw
av

es

41
6.

ga
m

es
s

43
3.

m
ilc

43
4.

ze
us

m
p

43
5.

gr
om

ac
s

43
7.

le
sl

ie
3d

44
4.

na
m

d

44
5.

go
bm

k

44
7.

de
al

II

45
0.

so
pl

ex

45
3.

po
vr

ay

45
4.

ca
lc

ul
ix

45
6.

hm
m

er

45
8.

sj
en

g

45
9.

G
em

sF
DT

D

46
2.

lib
qu

an
tu

m

46
4.

h2
64

re
f

46
5.

to
nt

o

47
0.

lb
m

47
1.

om
ne

tp
p

47
3.

as
ta

r

48
2.

sp
hi

nx
3

48
3.

xa
la

nc
bm

k

99
8.

ra
nd

99
9.

ra
nd

of

 d
TL

B
up

da
te

s

TLB Config 1
4 KB Page, 128 Entries, 4 Way
2 MB Page, 8 Entries, 4 Way

TLB Config 2
4 KB Page, 128 Entries, 4 Way
2 MB Page, 32 Entries, 4 Way

Figure 8: Number of D-TLB updates for TLB Config1 and TLB Config2

1
10

100
1000

10000
100000

1000000

40
0.

pe
rlb

en
ch

40
1.

bz
ip

2

40
3.

gc
c

41
0.

bw
av

es

41
6.

ga
m

es
s

43
3.

m
ilc

43
4.

ze
us

m
p

43
5.

gr
om

ac
s

43
7.

le
sl

ie
3d

44
4.

na
m

d

44
5.

go
bm

k

44
7.

de
al

II

45
0.

so
pl

ex

45
3.

po
vr

ay

45
4.

ca
lc

ul
ix

45
6.

hm
m

er

45
8.

sj
en

g

45
9.

G
em

sF
DT

D

46
2.

lib
qu

an
tu

m

46
4.

h2
64

re
f

46
5.

to
nt

o

47
0.

lb
m

47
1.

om
ne

tp
p

47
3.

as
ta

r

48
2.

sp
hi

nx
3

48
3.

xa
la

nc
bm

k

99
8.

ra
nd

99
9.

ra
nd

of

 c
on

te
xt

 s
wi

tc
he

s

Figure 9: Number of context switches (amid 2 billion instructions)

0

1

2

3

4

5

2GHz, 2MB L2, 80-AES 2 GHz, 2MB L2, 160-AES 2 GHz,4MB L2, 80-AES 2 GHz,4MB L2, 160-AES 4 GHz,2MB L2, 160-AES 4 GHz,2MB L2, 240-AES 4 GHz,4MB L2, 160-AES 4 GHz,4MB L2, 240-AES

Config1 Config2 Config3 Config4 Config5 Config6 Config7 Config8

Av
g

CP
I O

ve
rh

ea
ds

 (%
)

TLB Config 1
4 KB Page, 128 Entries, 4 Way
2 MB Page, 8 Entries, 4 Way

TLB Config 2
4 KB Page, 128 Entries, 4 Way
2 MB Page, 32 Entries, 4 Way

TLB Config 3
4 KB Page, 256 Entries, 4 Way
2 MB Page, 8 Entries, 4 Way

TLB Config 4
4 KB Page, 256 Entries, 4 Way
2 MB Page, 32 Entries, 4 Way

TLB Config 5
4 KB Page, 512 Entries, 4 Way
2 MB Page, 8 Entries, 4 Way

TLB Config 6
4 KB Page, 512 Entries, 4 Way
2 MB Page, 32 Entries, 4 Way

Figure 10: Average overheads for all the benchmarks with different configurations

ble without affecting other applications. In ARM-based TrustZone
Technology [1], an isolated on-chip execution environment is made
available for security purposes. This design is not a solution for
any vulnerability, but a framework that allows one to devise secure
systems. This approach is not tightly coupled with the OS, which
can cause an endless battle between the secure and non-secure re-
gions. To the best of our knowledge, we are the first to propose
microarchitectural support, to enhance the security of OS to deal
with applications running in stealth.

7. CONCLUSIONS
Rootkit-based exploits have become a serious concern in cyber-

security. Once a computer is infected, rootkits are detrimental,
tenacious, and difficult to identify and remove. Typical applica-
tions of rootkits perform key-logging to reveal passwords, sniffing
network traffic to steal secrets, and controlling zombie machines
to stage other attacks such as email spamming, denial-of-service
attacks, etc. They exploit the kernel’s vulnerabilities to gain root
privileges and continue to run their malware applications on com-
promised machines. These malware processes operate completely
in stealth, leaving no trace for system administrators. To address
these issues, this paper proposes an autonomic architecture called
SHARK that operates against stealth achieved by rootkits’ exploits.
To the best of our knowledge, this is the first paper addressing
rootkit exploits using a synergistic hardware/system software ap-
proach to directly enhance the trust between the hardware and the
processes under a compromised OS. SHARK is process context-
aware; it employs secure hardware support to provide system-level
security, without trusting the software stack, including the OS ker-
nel. The proposed mechanisms, including hardware PID, page ta-
ble encryption, and process authentication, tightly couple the de-
pendency between the OS and hardware architecture, making the
entire system more security-aware. Under SHARK, the concealed
malware at user, kernel and VMM levels of the software stack will
be revealed automatically by the synergistic cooperation between
SHARK and the software stack.

Running Linux OS and installing real-life rootkits, our experi-
mental results show that SHARK is highly effective in identifying
rootkits with less than 4.7% performance impact in the worst case
and less than 1% performance degradation in typical processor con-
figurations.

8. ACKNOWLEDGMENT
This work was supported in part by an DOE Early CAREER PI

Award and an NSF CAREER Award (CNS-0644096).

9. REFERENCES
[1] ARM TrustZone Technology.

http://www.arm.com/products/security/trustzone/index.html.
[2] CACTI 4.2, HP Labs.

http://hpl.hpl.hp.com/personal/Norman Jouppi/cacti4.html.
[3] http://packetstormsecurity.org/.
[4] National institute of science and technology fips pub 180-2: Sha256

hashing algorithm.
[5] Rootkits,The Growing Threat, McAfee.

http://www.mcafee.com/us/local content/white papers/threat center/
wp akapoor rootkits1 en.pdf.

[6] Sony BMG CD copy prevention scandal.
http://en.wikipedia.org/wiki/2005 Sony BMG CD copy protection scandal.

[7] M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A concrete security
treatment of symmetric encryption. In Proceedings of the 38th
Annual Symposium on Foundations of Computer Science (FOCS
’97), page 394. IEEE Computer Society, 1997.

[8] Blacklight. http://www.f-secure.com/blacklight.
[9] J. Butler. VICE Catch the hookers. In

www.blackhat.com/presentations/bh-usa-04/bh-us-04-butler/bh-us-
04-butler.pdf,
2004.

[10] L. Dadda, M. Macchetti, and J. Owen. An ASIC design for a high
speed implementation of the hash function SHA-256 (384, 512). In
Proceedings of the 14th ACM Great Lakes symposium on VLSI, 2004.

[11] F. David, E. Chan, J. Carlyle, and R. Campbell. Cloaker: Hardware
Supported Rootkit Concealment. In Proceedings of IEEE Symposium
on Security and Privacy, 2008, 2008.

[12] W. Diffie and M. Hellman. Privacy and Authentication: An
Introduction to Cryptography. In Proceedings of the IEEE, 1979.

[13] F. I. P. S. Draft. Advanced Encryption Standard (AES). National
Institute of Standards and Technology, 2001.

[14] T. Garfinkel. A virtual machine-based platform for trusted
computing. In In Proceedings of ACM Symposium on Operating
Systems Principles (SOSP), 2003.

[15] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and D. Boneh. Terra:
a virtual machine-based platform for trusted computing. In
Proceedings of the nineteenth ACM symposium on Operating systems
principles, pages 193–206. ACM Press, 2003.

[16] GhostBuster. http://research.microsoft.com/Rootkit/.
[17] D. D. Hwang, K. Tiri, A. Hodjat, B.-C. Lai, S. Yang, P. Schaumont,

and I. Verbauwhede. AES-Based Security Coprocessor IC in 0.18µm
CMOS with Resistance to Differential Power Analysis Side-Channel
Attacks. IEEE Journal of Solid-State Circuits, 41(4):781–791, 2006.

[18] Intel. Intel 64 and IA-32 Architectures Software Developer’s Manual
Volume 3A: System Programming Guide, Part 1, 2007.

[19] T. Kgil, L. Falk, and T. Mudge. Chiplock: support for secure
microarchitectures. SIGARCH Computer Archititecture News,
33(1):134–143, 2005.

[20] S. T. King, P. M. Chen, Y.-M. Wang, C. Verbowski, H. J. Wang, and
J. R. Lorch. SubVirt: Implementing malware with virtual machines.
In Proceedings of the 2006 IEEE Symposium on Security and
Privacy, 2006.

[21] Klister. http://www.rootkit.com/project.php?id=14.
[22] D. Lie, C. Thekkath, M. Mitchell, P. Lincoln, D. B. J. Mitchell, and

M. Horowitz. Architectual support for copy and tamper resistant
software. In Proceedings of the 9th Symposium on Architectural
Support for Programming Languages and Operating Systems, 2000.

[23] P. Magnusson, M. Christensson, J. Eskilson, D. Forsgren,
G. Hallberg, J. Hogberg, F. Larsson, A. Moestedt, and B. Werner.
Simics: A Full System Simulation Platform. IEEE Computer, Feb.
2002.

[24] N. Petroni. Copilot - a Coprocessor-based Kernel Runtime Integrity
Monitor. In Proceedings of Usenix Security Symposium, 2004.

[25] RootkitRevealer.
http://technet.microsoft.com/en-us/sysinternals/bb897445.aspx.

[26] J. Rutkowska. Security Challenges in Virtualized Enviroments.
http://invisiblethings.org/papers/Security0Enviroments.pdf.

[27] J. Rutkowska. Detecting Windows Server Compromises with
Patchfinder 2. In www.invisiblethings.org/papers/rootkits
detection with patchfinder2.pdf, 2004.

[28] J. Rutkowska. System Virginity Verifier: Defining the Roadmap for
Malware Detection on Windows Systems. In
http://www.invisiblethings.org/papers/hitb05 virginity verifier.ppt,
2005.

[29] J. Rutkowska. Thoughts about Cross-View based Rootkit Detection.
In http://www.invisiblethings.org/papers/crossview detection
thoughts.pdf, 2005.

[30] J. Rutkowska. Introducing the Blue Pill. In http://theinvisiblethings.
blogspot.com/2006/06/introducing-blue-pill.html, 2006.

[31] J. Rutkowska. Beyond the CPU: Defeating hardware based RAM
acquisition. In In Proceedings of BlackHat DC 2007, 2007.

[32] A. Seshadri. SecVisor: a tiny hypervisor to provide lifetime kernel
code integrity for commodity OSes. In ACM Symposium on
Operating Systems Principles, 2007.

[33] W. Shi, H.-H. S. Lee, M. Ghosh, C. Lu, and A. Boldyreva. High
Efficiency Counter Mode Security Architecture via Prediction and
Precomputation. In Proceedings of the 32nd Annual International
Symposium on Computer Architecture, June 2005.

[34] S. Sparks and J. Butler. Shadow Walker - Raising the bar for Rootkit
Detection. In In Proceedings of BlackHat, 2005.

[35] E. G. Suh, D. Clarke, M. van Dijk, B. Gassend, and S.Devadas.
AEGIS: Architecture for Tamper-Evident and Tamper-Resistant
Processing . In Proceedings of the International Conference on
Supercomputing, 2003.

[36] Y.-M. Wang. Detecting Stealth Software with Strider GhostBuster. In
Proceedings of Dependable Systems and Networks, 2005.

