
SAFER: Stuck-At-Fault Error Recovery for Memories

Nak Hee Seong† Dong Hyuk Woo†∗ Vijayalakshmi Srinivasan‡ Jude A. Rivers‡ Hsien-Hsin S. Lee†

nhseong@ece.gatech.edu dhwoo@ece.gatech.edu viji@us.ibm.com jarivers@us.ibm.com leehs@gatech.edu

†School of Electrical and Computer Engineering ‡IBM T. J. Watson Research Center
Georgia Institute of Technology Yorktown Heights, NY 10598

Atlanta, GA 30332

ABSTRACT
As technology scaling poses a threat to DRAM scaling due to phys-
ical limitations such as limited charge, alternative memory tech-
nologies including several emerging non-volatile memories are be-
ing explored as possible DRAM replacements. One main road-
block for wider adoption of these new memories is the limited
write endurance, which leads to wear-out related permanent fail-
ures. Furthermore, technology scaling increases the variation in
cell lifetime resulting in early failures of many cells. Existing er-
ror correcting techniques are primarily devised for recovering from
transient faults and are not suitable for recovering from permanent
stuck-at faults, which tend to increase gradually with repeated write
cycles.

In this paper, we propose SAFER, a novel hardware-efficient
multi-bit stuck-at fault error recovery scheme for resistive memo-
ries, which can function in conjunction with existing wear-leveling
techniques. SAFER exploits the key attribute that a failed cell with
a stuck-at value is still readable, making it possible to continue to
use the failed cell to store data; thereby reducing the hardware over-
head for error recovery. SAFER partitions a data block dynamically
while ensuring that there is at most one fail bit per partition and
uses single error correction techniques per partition for fail recov-
ery. SAFER increases the number of recoverable fails and achieves
better lifetime improvement with smaller hardware overhead rela-
tive to recently proposed Error Correcting Pointers and even ideal
hamming coding scheme.

Keywords
multi-bit error correction, stuck-at fault recovery, reliability, write
endurance, resistive memory, phase-change memory

1. INTRODUCTION
Process technology scaling poses a threat to DRAM scaling due

to physical limitations, such as limited charge, which leads to lower
retention time and unreliable sensing of charge on the trench capac-
itor [1, 9]. Emerging memories such as phase-change memories
that use different states of atomic structure to store data, and the re-
sistive drop through the atomic arrangement to sense the stored data
are promising alternatives to overcome the DRAM scalability wall.
Additionally, some of these emerging memory technologies enable
high density by representing multiple bits per cell using fine ad-
justment of atomic arrangements. Furthermore, these memories are
free of charge leakage, and they are projected to have more than ten
years of retention time [1]. Among the emerging memories, such as
Phase-change memory (PCM), magneto-resistive RAM (MRAM),
∗Now with Platform Architecture Research, Intel Labs

spin-torque transfer memory (STT-RAM), and ferroelectric RAM
(FeRAM), PCM appears to be the forerunner being closest to mass
production.

A PCM cell typically uses chalcogenide alloy composed of Ge,
Sb, and Te. The material has two distinct states, namely, a low
resistive crystalline state and a high resistive amorphous state. Us-
ing fine grain partitioning of the resistance range between the two
states, it is possible to store multiple bits per PCM cell. Although
PCM is slower than DRAM to read and much slower to write,
architecture-level solutions have been explored to mitigate these
high latencies, and to effectively use PCM as a DRAM replacement
for main memory [10, 15]. One of the roadblocks to wider adop-
tion of PCM as main memory is its limited write endurance, which
is around 108 writes [7]. As writes result in repeated expansion
and contraction of the chalcogenide alloy due to state change of the
cell, there is a higher probability of the material physically detach-
ing from the heating element resulting in the cell being permanently
stuck-at a value. Prior work addresses the write-related failures of
PCM by limiting the write frequency [3, 10, 21, 22], or by using
wear-leveling to evenly spread the writes [16, 18, 22]. However, as
technology scales, the lifetime variation of cells increases, resulting
in early failures of many cells. Additionally, there is no spatial cor-
relation of failures among neighboring cells, which implies that, in
the absence of error recovery techniques, the lifetime of the PCM
memory is dictated by the weakest cell. Recent studies use oper-
ating system page remapping [6] and error correcting pointers [17]
to recover from stuck-at faults of PCM.

In this paper, we propose SAFER, an alternative approach to
recover from stuck-at faults, which exploits the fact that a failed
cell with a stuck-at value is still readable and uses the failed bit
to continue to store data. We propose a dynamic data block par-
tition technique that ensures each partition has at most one failed
bit; thereby, enabling recovery per partition using single bit error
correction techniques. SAFER is complementary to previously pro-
posed wear-leveling techniques and can be used in conjunction with
them.

The SAFER concept can virtually be applied to any emerging
memory technology which suffers from permanent stuck-at faults.
Depending on the underlying memory technology and the cost-
effectiveness of the implementation, SAFER would incur varying
overheads and result in different design trade-offs for the corre-
sponding memory technologies. In this paper, we have chosen to
demonstrate the effectiveness of SAFER with PCM as the memory
technology example.

The rest of this paper is organized as follows. Section 2 describes
background and motivation. Section 3 introduces Stuck-At-Fault
Error Recovery (SAFER). Section 4 discusses efficient implemen-
tation options for SAFER. We present our evaluation methodology



in Section 5, and results in Section 6. We conclude in Section 7.

2. BACKGROUND AND MOTIVATION
Emerging resistive memories such as PCM are typically endurance

limited. In the case of PCM, repeated writes, which cause the cell
to change state (amorphous or crystalline) also leads to mechanical
stress, which in turn increases the chances of cells having perma-
nent stuck-at faults. Since PCM uses atomic arrangement to store
data, it is not susceptible to alpha particle induced transient errors.
Possible reasons for transient errors may be thermal drift in multi-
level cells or proximity disturbance due to writes to neighboring
cells. However, transient errors are not a problem for PCM be-
cause thermal insulation between cells [8] and periodic refresh can
be used to mitigate them. Hence, our focus is on recovery from
permanent faults for PCM.

The existing error correcting code (ECC) schemes can be applied
to recover from permanent stuck-at faults even though they are pri-
marily devised for recovering from transient faults. For example,
among the existing ECC schemes, the (72,64) Hamming Coding
scheme is the most popular one and is currently adopted to correct
single transient errors in DRAM memories. The (72,64) code uses
eight more bits per 64 bits of data to recover from at most one fail.
This is usually sufficient because typically alpha particle induced
transient errors are rare events, and the probability of two failures
within 64 bits is very low [12]. However, unlike transient errors, the
number of stuck-at faults gradually grows with time (with repeated
write cycles), making it necessary to provide efficient multi-bit er-
ror correction capability. Furthermore, an ECC scheme does not
even provide efficient mechanisms to identify the position of the
fail bits. More importantly, due to its nature, ECC bits wear out
much faster than their corresponding data cells, thus ECC is not
appropriate for emerging memory technologies that suffer from the
limited write endurance.

One of the simplest ways to maintain memory integrity in the
presence of more than one stuck-at fault per data block is for the
Operating System (OS) to exclude the page containing the failed
data block from being allocated. However, this might lead to many
pages becoming unusable even when there are only two fails per
data block.

Recently, architectural techniques have been proposed to over-
come multiple stuck-at faults in PCM [6, 17]. Ipek et al. [6] pro-
posed Dynamic Pairing scheme to reuse faulty pages. In the Dy-
namic Pairing scheme, each byte has its own fail indication bit. If a
new fail occurs, the indication bit of the corresponding byte is set,
and the OS adds the corresponding page to a waiting list of faulty
pages. On a page allocation, the OS selects a pair of faulty pages
such that their fail bits are not at the same offset within the page.
One of the pages of the pair is maintained as the primary copy, and
the other as a backup copy. Dynamic Pairing provides the ability
to reuse faulty pages with more than one fail bit per data block.
However, it does not support wear-leveling techniques that manip-
ulate memory block addresses to uniformly spread the writes. This
makes the memory system vulnerable to malicious attacks, espe-
cially when the OS is compromised [18].

Error-Correcting Pointer (ECP) scheme [17] stores six fail point-
ers for each 512 bits of data block and replaces the fail cells with ex-
tra/spare cells. This ECP scheme is more efficient than the (72,64)
code from the standpoint of both hardware overhead and fail re-
covery because it can recover six fails per 512 bits with 61-bit
overhead. Furthermore, this technique operates in the presence of
existing wear-leveling algorithms.

The main motivation for our work is to reduce the hardware over-
head for multi-bit stuck-at fault error recovery. One of the key at-

tributes of stuck-at faults is that the cell with a stuck-at value is
still readable. We exploit this property to reuse the faulty cell with
the stuck-at value to provide hardware efficient multi-bit stuck-at
fault error recovery. This becomes necessary because, with tech-
nology scaling of resistive memories, the non-uniform distribution
of lifetime variations may be exacerbated leading to more frequent
occurrences of multiple permanent stuck-at faults per data block.

3. SAFER: STUCK-AT-FAULT ERROR RE-
COVERY

We now describe our stuck-at-fault error recovery (SAFER) tech-
nique, which enables a hardware-efficient multi-bit error recovery
by dynamically partitioning the data blocks to ensure that each par-
tition has at most one fail bit. We begin with a discussion of how to
partition a data block such that each partition has at most one fail
bit, and then describe how to recover from those fail bits.

3.1 Partition Technique of SAFER for Double
Error Correction

We first explain how we partition a data block for double error
correction (DEC). The key idea of SAFER for DEC is to partition a
data block into two groups ensuring that the two fail bits belongs to
different groups and to use single error correction (SEC) technique
per group.

01234567Bit Pointer : 00

10

01

0

0

0
(3) Partitioned by 3rd LSB

(2) Partitioned by 2nd LSB

(1) Partitioned by 1st LSB

Data Block :
Partition Field

Partition Fix

(a) Three Partition Candidates

F
01234567

F

FBit Pointer :

F

00

10

01

0

0

0
(3) Partitioned by 3rd LSB

(2) Partitioned by 2nd LSB

(1) Partitioned by 1st LSB

Data Block :

One Fail

(b) One Fail

FF
01234567

FF

FFBit Pointer :

FF
110

110

000

Difference Vector :

(3) Partitioned by 3rd LSB

(2) Partitioned by 2nd LSB

(1) Partitioned by 1st LSB
00

10

01

1

1

1

Data Block :

(c) Two Fails

Figure 1: Example of Partitioning Two Fails

If we assume an n bit data block, there are
C

n
n/2

2
possible ways

to partition the block into two n/2 bit groups. However, if the goal
is to only ensure that the two fail bits are not in the same group,
the number of ways to partition them into two groups is reduced to



only dlog2ne. We now describe the partition technique to handle
DEC using an example shown in Figure 1.

The partition technique of SAFER identifies the location of each
data bit in a block using a bit pointer. Each data bit is assigned a
bit pointer using dlog2ne bits. Figure 1(a) shows an example of
partitioning an eight bit data block into two groups. Three bits are
required to represent each bit position in this eight bit block. In this
figure, each box indicates one data bit cell and gray and white boxes
are used to indicate two different groups, say G and W. The data
block can be partitioned into two groups in three different ways,
namely, GWGWGWGW, GGWWGGWW, and GGGGWWWW,
based on whether the least significant bit (LSB), the second LSB,
or the most significant bit (MSB) of the three-bit bit pointer is used,
respectively. In other words, all possible 28 fail bit-pairs that are
selected in the eight-bit block can be separated into two groups by
using one of these three patterns.

Thus a block with at most one fail bit can be partitioned by using
any arbitrary bit of a bit pointer. Figure 1(b) shows that if the first
bit to fail is at bit position 3, any of the three ways of partitioning
discussed above can be used.

Now, if the second bit to fail is at bit position 0 as shown in
Figure 1(c), the partition should be fixed to separate the two fail
bits into different groups. The partition technique uses XOR op-
eration to determine the difference vector of the two fail pointers
(000 ⊕ 011 = 011). The number of 1s in the difference vector
indicates the possible choices for partitioning the data. With two
bits being 1 in the difference vector there are two ways to partition
the data block. If we choose the first LSB of the difference vec-
tor, the resulting partition is shown in Figure 1(c)(1), and instead
if we choose the second LSB of the difference vector, the resulting
partition is shown in Figure 1(c)(2).

The “partition field” identifies which bit of the difference vector
was used to partition the data block. For a n bit data block, the
“partition field” uses dlog2(dlog2ne)e additional bits to identify
how a block is partitioned. For our example in Figure 1, with an
eight bit data block, the partition field is dlog2(dlog28e)e(= 2)
bits with a value of either “00”,“01”, or “10” depending on the bit
position (the first, second or third LSB) of the difference vector
chosen for partitioning the data. Furthermore, the partition is not
fixed unless there are two fail bits. Hence, a “partition fix” bit is
used to indicate whether the partition is fixed, or not. In Figure 1(b)
the “partition fix” bit is set to 0, and it is set to 1 only in Figure 1(c)
as soon as there is a second fail bit.

To summarize, the partition technique of SAFER identifies the
two fail positions using their dlog2ne bit pointers. An XOR opera-
tion on the two fail pointers determines a bitwise difference vector
between the two fail pointers. Finally, the technique selects a bit
position with a value 1 from the difference vector, and resets all the
other bits to 0. For example, if the selected bit position is the kth

LSB in the difference vector, the partition technique splits the n bit
data block into two groups according to the kth LSB of the pointer
for each bit inside the block. Thus, dlog2ne group patterns ex-
ist and only dlog2(dlog2ne)e additional bits are needed to identify
how a block is partitioned.

Furthermore, for blocks with two fail bits, the partitions have to
be fixed in order to ensure that the fail bits are in different groups.
Therefore, one additional bit is required to indicate whether a par-
tition is fixed, or not. Thus, the total storage overhead for a n bit
data block is (1 + dlog2(dlog2ne)e) bits.

As shown in the above example, the partition technique of SAFER
for DEC is successfully able to partition the data block such that the
two fail bits are not in the same group; thereby, enabling the use of
SEC per group.

89101112131415
Data Block :

01234567

Bit Pointer :
1st LSB
2nd LSB
3rd LSB
4th LSB

0101010101010101
0011001100110011
0000111100001111
000000001111 1111

Group Index : 2323 0101 2323 0101
Partitioned Data Block :

1 01st Partition Field :
0 02nd Partition Field :
0 0Fixed Partition Counter :

Additional bits to describe partitions

(a) Initial State

89101112131415 01234567Bit Pointer :

Group Index : 2323 0101 2323 0101
Partitioned Data Block :

1 01st Partition Field :
0 02nd Partition Field :

0 0Fixed Partition Counter :

F

Group Index : 2323 01012323 0101
Partitioned Data Block :

1 11st Partition Field :
0 02nd Partition Field :

0 1Fixed Partition Counter :

F F

Group Index :
Partitioned Data Block :

1 11st Partition Field :
0 12nd Partition Field :

1 0Fixed Partition Counter :
23 23 01 0123 23 01 01

FF F

(b) Dynamic Partition

Figure 2: An Example of Four-Group Partition

3.2 Partition Technique of SAFER for Multi-
Bit Error Correction

To be able to handle more than two bit fails in a data block, the
partition technique is extended to dynamically partition the data
block into multiple (> 2) groups by selecting multiple bits in the
difference vector. We describe the extensions of the partition tech-
nique to handle multi-bit errors using an example shown in Fig-
ure 2.

Figure 2 shows an example data block of 16 bits with four fail
bits to be partitioned into four groups, which are depicted with four
different gray-levels. The partition technique associates a group
index for each bit in the data block using two bits from the bit
pointer. When a data block is composed of 16 bits, the bit pointer
is (log216 = 4) bits, which implies that there are C4

2 = 6 pos-
sible ways to choose two bits out of them. Based on the fail bit
locations, one of these six possible ways is chosen to determine the
four groups.

In Figure 2(a), the initial partition arbitrarily uses the third and
the first LSBs. For each data bit, the concatenation of these two bits
in its bit pointer represents its group index. For example, the 12th

data bit has a bit pointer of “1100” and concatenating the third and
the first LSBs results in a group index of “10”(2).

The “partition field” is extended to record which bit positions
are used for partitioning the data. In this example, the two partition
fields indicate that the third and the first LSBs are used from the
bit pointer. The “partition fix” field is extended to a counter, “fixed
partition counter”, to keep track of the number of partitions that are



fixed. In Figure 2(a), there are no fails, hence the value of the fixed
partition counter is zero.

Figure 2(b) shows how a partition can be changed dynamically
to account for a new fail bit. If the first fail bit occurs at bit position
8, the initial partition is still valid because none of groups has more
than one fail bit. Now, if the second fail occurs at bit position 2,
there are two fail bits in group 0. Thus, a new partition should be
derived so that the two fail bits are in different groups. Using the
partition technique described in Section 3.1, the difference vector
of the two fails is (1000 ⊕ 0010 = 1010), which implies that the
second and the fourth LSBs are candidates for the first partition
field. Correspondingly, the first partition field is set to “11”. The
fixed partition counter increases by one to account for fixing the
first partition field. After this partition, groups 0 and 2 each have
one fail bit. Note that even if the second fail bit was not located in
group 0, the fixed partition counter would have to be incremented
although the first partition field does not need to be changed.

At this point, if a third fail happens, the second partition field
should be fixed with a proper value. If the third bit fails in position
0, the current partition has two fail bits in group 0. Applying the
same partition technique as above, the difference vector of the two
fails is (0010⊕ 0000 = 0010), which implies that the second LSB
position is the candidate for the second partition field. After this re-
partitioning, groups 0, 1, and 2 each have one fail bit. Furthermore,
the fixed partition counter is incremented and reaches its maximum
value of two, making it impossible to re-partition further. Thus, in
this example, we can recover from a fourth bit failure only if the
failure occurs in bits belonging to group 3.

Based on the above discussion, it is clear that the hardware re-
quirement is proportional to the number of groups required to parti-
tion the data to ensure one fail bit per group. For a n bit data block
and a k group partition, the number of additional bits required is
dlog2ke× dlog2dlog2nee+ dlog2(dlog2ke+ 1)e, where, dlog2ke
is the number of partition fields, dlog2dlog2nee is the size of each
partition field, and dlog2(dlog2ke+1)e is the size of the fixed par-
tition counter. For 512 bits of data block to be partitioned into 32
groups, additional 23 bits are required to represent the partition,
which is still only 4.50% overhead compared to the data size.

3.3 Using Data Block Inversion for SAFER
The partitioning technique described in the previous section ex-

ploited the fact that stuck-at faults are permanent (not transient) to
ensure that at most one stuck-at fault bit is present in each parti-
tion. In this section, we propose a recovery scheme by exploiting
the fact that if a resistive memory’s cell wears out resulting in a
stuck-at fault, then it is still possible to read the cell content as the
permanent stuck-at value. By exploiting this readability of failed
cells, the recovery scheme reduces the number of additional bits
required to recover data written to a stuck-at cell.

If a data block has only one fail bit and the data being written at
the fail bit position is the opposite of the stuck-at value, then the
data can be stored in an inverted form with a marked flip-bit. When
reading the data, the original data can be recovered by inverting
the stored data if the corresponding flip-bit is marked. The idea of
inverting a data block is similar to bus-inverting coding [19] and
Flip-N-Write [3]. However, our objective in inverting a data block
is to recover a stuck-at fail while the bus-inverting coding [19] in-
verts a data block to reduce I/O power and the Flip-N-Write [3]
utilizes it for removing redundant writes to PCM.

The proposed technique to invert the data can be used by SAFER
only after verifying that the data write has failed to store the in-
tended value. This write verification can be performed by reading
the data written and comparing it with the original data. When the

verification fails, the positions of fails and its stuck value can be
revealed from the comparison result. Note that iterative write tech-
niques which require a write verification phase are already needed
for resistive memories using multi-level cells [14].

The proposed data inversion technique uses only one additional
bit per partition to indicate that the data value has to be inverted
prior to a read. However, the drawback is that the decision to invert
and store the data can be made only after a first write fails the ver-
ification, resulting in two writes to store the data, thereby affecting
the endurance of the cell.

0
tag0 01

0

0

Block Address Fail Pointer

Bank
Addr

Cache
Index

Cache
Tag

Bank #0

0
0

tag1 11

0
Bank #15

Valid
Tag

Stuck Value Valid
Tag

Stuck Value

Cache
Entry

Cache
Entry

Figure 3: Fail Cache Organization

To alleviate this problem, we propose a relatively small direct-
mapped cache called “fail cache”, to keep track of data blocks with
recent stuck-at fails. For these blocks recent fail positions and their
stuck-at values are maintained in the cache. Figure 3 shows the fail
cache organization that is composed of 16 banks. When storing
new fail information, its block address and fail pointer are used to
calculate the corresponding cache entry by separating into a cache
tag, an index and a bank address. If new fail information is de-
tected during the write verification phase, the fail position and the
stuck-at value are known. Therefore, they can be stored with its tag
portion in the corresponding cache entry. The tag, the cache index,
and the bank address can also be calculated from its block address
and the fail pointer. On every write request from the memory con-
troller, all fail information for the corresponding n-bit data block
should be extracted from the fail cache. To do so, the 16 banks are
simultaneously accessed for n/16 iterations. For example, 32 iter-
ations are required for a 512-bit data block. As a result, two n-bit
vectors are generated – a fail indication vector and a stuck-at value
vector. These two vectors for each write request can be exploited
to avoid the additional write. If a fail indication vector indicates er-
rors, the corresponding bits to be written are suitably inverted and
stored according to their stuck-at values and partition information.
Note that a read request to the same data block precedes a write
request to eliminate redundant writes, and the partition information
is collected during the read. Thus, if all fail information for a write
data block is found in fail cache, the second write can be avoided.
Also, since the preceding read can be used to gain enough time to
access fail cache for n/16 iterations, the performance impact of the
fail cache will be insignificant.

3.4 Putting It All Together
SAFER comprises two techniques, namely, the dynamic multi-

group partition and the data block inversion. The dynamic multi-



group partition ensures that each group includes at most one fail bit
by partitioning the data into different groups. With each group now
including at most one failed cell, the data block inversion scheme
can be applied to recover from the stuck-at fault for that group. The
total hardware bit budget of SAFER, to recover from a maximum of
k failures, is dlog2ke×dlog2dlog2nee+dlog2(dlog2ke+1)e+k,
where n is the size of a data block and k is the number of partitioned
groups.

Another hardware overhead is bit manipulation logic for data
block partition and data inversion. As our partition technique is
based on the knowledge of fail positions, detecting a new fail po-
sition in a write verification phase is important. It can be imple-
mented with simple combinational logic, an n-to-dlog2ne priority
encoder for each partition group. If a priority encoder generates a
valid fail pointer in the first verification phase, the corresponding
group will be re-written in an inverted form. If a priority encoder
still generates a valid fail pointer after the inversion write, it in-
dicates the occurrence of a new fault in the corresponding group.
Then, the data block is re-partitioned with the two fail pointers re-
vealed at the two verification phases. That is, re-partition can be
performed with the priority encoders and a simple FSM described
in Figure 4. For both read and write data inversion, a partition de-
coder is required to select corresponding bits to be inverted.

Start

Write (1st)

Verify

Inversion Write (2nd)

Verify Re-partition

Fixed Partition 
Counter < MAX

Error

Success Failure

Error

Y
N

N Y

N

Y

Read

Figure 4: A Sequence of a Write Request in SAFER

Figure 5 shows an example of SAFER for a 16 bit data block
and a four group partition. Additional six bits are required for the
four-group partition and four flip bits are used to indicate whether
the data in the corresponding groups is stored in an inverted form or
not. Note that the six bits used to describe the partition are updated
only when a new fail bit occurs. On the other hand, the four flip
bits will be updated on every write that tries to store to the fail bit a
value that is the opposite of the stuck-at value. In this example, fail
bits are present in group 0, group 1, and group 2. Thus, the flip bits
for those groups may be changed on every write. However, the flip
bit for group 3 will still be zero until a new fail happens in group 3.

Group Index :
Partitioned Data Block :

1 11st Partition Field :
0 12nd Partition Field :
1 0Fixed Partition Counter :

23 23 01 0123 23 01 01
FF F

0/1
0/1
0/1

0

Flip Bits

Group 0
Group 1
Group 2
Group 3

Figure 5: An Example of SAFER

4. EFFICIENT IMPLEMENTATION OF
SAFER

In this section, we address three key issues necessary for efficient
implementation and use of SAFER, namely, where to place SAFER
logic, what is the ideal data block size to maximize SAFER effec-
tiveness, and how to limit the overhead of the “fail cache”.

4.1 Where to place SAFER logic?
Fail recovery schemes are mainly used to prolong the lifetime

of resistive memory especially after fails occur, but they are not
geared towards decreasing the number of writes to improve the life-
time. Hence, fail recovery schemes must be used in concert with
other schemes that delay the occurrences of failures, such as redun-
dant write reduction schemes [10, 15, 21, 22, 3] and wear-leveling
schemes [22, 16, 18]. These schemes are typically implemented in
the memory controller or in the memory chip itself. For example,
the wear-leveling schemes maintain their own address translation
layer to evenly wear out the entire memory space, and the Secu-
rity Refresh [18] logic is located inside the memory chip to protect
against malicious attacks. In order to use fail recovery schemes in
conjunction with these other schemes, it is necessary that they be
embedded in the memory chips. Thus, we propose to locate the
SAFER logic inside the memory chip.

4.2 Ideal Data Size for SAFER Effectiveness
SAFER dynamically partitions a data block into multiple groups

according to fail locations and supports one bit correction for each
group. Therefore, the larger the data block, the more efficient the
fail recovery. For example, a double error correction per 16 bytes
is more efficient than a single error correction per eight bytes. Sim-
ilarly, four bit error correction per 32 bytes is more efficient than
the two bit error correction. However, the upper bound of the size
of a data block will be decided by the memory chip design, which
is optimized to increase the density of the memory cell.

Figure 6 shows an example of a typical 4Gb 8 bank DDR3 DRAM
architecture which is highly optimized for density. We expect the
new resistive memory architecture to be similar to that of the DRAM
because of the density issue. In the example, each bank is com-
posed of 2048 sub-arrays whose size is 512 × 512 bits [4, 13, 2].

512 x 512
sub-array

S.A. & Colum MUXs

512 x 512
sub-array

lo
ca

l r
ow

 d
ec

od
er

I/O Bus

lo
ca

l r
ow

 d
ec

od
er

G
lo

ba
l R

ow
 D

ec
od

er

Column Decoder

Column Decoder

G
lo

ba
l R

ow
 D

ec
od

er
G

lo
ba

l R
ow

 D
ec

od
er

Column Decoder

Column Decoder

G
lo

ba
l R

ow
 D

ec
od

er

G
lo

ba
l R

ow
 D

ec
od

er

Column Decoder

Column Decoder

G
lo

ba
l R

ow
 D

ec
od

er
G

lo
ba

l R
ow

 D
ec

od
er

Column Decoder

Column Decoder

G
lo

ba
l R

ow
 D

ec
od

er

Peripherals

Bank 0 Bank 7

S.A. & Colum MUXs

Figure 6: DRAM Architecture

Here, the column decoder generates column selection signals to
sub-arrays, and pass-transistors, which act as column multiplexers,
are located near by each sub-array. This is important so as to min-
imize area for long wires from the sense amplifiers to interface pe-



Table 1: SRAM Fail Cache Overhead Compared with a 8 Gbit
PCM chip

Number of Tag Size Entry Size Cache Size Area
Entries (bits) (bits) (bits) Overhead

1K 23 25 25.6K 0.01%
2K 22 24 49.2K 0.02%
4K 21 23 94.2K 0.04%
8K 20 22 0.18M 0.08%
16K 19 21 0.33M 0.15%
32K 18 20 0.63M 0.28%
64K 17 19 1.19M 0.53%
128K 16 18 2.25M 1.00%

ripherals by multiplexing them. Thus, the size of data bits that are
transferred to interface peripherals at any time is equal to the min-
imum burst length that the chip supports. For instance, the DDR3
interface has a fixed burst length of eight. If the I/O data bus width
is 16, 128 bits can reach to the peripherals.

To minimize the area overhead SAFER is best located in the pe-
ripherals, which implies that the size of a data block can be at most
128 bits in this case. However, historically the interface size con-
tinues on an upward trend from SDR to DDR, to DDR2, and to
DDR3. Thus, we can safely assume that the size of data reaching
the peripherals may be 512 bits in the near future. We evaluate the
effectiveness of SAFER varying the block size from 64 to 512 bits
in Section 5.

4.3 Area Overhead of Fail Cache
Since we decided to embed SAFER logic inside the memory

chip, the fail cache should be located inside the memory chip with
other peripherals. Fortunately, a PCM process is CMOS compati-
ble, and it poses no process technology hurdles to implementing an
SRAM cache. Hence, one of the major concerns is the area over-
head of the “fail cache”. According to ITRS projection [1], the
cell sizes of SRAM and PCM, in 2024 will be 140F 2 at 10 nm
and 6F 2 at 8 nm, respectively, implying that 36.46 times cell area
difference may exist between SRAM and PCM. Table 1 shows the
area overheads of a direct-mapped SRAM “fail cache” considering
the 36.46 times cell area difference. For example, if we assume an
8Gbit PCM chip with a fail cache with 128K entries, in which each
entry is composed of 16 bits of tag, a valid bit and a stuck-at value,
then the total size of the cache is 2.25M bits which is only about
1.00% area overhead relative to the 8Gbit PCM. In Section 6, we
show the effectiveness of the “fail cache” varying the number of
entries from 1K to 128K.

5. METHODOLOGY
In this section, we present the methodology for evaluating SAFER

and for comparing it against two existing techniques, namely the
ideal Hamming Coding [5] and the ECP [17] technique. We com-
pare against Hamming Coding because it represents a theoretical
limit of memory lifetime for existing ECC schemes designed to
correct transient errors. The number of bits required for the Ham-
ming Coding implementation is provided by the Hamming Bound:
l ≤ n−dlog2Σ

t

k=0C
n

k e, where l is the size of data, n is the size of
the hamming code including meta-data for correction, and t is the
number of correctable bits [20]. For example, a 512 bit data block
needs 58 additional bits to be able to correct eight fails. Again,
these 58 bits may serve only as a lower bound and a practical im-
plementation may require more bits. In addition, Hamming Coding
has a high toggle rate for the meta-data. Hence, an additional bit
is needed to determine if the meta-data is valid. The indication bit
also helps avoid cells for meta-data from failing earlier than data

cells. In our evaluation, the Hamming Coding scheme is referred
to as IdealECC.

Since our focus is to implement SAFER inside the memory chip,
limiting the area overhead is important. We define area overhead
as the size of meta-data

the size of data . For instance, the area overhead of the
(72,64) hamming code is 12.5% (= 72−64

64
). Throughout this paper,

we use the area overhead of the (72,64) hamming code as the upper
bound for our evaluation and exclude all configurations of SAFER,
ECP and IdealECC that exceed this area overhead.

Figure 7 shows the hardware overheads for the different configu-
rations for IdealECC, ECP, and SAFER. The configuration names
for each of the techniques include the maximum number of fails
that can be recovered. The number above each bar in the graph
shows the size of meta-data for the corresponding configuration.
For example, for the 512 bit data block, ECP6 represents the ECP
technique with six fail pointers that can recover up to six fails, and
uses 61 bits for the meta-data; IdealECC8 represents the ideal eight
bit Hamming Code correction technique which requires a minimum
of 59 bits; and the SAFER32 can correct up to 32 fails with an ad-
ditional 55 bits.

5.1 Experimental Setup
We use Monte Carlo simulations to evaluate SAFER and com-

pare against IdealECC and ECP. Since PCM is the closest to mass
production among resistive memories, our evaluations are based on
ITRS projections for PCM endurance. We use the following as-
sumptions for the Monte Carlo simulations:

1. We assume the lifetime of each memory cell to follow the
normal distribution with a mean lifetime (µ) of 108 and with-
out any correlation between neighboring cells [6]. Our ex-
periments with different standard deviation (σ) values (107,
2 · 107, and 3 · 107) did not show significant variation in life-
time patterns. Hence, we use a standard deviation (σ) of 107

for our evaluations.

2. We assume a perfect wear-leveling scheme so as to focus
only on the impact of the fail recovery scheme on the life-
time. The wear-leveling scheme evenly wears out the entire
memory space at a block granularity equal to the line size
of the last level cache as in the Randomized Region-based
Start-Gap [16] and the Security Refresh [18]. We use 256
bytes for the last level cache line size, which implies that all
the 256 byte memory blocks have the same number of writes
because of the perfect wear-leveling scheme. Based on this,
we measure the lifetime of one 256 byte data block.

3. A write request to memory is converted to a sequence of a
read, a write, and a read request. The first read eliminates
silent writes to memory by comparing the memory data read
with the data to be written. We assume that 50% of the writes
are silent writes. The second read verifies that the data writ-
ten to memory matches the intended write data which allows
us to recognize cell failures. SAFER requires another write
with necessary bit inversions if cell failures are detected dur-
ing write verification. However, a hit in the fail cache will
avoid the second write because the bits are already suitably
inverted to account for the cell failures based on the informa-
tion stored in the fail cache.

4. We assume that four x16 memory chips compose a x64 DIMM
memory module so that each chip can deliver 512 bits of
data.



8 8

6

9 9

15

6

12

10

19

28

10

17

23

30

6

12

19

11
21

31
41

51
61

11
19

26
33

40
47

53
59

7
14

22

35

55

0.0%

2.5%

5.0%

7.5%

10.0%

12.5%

15.0%

EC
P1

Id
ea

lE
CC

1
SA

FE
R2

EC
P1

Id
ea

lE
CC

1
Id

ea
lE

CC
2

SA
FE

R2
SA

FE
R4

EC
P1

EC
P2

EC
P3

Id
ea

lE
CC

1
Id

ea
lE

CC
2

Id
ea

lE
CC

3
Id

ea
lE

CC
4

SA
FE

R2
SA

FE
R4

SA
FE

R8
EC

P1
EC

P2
EC

P3
EC

P4
EC

P5
EC

P6
Id

ea
lE

CC
1

Id
ea

lE
CC

2
Id

ea
lE

CC
3

Id
ea

lE
CC

4
Id

ea
lE

CC
5

Id
ea

lE
CC

6
Id

ea
lE

CC
7

Id
ea

lE
CC

8
SA

FE
R2

SA
FE

R4
SA

FE
R8

SA
FE

R1
6

SA
FE

R3
2

64 bits 128 bits 256 bits 512 bits

Figure 7: Hardware Overhead for Recovery Schemes

100 120 140 160 180 200 220 240 260 280
Lifetime (Million Writes)

µ = 100M writes
σ = 10M writes
toggle rate(T) = 

68.9M writes = 3.44σ/T 

The fail cell among 256 Bytes
= 131.1M writes

F L

Relative Improvement
=(L-F)T/σ

Figure 8: Definition of Lifetime Improvement

In the Monte Carlo simulation, each configuration is run 50000
times, and the average result is reported. For each run, our simu-
lator allocates the array equivalent to the number of required cells
including the 256 byte data block and its meta-data corresponding
to each configuration. A random write endurance value according
to the aforementioned normal distribution is assigned to each ar-
ray element. For each write to a cell, we considered the toggling
rate of the value to determine the available lifetime. Simulation
continues until a given configuration cannot recover from a failure
any longer. We take into consideration that all the meta-data do not
have the same toggling rate. For example, the fail pointer in the
ECP scheme and the partition fields in SAFER are updated only
once when a new fail occurs. On the other hand, the meta-data for
Hamming Coding (excluding the bit indicating the validity of the
meta-data), the replacement cells in the ECP scheme, and the flip
bits in SAFER are written with the same toggling rate (i.e., 0.5) as
the data. For SAFER, the simulation also accounts for an additional
write that is needed if the write verification detects a failure.

6. RESULTS
This section describes the simulation results focusing on the fol-

lowing figures of merit: lifetime improvement due to fail recovery,
number of fails recovered for a given size of data block, and the
cost of meta-bits for the observed lifetime improvement. Finally,
we show the effectiveness of the fail cache in eliminating the addi-
tional writes and correspondingly improving the lifetime.

6.1 Lifetime Improvement
Our simulations assumed that the lifetime of memory cells fol-

lows a normal distribution N(µ, σ), where µ is 108 writes and σ is
107 writes. Furthermore, we assumed that each bit toggles with a
probability T = 0.5. However, for reliable analysis, we present the

lifetime improvement as a function of σ.
Figure 8 describes the method used to determine the relative life-

time improvement. In the example shown in Figure 8, the first fail
shown as F occurs at 131.1 million writes. If SAFER were to in-
crease the lifetime to L, then the relative lifetime improvement is
calculated as (L−F )T/σ to account for the dependence of the ob-
served lifetime improvement on both σ and T . If SAFER were to
increase the lifetime to the mean lifetime, then the relative lifetime
improvement is ((2 · 108 − 1.311 · 108) · 0.5/107) = 3.44.

Figure 9 shows the relative lifetime improvement for each con-
figuration with different data block sizes. For these results, SAFER
does not use the fail cache thereby requiring the additional over-
head of a second write if the write verification detects a failed cell.
We observe that, even without the fail cache, SAFER improves
the lifetime more than ECP for all the configurations. For a 512
bit data block size, SAFER32 increases lifetime by 21.6 million
(= 1.08 · 107/0.5) writes, and ECP increases lifetime by only 21.1
million (= 1.05 ·107/0.5) writes while still using 10% more meta-
data (Figure 7) than SAFER.

Also, each bar of the IdealECCn represents the lifetime improve-
ment at the time of occurrence of the (n + 1)th fail. For exam-
ple, for a 512 bit data block, the lifetime improvement due to Ide-
alECC2 is 12.8 (= 0.64 · 107/0.5) million writes when the third
failure occurs.

6.2 Number of Fails Recovered
Figure 10 shows the average number of fails recovered per mem-

ory block for each configuration. It appears that ECP and IdealECC
show linear increment in fails recovered with increase in the max-
imum number of recoverable fails. On the other hand, SAFER
shows an exponential improvement. It is important to note that the
maximum number of recoverable fails for SAFER increases expo-



0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

EC
P1

Id
ea

lE
C

C
1

SA
FE

R
2

EC
P1

Id
ea

lE
C

C
1

Id
ea

lE
C

C
2

SA
FE

R
2

SA
FE

R
4

EC
P1

EC
P2

EC
P3

Id
ea

lE
C

C
1

Id
ea

lE
C

C
2

Id
ea

lE
C

C
3

Id
ea

lE
C

C
4

SA
FE

R
2

SA
FE

R
4

SA
FE

R
8

EC
P1

EC
P2

EC
P3

EC
P4

EC
P5

EC
P6

Id
ea

lE
C

C
1

Id
ea

lE
C

C
2

Id
ea

lE
C

C
3

Id
ea

lE
C

C
4

Id
ea

lE
C

C
5

Id
ea

lE
C

C
6

Id
ea

lE
C

C
7

Id
ea

lE
C

C
8

SA
FE

R
2

SA
FE

R
4

SA
FE

R
8

SA
FE

R
16

SA
FE

R
32

64 bits 128 bits 256 bits 512 bits

R
el

at
iv

e 
Li

fe
tim

e 
Im

pr
ov

em
en

t

Figure 9: Relative Lifetime of 256B Memory Block

0

5

10

15

20

25

EC
P1

Id
ea

lE
C

C1
SA

FE
R2

EC
P1

Id
ea

lE
C

C1
Id

ea
lE

C
C2

SA
FE

R2
SA

FE
R4

EC
P1

EC
P2

EC
P3

Id
ea

lE
C

C1
Id

ea
lE

C
C2

Id
ea

lE
C

C3
Id

ea
lE

C
C4

SA
FE

R2
SA

FE
R4

SA
FE

R8
EC

P1
EC

P2
EC

P3
EC

P4
EC

P5
EC

P6
Id

ea
lE

C
C1

Id
ea

lE
C

C2
Id

ea
lE

C
C3

Id
ea

lE
C

C4
Id

ea
lE

C
C5

Id
ea

lE
C

C6
Id

ea
lE

C
C7

Id
ea

lE
C

C8
SA

FE
R2

SA
FE

R4
SA

FE
R8

SA
FE

R1
6

SA
FE

R3
2

64 bits 128 bits 256 bits 512 bits

A
ve

ra
ge

 R
ec

ov
er

ed
 F

ai
ls

 p
er

 2
56

B

Figure 10: Fail Recovery in a 256B Memory Block

nentially as the number of partition fields increases linearly.
As shown in Figure 10, for a 512 bit data block, SAFER32 recov-

ers from 22.94 fails whereas ECP6 recovers from only 17.08 fails.
However, the relative improvement in lifetime with SAFER is only
2% better than the improvement with ECP. The key reason why the
34% improvement in the fail recovery of SAFER is not translated to
larger improvement in lifetime (compared to ECP) is the additional
write required by SAFER if the write verification phase identifies a
failed cell when we do not use a fail cache. We show in Section 6.4
that using a fail cache with SAFER significantly removes the addi-
tional writes and shows gains in lifetime improvement even relative
to IdealECC8.

6.3 Meta-bit overhead vs. Lifetime Improve-
ment

Another important figure of merit of a recovery technique is the
cost of meta-data for the observed lifetime improvement. Figure 11
shows the contribution of each meta-data bit to the overall lifetime
improvement for a memory block size of 256 bytes. From Fig-
ure 11, we observe that, for a data block of 512 bits, SAFER32
has a 13.4% better utilization of the additional meta-data relative to
ECP6.

6.4 SAFER with Fail Cache
So far, we have evaluated lifetime improvement and meta-bit ef-

ficiency of SAFER without fail cache. By using the fail cache,
however, the lifetime can be extended even longer. Fail cache en-
ables SAFER to avoid the additional write by providing informa-
tion about the fail bits so that the data to be written can be suitably

Table 2: Applications with more than 1M writebacks to mem-
ory

Application Number of Writebacks
410.bwaves 3.92M

429.mcf 8.17M
433.milc 7.72M

436.cactusADM 1.29M
437.leslie3d 4.75M
450.soplex 3.87M
458.sjeng 1.13M

459.GemsFDTD 9.37M
462.libquantum 7.62M

473.astar 2.45M

inverted. We use the miss rate of the fail cache as a measure of its
effectiveness in reducing the additional write to the memory.

To determine the fail cache miss rate to enable n bits of data to
recover from a maximum of k fails, we randomly set the fail bits
in a memory of size 1GB, such that each n bits of memory had at
most k failures. As soon as any n bits of data block has more than
k fails, the fail insertion was terminated.

Using this set-up, we simulated 26 applications from SPEC2006
suite using the PIN instrumentation tool [11]. The following mem-
ory hierarchy was simulated: 32KB 8-way set-associative L1 data
cache, 1MB 8-way set-associative unified L2 cache, and 8MB 8-
way set-associative L3 DRAM cache, and finally a 1GB main mem-
ory. Out of 26 applications, we only used ten applications (Table 2),
which has more than one million writebacks to the memory. In this
set of simulations, we simulated five billion instructions.



0.000
0.002
0.004
0.006
0.008
0.010
0.012
0.014
0.016

EC
P1

Id
ea

lE
CC

1
SA

FE
R2

EC
P1

Id
ea

lE
CC

1
Id

ea
lE

CC
2

SA
FE

R2
SA

FE
R4

EC
P1

EC
P2

EC
P3

Id
ea

lE
CC

1
Id

ea
lE

CC
2

Id
ea

lE
CC

3
Id

ea
lE

CC
4

SA
FE

R2
SA

FE
R4

SA
FE

R8
EC

P1
EC

P2
EC

P3
EC

P4
EC

P5
EC

P6
Id

ea
lE

CC
1

Id
ea

lE
CC

2
Id

ea
lE

CC
3

Id
ea

lE
CC

4
Id

ea
lE

CC
5

Id
ea

lE
CC

6
Id

ea
lE

CC
7

Id
ea

lE
CC

8
SA

FE
R2

SA
FE

R4
SA

FE
R8

SA
FE

R1
6

SA
FE

R3
2

64 bits 128 bits 256 bits 512 bits

Li
fe

tim
e 

C
on

tri
bu

tio
n 

Pe
r M

et
a-

bi
t

Figure 11: Meta-bit Contribution for Lifetime

0%

10%

20%

30%

40%

50%

60%

70%

80%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
The number of maximum fails per 512 bits

M
is

s 
ra

te

1K 2K
4K 8K
16K 32K
64K 128K

(a) Fail Cache Miss Rate

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

None 1K 2K 4K 8K 16K 32K 64K 128K
The number of cache entries

Re
la

tiv
e 

Li
fe

tim
e 

Im
pr

ov
em

en
t

SAFER2 SAFER4
SAFER8 SAFER16
SAFER32

IdealECC8

(b) Relative Lifetime Improvement

Figure 12: SAFER with Fail Cache

The geometric mean miss rate of the above applications are shown
in Figure 12(a) for different cache sizes for different maximum re-
coverable fails in a 512 bit data block. Note that different bars
represent fail caches with different numbers of entries. From Fig-
ure 12(a), we observe that cache miss rate not only increases as we
decrease the cache size, but also increases substantially as we in-
crease the number of maximum recoverable fails. However, as the
number of recoverable fails increase, the contribution to lifetime
improvement due to each additional bit recovered continues to de-
crease. For example, from Figure 9, we observe that, for 512 bit
data block, IdealECC2 achieves 54.6% of the relative lifetime im-
provement of IdealEEC8 by correcting up to only two errors. From
Figure 12(a), we observe that, to correct up to two errors, the fail
cache miss rate is only 5%.

Figure 12(b) depicts the relative lifetime improvement when we
use a fail cache. Based on the above discussion, we observe that
even a small fail cache with 1K entries has comparable lifetime
improvement as a 128K entries cache. Furthermore, we observe
that SAFER32 has better lifetime improvement relative to even Ide-
alECC8 with just a fail cache of 1K entries.

7. CONCLUSION
Existing ECC mechanisms are geared towards correcting tran-

sient errors in DRAM memories and are not suitable to correct per-
manent stuck-at faults. Permanent stuck-at faults increase due to
wear-out as the cells continue to age. The aging rate is particu-
larly severe for several emerging non-volatile memory technolo-

gies. Furthermore, with process technology scaling, the lifetime
variation of the cells increase, which leads to early multiple cell
failures. We proposed and evaluated SAFER, a stuck-at fault error
recovery technique for memories, which efficiently recovers from
multiple stuck-at faults and which works in conjunction with exist-
ing wear-leveling techniques.

SAFER handles the growing stuck-at-fault errors by dynamically
partitioning a data block into multiple groups and by ensuring that
each group has at most one failed cell. SAFER reduces hardware
overhead by exploiting the property that failed cells with a stuck-
at value are still readable and uses the failed cell to continue to
store data. Our evaluation based on phase-change memories shows
that SAFER has 11.91% and 11.52% better hardware efficiency
relative to ECP and ideal hamming coding schemes, respectively.
Furthermore, SAFER achieves 14.75% and 3.07% better lifetime
improvement relative to ECP and ideal hamming coding scheme,
respectively.

Acknowledgment
This research is supported in part by an NSF grant CCF-0811738
and NSF CAREER Award CNS-0644096.

8. REFERENCES

[1] International Technology Roadmap for Semiconductors,
Emerging Research Devices, 2009.



[2] R. J. Baker. CMOS: Circuit Design, Layout, and Simulation.
Wiley-IEEE Press, 2007.

[3] S. Cho and H. Lee. Flip-N-Write: A Simple Deterministic
Technique to Improve PRAM Write Performance, Energy
and Endurance. In Proceedings of the International
Symposium on Microarchitecture, 2009.

[4] V. Cuppu, B. Jacob, B. Davis, and T. Mudge. A performance
comparison of ciontemporary DRAM architectures. In
Proceedings of the International Symposium on Computer
Architecture, 1999.

[5] R. W. Hamming. Error detecting and error correcting codes.
Bell System Technical Journal, 29(2):147–160, 1950.

[6] E. Ipek, J. Condit, E. B. Nightingale, D. Burger, and
T. Moscibroda. Dynamically Replicated Memory: Building
Reliable Systems from Nanoscale Resistive Memories. In
Proceedings of the International Conference on
Architectural Support for Programming Languages and
Operating Systems, pages 3–14, 2010.

[7] S. Kang, WY Cho, B.H. Cho, K.J. Lee, C.S. Lee, H.R. Oh,
B.G. Choi, Q. Wang, H.J. Kim, M.H. Park, et al. A 0.1-µm
1.8-V 256-Mb Phase-Change Random Access Memory
(PRAM) with 66-MHz Synchronous Burst-Read Operation.
IEEE Journal of Solid-State Circuits, 42(1):210–218, 2007.

[8] K. Kim and S.J. Ahn. Reliability investigations for
manufacturable high density PRAM. In Proceedings of the
2005 IEEE International Reliability Physics Symposium,
pages 157–162, 2005.

[9] K. Kim et al. Technology for sub-50 nm DRAM and NAND
flash manufacturing. IEDM Tech. Dig, pages 323–326, 2005.

[10] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger. Architecting
Phase Change Memory as a Scalable DRAM Alternative. In
Proceedings of the International Symposium on Computer
Architecture, 2009.

[11] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G.
Lowney, S. Wallace, V. J. Reddi, and K. Hazelwood. Pin:
Building Customized Program Analysis Tools with Dynamic
Instrumentation. In Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and
Implementation (PLDI), pages 190–200, 2005.

[12] F. Matsuoka and F. Masuoka. Numerical analysis of
alpha-particle-induced soft errors in floating channel type
surrounding gate transistor (FC-SGT) DRAM cell. IEEE
Transactions on Electron Devices, 50(7):1638–1644, 2003.

[13] Y. Moon, Y.-H. Cho, H.-B. Lee, B.-H. Jeong, S.-H. Hyun,
B.-C. Kim, I.-C. Jeong, S.-Y. Seo, J.-H. Shin, S.-W. Choi,
H.-S. Song, J.-H. Choi, K.-H. Kyung, Y.-H. Jun, and K. Kim.
1.2V 1.6Gb/s 56nm 6F2 4Gb DDR3 SDRAM with
Hybrid-I/O Sense Amplifier and Segmented Sub-Array
Architecture. In Proceedings of the 2009 IEEE International
Solid-State Circuits Conference, 2009.

[14] T. Nirschl, J. B. Phipp, T. D. Happ, G. W. Burr, B. Rajendran,
M. H. Lee, A. Schrott, M. Yang, M. Breitwisch, C. F. Chen,
et al. Write strategies for 2 and 4-bit multi-level
phase-change memory. In IEEE International Electron
Devices Meeting, pages 461–464, 2007.

[15] M. K. Qureshi, V. Srinivasan, and J. A. Rivers. Scalable High
Performance Main Memory System using Phase-change
Memory Technology. In Proceedings of the 36th annual
International Symposium on Computer Architecture, pages
24–33, 2009.

[16] M. K. Qureshi, J. Karidis, M. Fraceschini, V. Srinivasan, L.
Lastras, and B. Abali. Enhancing Lifetime and Security of
Phase Change Memories via Start-Gap Wear Leveling. In
Proceedings of the International Symposium on
Microarchitecture, 2009.

[17] S. Schechter, G. H. Loh, K. Strauss, and D. Burger. Use ECP,
not ECC, for Hard Failures in Resistive Memories. In
Proceedings of the International Symposium on Computer
Architecture, 2010.

[18] N. H. Seong, D. H. Woo, and H.-H. S. Lee. Security Refresh:
Prevent Malicious Wear-out and Increase Durability for
Phase-Change Memory with Dynamically Randomized
Address Mapping. In Proceedings of the 37th annual
International Symposium on Computer Architecture, pages
383–394, 2010.

[19] M. R. Stan and W. P. Burleson. Bus-invert coding for
low-power I/O. IEEE Transactions on Very Large Scale
Integration(VLSI) Systems, 3(1):49–58, 1995.

[20] N. Wax. On Upper Bounds for Error Detecting and Error
Correcting Codes of Finite Length. Information Theory, IRE
Transactions on, 5(4):168–174, 1959.

[21] B.-D. Yang, J.-E. Lee, J.-S. Kim, J. Cho, S.-Y. Lee, and
B.-G. Yu. A Low Power Phase-Change Random Access
Memory using a Data-Comparison Write Scheme. In
Proceeding of IEEE International Symposium on Circuit and
Systems, 2007.

[22] P. Zhou, B. Zhao, J. Yang, and Y. Zhang. A durable and
energy efficient main memory using phase change memory
technology. In Proceedings of the International Symposium
on Computer Architecture, 2009.


