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ABSTRACT
This paper explores the environmental impact of the super-linear growth trends for AI from a holistic perspective,
spanning Data, Algorithms, and System Hardware. We characterize the carbon footprint of AI computing by
examining the model development cycle across industry-scale machine learning use cases and, at the same time,
considering the life cycle of system hardware. Taking a step further, we capture the operational and manufacturing
carbon footprint of AI computing and present an end-to-end analysis for what and how hardware-software design
and at-scale optimization can help reduce the overall carbon footprint of AI. Based on the industry experience
and lessons learned, we share the key challenges and chart out important development directions across the many
dimensions of AI. We hope the key messages and insights presented in this paper can inspire the community to
advance the field of AI in an environmentally-responsible manner.

1 INTRODUCTION
Artificial Intelligence (AI) is one of the fastest growing do-
mains spanning research and product development. The
significant investment in AI has also stimulated novel appli-
cations of AI in domains such as science, medicine, finance,
and education. AI-powered robots are deployed by the farm-
ing industry to grow plants using less resources (Sheikh,
2020). AI is applied to tackle the protein structure predic-
tion challenge, which can lead to revolutionary advances for
biological sciences (Jumper et al., 2021). AI is also used
to discover new electrocatalysts for efficient and scalable
ways to store and use renewable energy (Zitnick et al., 2020)
while also being applied to predict renewable energy avail-
ability in advance to improve energy utilization (Elkin &
Witherspoon, 2019). All of these investments in research,
development, and deployment have led to a super-linear
growth in AI data, models, and infrastructure capacity.

This work explores the environmental impact of AI from
a holistic perspective. More specifically, we present the
challenges and opportunities to designing sustainable AI
computing across the key phases of the machine learning
(ML) development process — Data, Experimentation, Train-
ing, and Inference — for a variety of AI use cases at Meta.
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Figure 1. The amount of data for recommendation use cases has
roughly doubled, leading to 3.2 times increase in the data ingestion
bandwidth demand (2019-21). The ingestion bandwidth here refers
to the I/O bandwidth requirement of the data ingestion stage.

The solution space spans across our fleet of datacenters
and on-device computing. Given particular use cases, we
consider the impact of AI data, algorithms, and system hard-
ware. Finally, we consider emissions across the life cycle of
hardware systems, from manufacturing to operational use.

AI Data Growth. In the past decade, we have seen an
exponential increase in AI training data and model capacity.
Figure 1 illustrates that the amount of training data at Meta
for two recommendation use cases — one of the fastest
growing areas of ML usage at Meta (Gupta et al., 2020).
Data has increased by 2.4× and 1.9× in the last two years,
reaching exabyte scale. The data size increase has led to
a 3.2× increase in the data ingestion bandwidth demand.
Given this increase, data storage and the ingestion pipeline
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Figure 2. (a) The 1000× model size growth has led to higher
model accuracy for various ML tasks, e.g. BLEU score improve-
ment from 5 to 40 for GPT3. Similar model size increase is evident
for RecSys-Search and RecSys-Image — ML tasks that implement
recommendation models as the backend. (b) To learn valuable
information from the data, model capacities have also increased to
achieve higher model quality. Meta’s recommendation and ranking
model sizes have increased by 20 times (2019-21).

accounts for a significant portion of the infrastructure and
power capacity compared to ML training and end-to-end
machine learning life cycles (Zhao et al., 2021).

AI Model Growth. The ever-increasing data volume has
driven a super-linear trend in model size growth. Figure 2(a)
depicts the 1000× model size increase for GPT3-based
language translation tasks (Brown et al., 2020; Hernandez
& Brown, 2020a) whereas for Baidu’s search engine, the
model of 1000× larger in size improves accuracy in AUC
by 0.030. Despite small, the accuracy improvement leads to
significantly higher-quality search outcomes because deep
learning techniques can consider the rich context in search
queries effectively. Similarly, Figure 2(b) illustrates that be-
tween 2019 and 2021, the size of recommendation models at
Meta has increased by 20× into the terabyte scale (Lui et al.,
2021). Despite the large model size growth, the memory
capacity of GPU-based accelerators, e.g. 32GB (NVIDIA
V100, 2018) to 80GB (NVIDIA A100, 2021), has increased
by < 2× every 2 years. The resource requirements for
strong AI scaling clearly outpaces that of system hardware.

AI Infrastructure Growth. The strong performance scal-
ing demand for training motivates a variety of scale-out
solutions (Mudigere et al., 2021; Rajbhandari et al., 2021)
by leveraging parallelism at scale with a massive collection
of accelerators. The explosive growth in AI use cases at
Meta has driven 2.9× increase in AI training infrastructure
capacity over the 1.5 years. In addition, we observe tril-
lions of inference per day across Meta’s data centers—more
than doubling in the past 3 years. The increase in inference
demands has also led to an 2.5× increase in infrastructure
capacity. Last but not least, the carbon footprint of AI goes
beyond its operational energy use. The embodied carbon
footprint of systems is becoming a growing factor for AI’s
overall environmental impact (Gupta et al., 2021, Section 3).

The Elephant in the Room. Despite the positive societal
benefits (Tomaev et al., 2020), the endless pursuit of achiev-
ing higher model quality has led to the exponential scaling of
AI with significant energy and environmental footprint im-
plications. Although recent work shows the carbon footprint
of training one large ML model, such as Meena (Patterson
et al., 2021), is equivalent to 242,231 miles driven by an
average passenger vehicle (EPA, 2021), this is only one as-
pect; to fully understand the real environmental impact we
must consider the AI ecosystem holistically going forward
— beyond looking at model training alone and by account-
ing for both operational and embodied carbon footprint
of AI. We must look at the ML pipeline end-to-end: data
collection, model exploration and experimentation, model
training, model optimization and run-time inference. The
frequency of training and scale of each stage of the ML de-
velopment cycle matter. From the system’s perspective, the
life cycle of ML software and system hardware, including
manufacturing and operational use, must also be considered.

Optimizing across ML pipelines and systems life cycles end-
to-end is a complex and challenging task. While training
large, sparsely-activated neural networks improves model
scalability, achieving higher accuracy at lower operational
energy footprint, it can incur higher embodied carbon foot-
print from the increase in the system resource requirement.
Shifting model training and inference to data centers with
carbon-free energy can reduce emissions; however, this
approach may not scale to a broad set of use cases. Infras-
tructure for carbon-free energy is limited by factors such as
geography and available materials (e.g. rare metals), and
takes significant economic resources and time to build. In
addition, as on-device learning becomes more ubiquitously
adopted to improve data privacy, we can see more computa-
tion being shifted away from data centers to the edge, where
access to renewable energy is limited.

A Holistic Approach. This paper is the first to take a
holistic approach to characterize the environmental foot-
print of AI computing from experimentation and training
to inference. We quantify the carbon footprint of AI by ex-
amining the model development cycle across industry-scale
machine learning use cases at Meta (Section 2). We illus-
trate more than 800× operational carbon footprint reduction
achieved through iterative hardware-software co-design for
a Transformer-based universal language model. Taking a
step further, we present an end-to-end analysis for both op-
erational and embodied carbon footprint for AI training and
inference (Section 3). Based on the industry experience
and lessons learned, we chart out opportunities and devel-
opment directions across the key dimensions of AI — data,
algorithm, systems, metrics, standards, and best practices
(Section 4). We hope the key messages (Section 5) and the
insights in this paper can inspire the community to advance
the field of AI in an environmentally-responsible manner.
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Figure 3. (a) Model Development Phases over AI System Hardware Life Cycle. (b) At Meta, we observe a rough power capacity
breakdown of 10:20:70 for AI infrastructures devoted to the three key phases — Experimentation, Training, and Inference; (c)
Considering the primary stages of the machine learning pipeline end-to-end, the energy footprint of RM1 is roughly 31:29:40 over Data,
Experimentation/Training, and Inference; (d) Despite the investment to neutralize the operational footprint with carbon-free energy, the
overall data center electricity use continues to grow, demanding over 7.17 million MWh in 2020 (Meta, 2021).

2 MODEL DEVELOPMENT PHASES AND AI
SYSTEM HARDWARE LIFE CYCLE

Figure 3(a) depicts the major development phases for ML
— Data Processing, Experimentation, Training, and In-
ference (Section 2.1) — over the life cycle of AI system
hardware (Section 2.2). Driven by distinct objectives of AI
research and advanced product development, infrastructure
is designed and built specifically to maximize data storage
and ingestion efficiency for the phase of Data Process-
ing, developer efficiency for the phase of Experimentation,
training throughput efficiency for the phase of Training, and
tail-latency bounded throughput efficiency for Inference.

2.1 Machine Learning Model Development Cycle
ML researchers extract features from data during the Data
Processing phase and apply weights to individual features
based on feature importance to the model optimization ob-
jective. During Experimentation, the researchers design,
implement and evaluate the quality of proposed algorithms,
model architectures, modeling techniques, and/or training
methods for determining model parameters. This model
exploration process is computationally-intensive, where a
large collection of diverse ML ideas are explored simultane-
ously at-scale. Thus, during this phase, we observe diverse
system resource requirements from the large pool of training
experiments. Within Meta’s ML research cluster, 50% (p50)
of ML training experiments take up to 1.5 GPU days while
99% (p99) of training experiments complete within 24 GPU
days. There are a number of large-scale, trillion parameter
models which require over 500 GPUs days.

Once a ML solution is determined as promising, it moves
into Training where the ML solution is evaluated using ex-

tensive production data — data that is more recent, is larger
in quantity, and contains richer features. The process often
requires additional hyper-parameter tuning. The majority of
data ingestion at Meta is from model training. This has mo-
tivated a redesign of the warehouse-scale database and data
ingestion pipeline specific for ML. Figure 3(c) illustrates
that the power footprint of data ingestion is already higher
than that of model training for certain large-scale ML tasks.

Depending on the ML task requirement, the models can
be trained/re-trained at different frequencies. For example,
models supporting Meta’s Search service were trained at
an hourly cadence whereas the Language Translation mod-
els were trained weekly. A p50 production model training
workflow takes 2.96 GPU days while a training workflow at
p99 can take up to 125 GPU days. Finally, for Inference,
the best-performing model is deployed for production ML
use cases, producing trillions of daily predictions to serve
billions of users on the Meta platform. The total compute
cycles for inference predictions are expected to exceed the
corresponding training cycles for the deployed model.

2.2 Machine Learning System Life Cycle
Life Cycle Analysis (LCA) is a commonly-used method-
ology to assess the carbon emissions over a product’s life
cycle. There are four major phases: manufacturing, trans-
port, product use, and recycling. In this work, we consider
the overall carbon footprint of AI by including manufac-
turing — carbon emissions from building infrastructures
specifically for AI (i.e., embodied carbon footprint) and
product use — carbon emissions from the use of AI (i.e.,
operational carbon footprint).

While quantifying the exact breakdown between operational
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Figure 4. The carbon footprint of the LM model is dominated
by Inference whereas, for RM1 – RM5, the carbon footprint of
Training versus Inference is roughly equal. The average carbon
footprint for ML training tasks at Meta is 1.8 times larger than
that of Meena used in modern conversational agents and 0.3 times
of GPT-3’s carbon footprint. Carbon footprint for inference tasks
is included for models that are used in production. Note: the
operational carbon footprint of AI does not correlate with the
number of model parameters. The open-source large-scale ML
tasks (OSS) are based on the vanilla model architectures and may
not be reflective of production use cases.

and embodied carbon footprint is a complex process, we
estimate the significance of embodied carbon emissions
using Meta’s Greenhouse Gas (GHG) emission statistics.
More than 50% of Meta’s emissions owe to its value chain
— Scope 3 of Meta’s GHG emission. As a result, a signifi-
cant embodied carbon cost is paid upfront for every system
component brought into Meta’s fleet of data centers, where
AI is the biggest growth driver.

3 AI COMPUTING’S CARBON FOOTPRINT

3.1 Carbon Footprint Analysis for Industry-Scale ML
Training and Deployment

Figure 4 illustrates the operational carbon emissions for
model training and inference across the ML tasks. We
analyze six representative machine learning models in pro-
duction at Meta1. LM refers to Meta’s Transformer-based
Universal Language Model for text translation (Conneau
et al., 2020). RM1 – RM5 represent five unique deep learn-
ing recommendation and ranking models for various Meta
products (Naumov et al., 2019; Gupta et al., 2020).

1In total, the six models account for a vast majority of compute
resources for the overall inference predictions at Meta, serving
billions of users world wide.
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Figure 5. When considering the overall life cycle of ML models
and systems in this analysis, manufacturing carbon cost is roughly
50% of the (location-based) operational carbon footprint of large-
scale ML tasks (Figure 4). Taking into account carbon-free energy,
such as solar, the operational energy consumption can be signif-
icantly reduced, leaving the manufacturing carbon cost as the
dominating source of AI’s carbon footprint.

We compare the carbon footprint of Meta’s production ML
models with seven large-scale, open-source (OSS) models:
BERT-NAS, T5, Meena, GShard-600B, Switch Transformer,
and GPT-3. Note, we present the operational carbon foot-
print of the OSS model training from (Strubell et al., 2019;
Patterson et al., 2021). The operational carbon footprint
results can vary based on the exact AI systems used and
the carbon intensity of the energy mixture. Models with
more parameters do not necessarily result in higher carbon
emissions (Artetxe et al., 2021). Training the Switch Trans-
former model equipped with 1.5 trillion parameters (Fedus
et al., 2021) produces significantly less carbon emission
than that of GPT-3 (750 billion parameters) (Brown et al.,
2020). This illustrates the carbon footprint advantage of
operationally-efficient model architectures.

Both Training and Inference can contribute significantly
to the overall carbon footprint of machine learning tasks at
Meta. The exact breakdown between the two phases varies
across ML use cases.

The overall operational carbon footprint is categorized into
offline training, online training, and inference. Offline train-
ing encompasses both experimentation and training models
with historical data. Online training is particularly relevant
to recommendation models where parameters are continu-
ously updated based on recent data. The inference footprint
represents the emission from serving production traffic. The
online training and inference emissions are considered over
the period of offline training. For recommendation use cases,
we find the carbon footprint is split evenly between training
and inference. On the other hand, the carbon footprint of
LM is dominated by the inference phase, using much higher
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Figure 6. The iterative optimization process has led to 28.5% oper-
ational energy footprint reduction over the two-year time period
(Section 3.2). Despite the significant operational power footprint
reduction, we continue to see the overall electricity demand for AI
to increase over time — an example of Jevon’s Paradox, where
efficiency improvement stimulates additional novel AI use cases.

inference resources (65%) as compared to training (35%).

Operational Carbon Footprint: Across the life cycle of
the six Meta models in Figure 4, the average carbon foot-
print is 1.8× higher than that of the open-source Meena
model (Adiwardana & Luong, 2020) and one-third of GPT-
3’s training footprint. To quantify the emissions of Meta’s
models, we measure the total energy consumption, assume
location-based carbon intensities for energy mixes, and use
Power Usage Effectiveness (PUE) of 1.1. In addition to
model- and hardware-level optimizations, Meta’s renewable
energy procurement programs mitigates these emissions.

Embodied Carbon Footprint: To quantify the embodied
carbon footprint of AI hardware, we use LCA (Section 2.2).
We assume GPU-based AI training systems have similar
embodied footprint as the production footprint of Apple’s
28-core CPU with dual AMD Radeon GPUs (Apple, 2019)2.
For CPU-only systems we assume half the embodied emis-
sions. Based on the characterization of model training and
inference at Meta, we assume an average utilization of 30-
60% over the 3- to 5-year lifetime for servers. The embodied
carbon footprint is estimated as follows:

COembodied
2 =

∑
i

Time
LifetimeCOembodied

2 (AISystem)(i)(1)

Figure 5 presents the carbon footprint estimation for the
large scale ML tasks at Meta, spanning both operational and
embodied carbon footprint. Based on the assumptions of
location-based renewable energy availability, the split be-
tween the embodied and (location-based) operational carbon
footprint is roughly 30% / 70% for the large scale ML tasks.
Taking into account carbon-free energy, such as solar, the
operational carbon footprint can be significantly reduced,

2Ideally, the embodied carbon analysis should be based on
the LCA for the AI system hardware. However, LCA for GPUs
and domain-specific accelerators is limited — an important future
direction to enabling environmentally-sustainable AI systems.
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Figure 7. Optimization is an iterative process — we have achieved
an average of 20% operational energy footprint reduction every 6
months across the machine learning hardware-software stack.

leaving the manufacturing carbon cost as the dominating
source of AI’s carbon footprint. The operational carbon foot-
print (rest) portion of the bars represent the carbon intensity
of renewable energy which has been further mitigated by
Meta’s carbon removal programs.

3.2 Carbon Footprint Optimization from
Hardware-Software Co-Design

Optimization is an iterative process — we reduce the power
footprint across the machine learning hardware-software
stack by 20% every 6 months. But at the same time, AI
infrastructure continued to scale out. The net effect, with
Jevon’s Paradox, is a 28.5% operational power footprint
reduction over two years (Figure 6).

Optimization across AI Model Development and System
Stack over Time: Figure 7 shows the operational power
footprint reduction across Meta’s AI fleet over two years.
The improvement come from four areas of optimizations:
model (e.g., designing resource-efficient models), platform
(e.g., PyTorch’s support for quantization), infrastructure
(e.g., data center optimization and low-precision hardware),
and hardware (e.g., domain-specific acceleration). Each bar
illustrates the operational power reduction across Meta’s
AI fleet over 6-month period from each of the optimization
areas. The optimizations in aggregate provide, on average,
a 20% reduction in operational power consumption every
six months. The compounded benefits highlight the need
for cross-stack optimizations.

Optimizing the Carbon Footprint of LM: Figure 8 shows
a deep dive into a specific, yet important, machine learning
task at Meta: language translation using a Transformer-
based architecture (LM). LM is designed based on the
state-of-the-art cross-lingual understanding through self-
supervision. Figure 8 analyzes the power footprint im-
provements over a collection of optimization steps for LM:
platform-level caching, GPU acceleration, low precision
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Figure 8. For the cross-lingual ML task (LM), the operational en-
ergy footprint can be significantly reduced by more than 800×
using platform-level caching, GPUs, low precision data format,
and additional algorithmic optimization.

format on accelerator, and model optimization. In aggre-
gate the optimizations reduce the infrastructure resources
required to serve LM at scale by over 800×. We outline the
optimization benefits from each area below.

Platform-Level Caching. Starting with a CPU server base-
line, application-level caching improves power efficiency
by 6.7×. These improvements are a result of pre-computing
and caching frequently accessed embeddings for language
translation tasks. Using DRAM and Flash storage devices
as caches, these pre-computed embeddings can be shared
across applications and use cases.

GPU acceleration. In addition to caching, deploying LM
across GPU-based specialized AI hardware unlocks an ad-
ditional 10.1× energy efficiency improvement.

Algorithmic optimization. Finally, algorithmic optimiza-
tions provide an additional 12× energy efficiency reduction.
Halving precision, from 32-bit to 16-bit operations, provides
a 2.4× energy efficiency improvement on GPUs. Another
5× energy efficiency gain can be achieved by using custom
operators to schedule encoding steps within a single kernel
of the Transformer module, such as (NVIDIA, 2021b).

Optimizing the Carbon Footprint of RMs: A major in-
frastructure challenge faced by deep RM training and de-
ployment (RM1 – RM5) is the fast-rising memory capacity
and bandwidth demands. There are two primary sub-nets in
a RM: compute-intensive, dense fully-connected network
and the memory capacity and bandwidth-intensive, sparse
embedding-based network. For a number of important rec-
ommendation and ranking use cases, embedding operations
dominate model execution time (Gupta et al., 2020; Ke et al.,
2020; Wilkening et al., 2021; Sethi et al., 2022).

To tackle the significant memory capacity and bandwidth
requirement, we deploy model quantization for RMs (Deng

et al., 2021). Quantization offers two primary efficiency
benefits: the low-precision data representation reduces the
amount of computation requirement and, at the same time,
lowers the overall memory capacity need. By converting
32-bit floating-point numerical representation to 16-bit, we
can reduce the overall RM2 model size by 15%. This has
led to 20.7% reduction in memory bandwidth consumption.
Furthermore, the memory capacity reduction enabled by
quantization unblocks novel systems with lower on-chip
memory. For example, for RM1, quantization has enabled
RM deployment on highly power-efficient systems with
smaller on-chip memory, leading to an end-to-end inference
latency improvement of 2.5 times.

3.3 Machine Learning Infrastructures at Scale
ML Accelerators: GPUs are the de-facto training accel-
erators at Meta, contributing to significant power capacity
investment in the context of Meta’s data centers. However,
GPUs can be severely under-utilized during both the ML
Experimentation and Training phases (Wesolowski et al.,
2021). To amortize the upfront embodied carbon cost of
every accelerator deployed into Meta’s datacenters, maxi-
mizing accelerator utilization is a must.

At-Scale Efficiency Optimization: Servers in Meta data
center fleets are customized for internal workloads only —
machine learning tasks (Hazelwood et al., 2018) and oth-
ers (Sriraman et al., 2019; Sriraman & Dhanotia, 2020).
Compared to public cloud providers, this puts Meta at a
unique position for at-scale resource management design
and optimization. First, Meta customizes server SKUs —
compute, memcached, storage tiers and ML accelerators —
to maximize performance and power efficiency.

Furthermore, the large-scale deployment of servers of dif-
ferent types provides an opportunity to build performance
measurement and optimization tools to ensure high utiliza-
tion of the underlying infrastructure. For data center fleets
in different geographical regions where the actual server
utilization exhibits a diurnal pattern, Auto-Scaling frees the
over-provisioned capacity during off-peak hours, by up to
25% of the web tier’s machines (Tang et al., 2020). By
doing so, it provides opportunistic server capacity for others
to use, including offline ML training. Furthermore, static
power consumption plays a non-trivial role in the context of
the overall data center electricity footprint. This motivates
more effective processor idle state management.

Finally, large data center operators have invested in carbon
free energy sources to neutralize its operational carbon foot-
print. Reaching net zero emissions entails matching every
unit of energy consumed by data centers with 100% re-
newable energy purchased. Remaining emissions are often
offset with various sustainability programs, further reducing
the operational carbon footprint of AI computing.



Sustainable AI: Environmental Implications, Challenges and Opportunities

3.4 Going Beyond Efficiency Optimization
Despite the opportunities for optimizing energy efficiency
and reducing environmental footprint at scale, there are
many reasons why we must care about scaling AI in a more
environmentally-sustainable manner. AI growth is multi-
plicative beyond current industrial use cases. Although
domain-specific architectures improve the operational en-
ergy footprint of AI model training by more than 90% (Pat-
terson et al., 2021), these architectures require more system
resources, leading to larger embodied carbon footprints.

While shifting model training and inference to data centers
with carbon-free energy sources can reduce emissions, the
solution may not scale to all AI use cases. Infrastructure for
carbon free energy is limited by rare metals and materials,
and takes significant economic resources and time to build.
Furthermore, the carbon footprint of federated learning and
optimization use cases at the edge is estimated to be similar
to that of training a TransformerBig model (Figure 11).
As on-device learning becomes more ubiquitous to improve
data privacy, we expect to see more computation being
shifted away from data centers to the edge, where access to
renewable energy may be limited. The edge-cloud space for
AI opens interesting design opportunities (Section 4.3).

The growth of AI in all dimensions outpaces the efficiency
improvement at-scale. Embodied carbon cost is becoming
the dominating source of AI’s overall carbon footprint. To
curb the rising carbon footprint of AI at-scale, we must
look beyond efficiency optimization and complement effi-
ciency and utilization optimization with efforts to tackle the
remaining embodied carbon footprint of AI systems.

4 A SUSTAINABILITY MINDSET FOR AI
To tackle the environmental implications of AI’s exponen-
tial growth, the first key step requires ML practitioners and
researchers to develop and adopt an sustainability mindset.
The solution space is wide open—while there are significant
efforts looking at AI system and infrastructure efficiency
optimization, the AI data, experimentation, and training
algorithm efficiency space (Sections 4.1 and 4.2) beyond
system design and optimization (Section 4.3) is less well
explored. We cannot optimize what cannot be measured
— telemetry to track the carbon footprint of AI technolo-
gies must be adopted by the community (Section 4.4). We
identify a number of important directions to scale AI in
a sustainable manner and to minimize the environmental
impact of AI for the next decades.

The field of AI is currently primarily driven by research
that seeks to maximize model accuracy — progress is of-
ten used synonymously with improved prediction quality.
This has led to a decade of AI achieved through the use of
massive computational power while disregarding resources
or environmental footprint. To develop AI technologies re-
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Figure 9. Model quality of recommendation use cases improves
as we scale up the amount of data and/or the number of model
parameters (e.g., embedding dimension), leading to higher energy
and carbon footprint. Maximizing model accuracy for the specific
recommendation use case comes with significant energy cost —
Roughly 4× energy saving can be achieved with only 0.004 model
quality degradation (green vs. yellow stars).

sponsibly, we must achieve competitive model accuracy at
a fixed or even reduced computational and environmental
cost. Despite the recent calls-to-action (Strubell et al., 2019;
Lacoste et al., 2019; Henderson et al., 2020; Bender et al.,
2021; Patterson et al., 2021), the overall community remains
under-invested in research that aims at deeply understand-
ing and minimizing the cost of AI. To bend the exponential
growth curve of AI and its environmental footprint, we must
build a future, where efficiency is an evaluation criterion
for publishing ML research on computationally-intensive
models beyond accuracy-related measures.

4.1 Data Utilization Efficiency
Data Scaling and Sampling: No data is like more data
— data scaling is the de-facto approach to increase model
quality, where the primary factor for accuracy improvement
is driven by the size and quality of training data, instead
of algorithmic optimization. However, data scaling has sig-
nificant environmental footprint implications. To keep the
model training time manageable, overall system resources
must be scaled with the increase in the data set size, resulting
in larger embodied carbon footprint and operational carbon
footprint from the data storage and ingestion pipeline and
model training. Alternatively, if training system resources
are kept fixed, data scaling increases training time, resulting
in a larger operational energy footprint.

Figure 9 depicts energy footprint reduction potential when
data and model scaling is performed in conjunction. The x-
axis represents the energy required per training step whereas
the y-axis represents model error. The blue solid lines cap-
ture model size scaling (through embedding hash scaling)
while the training data set size is kept fixed. The red dashed
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lines capture data scaling while the model size is kept fixed.
The dashed black line captures the performance scaling
trend as we scale data and model sizes in tandem. This rep-
resents the energy-optimal scaling approach. Scaling data
sizes or model sizes independently deviates from the energy-
optimal trend. We highlight two energy-optimal settings
along the Pareto-frontier curve. The yellow star uses the
scaling setting of Data scaling 2× and Model scaling 2×
whereas the green star adopts the setting of Data scaling 8×
and Model scaling 16×. The yellow star consumes roughly
4× lower energy as compared to the green star with only
0.004 model quality degradation. Overall model quality per-
formance has a (diminishing) power-law relationship with
the corresponding energy consumption and the power of the
power law is extremely small (0.002-0.004). This means
achieving higher model quality through model-data scaling
for recommendation use cases incurs significant energy cost.

When designed well, however, data scaling, sampling and
selection strategies can improve the competitive analysis
for ML algorithms, reducing the environmental footprint of
the process. For instance, Sachdeva et al. (2021) demon-
strated that intelligent data sampling with merely 10% of
data sub-samples can effectively preserve the relative rank-
ing performance of different recommendation algorithms.
This ranking performance is achieved with an average of
5.8 times execution time speedup, leading to significant
operating carbon footprint reduction.

Data Perishability: Understanding key characteristics of
data is fundamental to efficient data utilization for AI appli-
cations. Not all data is created equal and data collected over
time loses its predictive value gradually. Understanding the
rate at which data loses its predictive value has strong im-
plications on the resulting carbon footprint. For example,
natural language data sets can lose half of their predictive
value in the time period of less than 7 years (the half-life
time of data) (Valavi et al., 2020). The exact half-life pe-
riod is a function of context. If we were able to predict
the half-life time of data, we can devise effective sampling
strategies to subset data at different rates based on its half-
life. By doing so, the resource requirement for the data
storage and ingestion pipeline can be significantly reduced
— lower training time (operational carbon footprint) as well
as storage needs (embodied carbon footprint).

4.2 Efficiency in Experimentation and Training
The experimentation and training phases are closely cou-
pled (Section 2). There is a natural trade-off between the
investment in experimentation and the subsequent training
cost (Section 3). Neural architecture search (NAS) and
hyperparameter optimization (HPO) are techniques that
automate the design space exploration. Despite their capa-
bility to discover higher-performing neural networks, NAS
and HPO can be extremely resource-intensive, involving

training many models, especially when using simple ap-
proaches. Strubell et al. (2019) show that grid-search NAS
can incur over 3000× environmental footprint overhead.
Utilizing much more sample-efficient NAS and HPO meth-
ods (Turner et al., 2021; Ren et al., 2021) can translate
directly into carbon footprint improvement. In addition to
reducing the number of training experiments, one can also
reduce the training time of each experiment. By detecting
and stopping under-performing training workflows early,
unnecessary training cycles can be eliminated.

Multi-objective optimization explores the Pareto frontier of
efficient model quality and system resource trade-offs. If
used early in the model exploration process, it enables more
informed decisions about which model to train fully and
deploy given certain infrastructure capacity. Beyond model
accuracy and timing performance (Joglekar et al., 2020;
Song et al., 2020; Tan & Le, 2020; Eriksson et al., 2021),
energy and carbon footprint can be directly incorporated
into the cost function as optimization objectives (Yang et al.,
2021) to enable discovery of environmentally-friendly mod-
els. Furthermore, when training is decoupled from NAS,
sub-networks tailoring to specialized system hardware can
be selected without additional training (Stamoulis et al.,
2019; Cai et al., 2020a; Chen et al., 2021; Mellor et al.,
2021). Such approaches can significantly reduce the overall
training time, however, at the expense of increased embod-
ied carbon footprint.

Developing resource-efficient model architectures funda-
mentally reduce the overall system capacity need of ML
tasks. From the systems perspective, accelerator memory
is scarce. However, DNNs, such as neural recommenda-
tion models, require significantly higher memory capacity
and bandwidth (Ke et al., 2020; Acun et al., 2021). This
motivates researchers to develop memory-efficient model
architectures. For example, the Tensor-Train compression
technique (TT-Rec) achieves more than 100× memory ca-
pacity reduction with negligible training time and accuracy
trade-off (Yin et al., 2021). Similarly, the design space
trade-off between memory capacity requirement, training
time, and model accuracy is also explored in Deep Hash
Embedding (DHE) (Kang et al., 2021). While training time
increases lead to higher operational carbon footprint, in the
case of TT-Rec and DHE, the memory-efficient model archi-
tectures require significantly lower memory capacity while
better utilizing the computational capability of training ac-
celerators, resulting in lower embodied carbon footprint.

Developing efficient training algorithms is a long-time
objective of research in optimization and numerical meth-
ods (Nemirovskij & Yudin, 1983). Evaluations of opti-
mization methods should account for all experimentation
efforts required to tune optimizer hyperparameters, not just
the method performance after tuning (Choi et al., 2019;
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Figure 10. A vast majority of model experimentation (over tens of
thousands of training workflows) utilizes GPUs at only 30-50%,
leaving room for utilization and efficiency improvements.

Sivaprasad et al., 2020). In addition, significant research
has gone into algorithmic approaches to efficiently scale
training (Goyal et al., 2017; Ott et al., 2018) by reducing
communication cost via compression (Alistarh et al., 2017;
Vogels et al., 2019), pipelining (Huang et al., 2019), and
sharding (Rajbhandari et al., 2020; Rasley et al., 2020). The
advances have enabled efficient scaling to larger models
and larger datasets. We expect efficient training methods
to continue as an important domain. While this paper has
focused on supervised learning relying labeled data, algo-
rithmic efficiency extends to other learning paradigms in-
cluding self-supervised and semi-supervised learning. We
discuss promising efficiency scaling opportunities for self-
and semi-supervised learning in Appendix B.

4.3 Efficient and Environmentally-Sustainable AI
Infrastructure and System Hardware

To amortize the embodied carbon footprint, model devel-
opers and system architects must maximize the utilization
of accelerator and system resources when in use and pro-
long the lifetime of AI infrastructures. Existing practices
such as the move to domain-specific architectures at cloud
scale (Jouppi et al., 2017; Hamilton, 2018; Azure, 2019) re-
duce AI computing’s footprint by consolidating computing
resources at scale and by operating the shared infrastructures
more environmentally-friendly with carbon free energy3.

Accelerator Virtualization and Multi-Tenancy Support:
Figure 10 illustrates the utilization of GPU accelerators in
Meta’s research training infrastructure. A significant por-
tion of machine learning model experimentation utilizes
GPUs at only 30-50%, leaving significant room for improve-
ments to efficiency and overall utilization. Virtualization
and workload consolidation technologies can help maximize
accelerator utilization (NVIDIA, 2021a). Google’s TPUs
have also recently started supporting virtualization (Spiri-
donov, 2021). Multi-tenancy for AI accelerators is gaining
traction as an effective way to improve resource utilization,

3We discuss additional directions for enabling environmentally-
sustainable systems in Appendix A: implications of general-
purpose processors, accelerators, reconfigurable hardware for AI;
infrastructure disaggregation; fault tolerant, resilient AI systems.

thereby amortizing the upfront embodied carbon footprint of
customized system hardware for AI at the expense of poten-
tial operational carbon footprint increase (Gschwind et al.,
2017; Jeon et al., 2019; Yu & Chowdhury, 2019; Ghodrati
et al., 2020; Kao & Krishna, 2021).

Environmental Sustainability as a Key AI System De-
sign Principle: Today, servers are designed to optimize
performance and power efficiency. However, system de-
sign with a focus on operational energy efficiency optimiza-
tion does not always produce the most environmentally-
sustainable solution (Jain & Wullert, 2002; Chang et al.,
2010; Gupta et al., 2021). With the rising embodied car-
bon cost and the exponential demand growth of AI, system
designers and architects must re-think fundamental system
hardware design principles to minimize computing’s foot-
print end-to-end, considering the entire hardware and ML
model development life cycle. In addition to the respective
performance, power, and cost profiles, the environmental
footprint characteristics of processors over the generations
of CMOS technologies, DDRx and HBM memory technolo-
gies, SSD/NAND-flash/HDD storage technologies can be
orders-of-magnitude different (Bardon et al., 2020). Thus,
designing AI systems with the least environmental impact
requires explicit consideration of environmental footprint
characteristics at the design time.

Carbon-Efficient Scheduling for AI Computing At-Scale:
As the electricity consumption of hyperscale data centers
continues to rise, data center operators have devoted signifi-
cant investment to neutralize operational carbon footprint.
By operating large-scale computing infrastructures with
carbon free energy, technology companies are taking an
important step to address the environmental implications of
computing. More can be done however.

As the renewable energy proportion in the electricity grid
increases, fluctuations in energy generation will increase
due to the intermittent nature of renewable energy sources
(i.e. wind, solar). Elastic carbon-aware workload schedul-
ing techniques can be used in and across datacenters to
predict and exploit the intermittent energy generation pat-
terns (Radovanovic et al., 2021). However such schedul-
ing algorithms might require server over-provisioning to
allow for flexibility of shifting workloads to times when
carbon-free energy is available. Furthermore, any addi-
tional server capacity comes with manufacturing carbon
cost which needs to be incorporated into the design space.
Alternatively, energy storage (e.g. batteries, pumped hy-
dro, flywheels, molten salt) can be used to store renewable
energy during peak generation times for use during low
generation times. There is an interesting design space to
achieve carbon-efficient AI computing (Acun et al., 2022).

On-Device Learning is becoming more ubiquitous to en-
able model personalization (Bonawitz et al., 2019; Wang
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Figure 11. Federated learning can result in a non-negligible amount
of carbon emissions, comparable to the carbon footprint of training
TransformerBig .

et al., 2019b; Cai et al., 2020b) while improving data pri-
vacy (Hard et al., 2018; Yang et al., 2018; Ramaswamy et al.,
2019; Huba et al., 2022), yet its impact in terms of carbon
emission is often overlooked. Especially, federated learn-
ing (FL), which trains local models on client devices and
periodically aggregates the model parameters for a global
model without collecting raw user data, is becoming widely
adopted in industry for user privacy (Hard et al., 2018; Yang
et al., 2018; Ramaswamy et al., 2019; Huba et al., 2022).
The FL process can emit non-negligible carbon at the edge
due to both computation and wireless communication.

To estimate the carbon emission of FL, we analyzed data
of representative federated learning application use cases
at Meta, such as (Huba et al., 2022). First, energy con-
sumption of FL is estimated based on the time spent on FL
computation, the number of participants on each model ag-
gregation round (i.e. cohort sizes), the number of rounds to
model convergence, the model sizes, and a carbon intensity
of 0.429 kilogram CO2e per KWh (representative of the
average energy mix of the United States).

Computation energy is estimated as the product of device
power and the computation time of each client. For device
power, we used 3W (Wang et al., 2019a).

Communication energy is modeled as the sum of energy
spent by the client device and energy spent by the communi-
cation infrastructure, including the Wi-Fi access point, edge
router, core router, broadband network gateway, and Ether-
net switch (Vishwanath et al., 2015). Appendix C provides
further methodology detail.

Model training on client edge devices is inherently less
energy-efficient because of the high wireless communica-
tion overheads, sub-optimal training data distribution in
individual client devices, large degree of system heterogene-
ity among client edge devices, and highly-fragmented edge
device architectures that make system-level optimization
significantly more challenging (Wu et al., 2019). Figure 11

compares the carbon footprint of two FL applications (FL-1;
FL-2) at Meta with that of training TransformerBig (Pat-
terson et al., 2021) on a centralized server. FL-1-CSL and
FL-1-CSH represent two different configurations of FL-1:
FL-1-CSL corresponds to a smaller cohort size whereas FL-
1-CSH a larger cohort size. FL-1-CSH converges roughly
2× faster but results in higher energy consumption, as
large cohort training is known to be less efficient (Charles
et al., 2021). P100-Base represents the carbon footprint
of TransformerBig training on P100 GPU whereas TPU-
base is TransformerBig training on TPU. P100-Green
and TPU-Green consider renewable energy at the cloud. The
figure shows that FL can result in a non-negligible amount
of carbon emissions comparable to that of training a much
larger model on a centralized setup, i.e., TransformerBig .
Also, the computation and communication energy consump-
tion ratios differ between the use cases. Communication
energy dominates for FL-2 use cases while computation
energy dominates for FL-1.

It is important to reduce AI’s environmental footprint at the
edge. With the ever-increasing demand for on-device use
cases over billions of client devices, such as teaching AI
to understand the physical environment from first-person
perception (Grauman et al., 2021) or personalizing AI tasks,
the carbon footprint for on-device AI can add up to a dire
amount quickly. Also, renewable energy is far more limited
for client devices compared to data centers. Optimizing
the overall energy efficiency of FL and on-device AI is
an important first step (Kang et al., 2017; Stamoulis et al.,
2018; Kim & Wu, 2020; 2021). Reducing embodied carbon
cost for edge devices is also important, as manufacturing
carbon cost accounts for 74% of the total footprint (Gupta
et al., 2021) of client devices. However, amortizing the
embodied carbon footprint is particularly challenging due to
significant under-utilization (Gao et al., 2015), motivating
new environmentally-sustainable system design.

4.4 Carbon Footprint Telemetry for AI
While the open source community has started building tools
to enable automatic measurement of AI training’s environ-
mental footprint (Lacoste et al., 2019; Henderson et al.,
2020; Schmidt et al., 2021) and the ML research commu-
nity requiring a broader impact statement for the submitted
research manuscript, more can be done in order to incor-
porate efficiency and sustainability into the design process.
Enabling carbon accounting methodologies and telemetry
that is easy to adopt is an important step to quantify the
significance of our progress in developing AI technologies
in an environmentally-responsible manner. While assessing
the novelty and quality of ML solutions, it is crucial to con-
sider sustainability metrics including energy consumption
and carbon footprint along with measures of model qual-
ity and system performance. Note, while embodied carbon
footprints for AI hardware may not be readily available,
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describing hardware platforms, the number of machines,
total runtime used to produce results presented in a research
manuscript is an important first step.

Metrics for AI Model and System Life Cycles: Standard
carbon footprint accounting methods for AI’s overall carbon
footprint are at a nascent stage. We need simple, easy-to-
adopt metrics to make fair and useful comparisons between
AI innovations. Many different aspects must be accounted
for, including the life cycles of both AI models (Data, Ex-
perimentation, Training, Deployment) and system hardware
(Manufacturing and Use).

In addition to incorporating an efficiency measure as part
of leader boards for various ML tasks, data (Kiela et al.,
2021), models4, training algorithms (Hernandez & Brown,
2020b), environmental impact must also be considered and
adopted by AI system hardware developers, using standard
AI system performance benchmarks, such as MLPerf (Matt-
son et al., 2020; Reddi et al., 2021). Moreover, an algo-
rithm efficiency benchmark is under development. The
MLPerf benchmark standards can advance the field of AI in
an environmentally-competitive manner.

5 KEY TAKEAWAYS
The Growth of AI: Deep learning has witnessed an ex-
ponential growth in training data, model parameters, and
system resources over the recent years. The amount of data
for AI has grown by 2.4×, leading to 3.2× increase in the
data ingestion bandwidth demand. Recommendation model
sizes have increased by 20× between 2019 and 2021. The
explosive growth in AI use cases has driven 2.9× and 2.5×
capacity increases for AI training and inference at Meta
over the recent 18 months, respectively. The environmental
footprint of AI is staggering (Figure 4, Figure 5).

A Holistic Approach: To ensure an environmentally-
sustainable growth of AI, we must consider the AI ecosys-
tem holistically going forward. We must look at the machine
learning pipelines end-to-end — data collection, model ex-
ploration and experimentation, model training, optimization
and run-time inference (Section 2). The frequency of train-
ing and scale of each stage of the ML pipeline must be
considered to understand salient bottlenecks to sustainable
AI. From the system’s perspective, the life cycle of model
development and system hardware, including manufactur-
ing and operational use, must also be accounted for.

Efficiency Optimization: Optimization across the axes
of algorithms, platforms, infrastructures, hardware can sig-
nificantly reduce the operational carbon footprint for the
universal translation model by 810×. Along with other effi-
ciency optimization at-scale, this has translated into 25.8%

4Papers with code: https://paperswithcode.com/s
ota/image-classification-on-imagenet

operational energy footprint reduction over the two-year pe-
riod. More must be done to bend the environmental impact
from the exponential growth of AI (Figure 6).

An Sustainability Mindset for AI: Optimization beyond
efficiency across the software and hardware stack at scale
is crucial to enabling future sustainable AI systems. To
develop AI technologies responsibly, we must achieve com-
petitive model accuracy at a fixed or even reduced compu-
tational and environmental cost. We chart out potentially
high-impact research and development directions across the
data, algorithms and model, experimentation and system
hardware, and telemetry dimensions for AI at datacenters
and at the edge (Section 4).

We must take a deliberate approach when developing AI
research and technologies, considering the environmental
impact of innovations and taking a responsible approach to
technology development (Wu et al., 2021). That is, we need
AI to be green and environmentally-sustainable.

6 CONCLUSION
This paper is the first effort to explore the environmental im-
pact of super-linear trends for AI growth from a holistic per-
spective, spanning data, algorithms, and system hardware.
We characterize the carbon footprint of AI computing by ex-
amining the model development cycle across industry-scale
ML use cases at Meta while considering the life cycle of
system hardware. Furthermore, we capture the operational
and manufacturing carbon footprint of AI computing and
present an end-to-end analysis for what and how hardware-
software design and at-scale optimization can help reduce
the overall carbon footprint of AI. We share key challenges
and chart out important directions across all dimensions of
AI—data, algorithms, systems, metrics, standards, and best
experimentation practices. Advancing the field of machine
intelligence must not in turn make climate change worse.
We must develop AI technologies with a deeper understand-
ing of the societal and environmental implications.
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APPENDIX

A EFFICIENT, SUSTAINABLE AI SYSTEMS

General-Purpose Processors, General-Purpose Accelera-
tors, Reconfigurable Systems, and ASICs for AI: There
is a wide variety of system hardware choices for AI from
general-purpose processors (CPUs), general-purpose accel-
erators (GPUs or TPUs), field-programmable gate arrays
(FPGAs) (Putnam et al., 2015), to application-specific inte-
grated circuit (ASIC), such as Eyeriss (Chen et al., 2016).
The exact system deployment choice can be multifaceted —
the cadence of ML algorithm and model architecture evo-
lution, the diversity of ML use cases and the respective
system resource requirements, and the maturity of the soft-
ware stack. While ML accelerator deployment brings a
step-function improvement in operational energy efficiency,
it may not necessarily reduce the carbon footprint of AI
computing overall. This is because of the upfront embod-
ied carbon footprint associated with the different system
hardware choices. From the environmental sustainability
perspective, the optimal point depends on the compounding
factor of operational efficiency improvement over genera-
tions of ML algorithms/models, deployment lifetime and
embodied carbon footprint of the system hardware. Thus,
to design for environmental sustainability, one must strike a
careful balance between efficiency and flexibility and, at the
same time, consider environmental impact as a key design
dimension for next-generation AI systems.

Disaggregating Machine Learning Pipeline Stages: As
depicted in Figure 3, the overall training throughput effi-
ciency for large-scale ML models depends on the through-
put performance of both data ingestion and pre-processing
and model training. Disaggregating the data ingestion and
pre-processing stage of the machine learning pipeline from
model training is the de-facto approach for industry-scale
machine learning model training. This allows training ac-
celerator, network and storage I/O bandwidth utilization to
scale independently, thereby increasing the overall model
training throughput by 56% (Zhao et al., 2021). Disaggre-
gation with well-designed check-pointing support (Maeng
et al., 2021; Eisenman et al., 2021) improves training fault
tolerance as well. By doing so, failure on nodes that are
responsible for data ingestion and pre-processing can be
recovered efficiently without requiring re-runs of the en-
tire training experiment. From a sustainability perspective,
disaggregating the data storage and ingestion stage from
model training maximizes infrastructure efficiency by using
less system resources to achieve higher training throughput,
resulting in lower embodied carbon footprint. By increasing
fault tolerance, the operational carbon footprint is reduced
at the same time.

Fault-Tolerant AI Systems and Hardware: One way to

amortize the rising embodied carbon cost of AI infrastruc-
tures is to extend hardware lifetime. However, hardware
ages — depending on the wear-out characteristics, increas-
ingly more errors can surface over time and result in silent
data corruption, leading to erroneous computation, model
accuracy degradation, non-deterministic ML execution, or
fatal system failure. In a large fleet of processors, silent
data corruption can occur frequently enough to have dis-
ruptive impact on service productivity (Dixit et al., 2021;
Hochschild et al., 2021). Decommissioning an AI system
entirely because of hardware faults is expensive from the
perspective of resource and environmental footprints. Sys-
tem architects can design differential reliability levels for
micro architectural components on an AI system depending
on the ML model execution characteristics. Alternatively,
algorithmic fault tolerance can be built into deep learning
programming frameworks to provide a code execution path
that is cognizant of hardware wear-out characteristics.

B EFFICIENCY AND SELF-SUPERVISED
LEARNING

Self-supervised learning (SSL) have received much attention
in the research community in recent years. SSL methods
train deep neural networks without using explicit supervi-
sion in the form of human-annotated labels for each training
sample. Having humans annotate data is a time-consuming,
expensive, and typically noisy process. SSL methods are
typically used to train foundation models — models that
can readily be fine-tuned using a small amount of labeled
data on a down-stream task (Bommasani et al., 2021). SSL
methods have been extremely successful for pre-training
large language models, becoming the de-facto standard, and
they have also attracted great interest in computer vision.

When comparing supervised and self-supervised methods,
there is a glaring trade-off between having labels and the
amount of computational overhead involved in pre-training.
For example, Chen et al. (2020) report achieving 69.3%
top-1 validation accuracy with a ResNet-50 model after SSL
pre-training for 1000 epochs on the ImageNet dataset and
using the linear evaluation protocol, freezing the pre-trained
feature extractor, and fine-tuning a linear classifier on top
for 60 epochs using the full ImageNet dataset with all labels.
In contrast, the same model typically achieves at least 76.1%
top-1 accuracy after 90 epochs of fully-supervised training.
Thus, in this example, using labels and supervised training is
worth a roughly 10× reduction in training effort, measured
in terms of number of passes over the dataset.

Recent work suggests that incorporating even a small
amount of labeled data can significantly bridge this gap.
Assran et al. (2021) describe an approach called Predict-
ing view Assignments With Support samples (PAWS) for
semi-supervised pre-training inspired by SSL. With access
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to labels for just 10% of the training images in ImageNet,
a ResNet-50 achieves 75.5% top-1 accuracy after just 200
epochs of PAWS pre-training. Running on 64 V100 GPUs,
this takes roughly 16 hours. Similar observations have
recently been made for language model pre-training as
well (Dery et al., 2021).

Self-supervised pre-training potentially has advantages in
that a single foundation model can be trained (expensive) but
then fine-tuned (inexpensive), amortizing the up front cost
across many tasks (Bommasani et al., 2021). Substantial
additional research is needed to better understand the cost-
benefit trade-offs for this paradigm.

C CARBON EMISSION ESTIMATES FOR
FEDERATED LEARNING

Carbon emissions of FL are based on the energy consump-
tion of computation and communication. Computation en-
ergy is estimated as the product of device power and the
computation time of each client. For device power, we
used 3W (Wang et al., 2019a). Communication energy is
modeled as the sum of energy spent by the client device and
energy spent by the communication infrastructure, including
the Wi-Fi access point, edge router, core router, broadband
network gateway, and Ethernet switch (Vishwanath et al.,
2015).

Communication power of client devices was estimated based
on the vendor-provided power models of Android phones
(power profile.xml) over 52,000 Android devices.
We then estimated the time taken for model parameter up-
load/download based on the model size of the FL use cases
and the expected bandwidth available (Speed Index, 2022),
resulting in the client device communication energy.

Energy consumed at the Wi-Fi access point was modeled as
a linear model, where energy consumption linearly increases
with the transmitted data size (Vishwanath et al., 2015). We
used the measured maximum and idle power consumption
data of 20 common Wi-Fi devices (TPCDB, 2022) to create
the power model. Note, we exclude the idle power of the
Wi-Fi hardware unlike prior work (Qiu et al., 2021). For the
energy per bit transmission for the rest of the communication
infrastructure, we directly used measurements from prior
work (Vishwanath et al., 2015).


