IdlePower: Application-Aware Management of Processor Idle States

Hrishikesh Amur

Karsten Schwan

Ripal Nathuiji

Mrinmoy Ghosh

Hsien-Hsin S. Lee

Center for Experimental Research in Computer Systems
Georgia Institute of Technology
Atlanta, Georgia 30332.

{hamur3, schwan}@cc.gatech.edu {rnathuji, mrinmoy, leehs} @ece.gatech.edu

ABSTRACT

Power has become the first class design constraint in mod-
ern processor design. To reduce the power density caused by
aggressive, speculative execution seen in previous processor
generations, computer architects have turned to a multi-
core design strategy with each core substantially simplified.
Additionally, different power-saving features have been pro-
posed and integrated into each core to adapt dynamic exe-
cution scenarios. Due in part to the independent nature of
these cores, the power management has also become more
flexible to further reduce the overall power consumption.
With careful adaptation schemes, the system can save power
by entering different idle states dynamically with minimal
performance impact. Given the simultaneous emergence of
virtualization technologies, the question, then, is how to ef-
fectively leverage these idle states in the context of multi-
ple virtual machines (VMs) executing on multicore parts.
Towards this end, we develop the IdlePower approach to
managing idle states in virtualized systems. Our approach
combines a novel batching algorithm that creates improved
opportunities to enter deep idle states by removing unneces-
sary system wakeups depending upon monitored behavior of
workloads. IdlePower also provides application awareness in
another fashion by not only entering deep idle states based
upon transition latencies, but also factoring in the perfor-
mance degradation that can occur due to secondary effects
such as data loss in cache structures. We extend the use of
Bloom filters with IdlePower to detect application charac-
teristics for dynamically predicting whether deep idle states
are worthwhile based upon possible performance implica-
tions. Overall, IdlePower is shown to improve residencies
in the deepest C3 idle state by up to 10%, and to avoid
performance degradations in workloads of up to 26%.

1. INTRODUCTION

To continue on the trajectory of Moore’s Law without ag-
gravating design and verification complexity, processor ar-
chitects turned to multicore design to improve performance
by exploiting thread level parallelism. On the other hand, as
power becomes the first-class design constraint in processors,
the design of each core in a multicore has been substantially
simplified. Various power-saving features, seen in a modern
processor to effectively perform online power management,
have become indispensable to maximize the computational
efficiency.

Research in this domain, focused on mobile and embed-
ded systems, considers limitations in battery capacities and

demands for longer device lifetimes [11, 28, 33, 34]. In high
performance and enterprise systems, power management has
been driven by two significant issues. First, there are limi-
tations in the power delivery to and cooling capabilities of
large scale machines. For example, provisioning 60 Amps
per rack can become a bottleneck for high density configu-
rations enabled by small form factor blade systems. Second,
there are financial implications of power and cooling in these
environments. A facility consisting of 30,000 square feet and
consuming 10MW, for instance, requires an accompanying
cooling system that costs from $2-$5 million [20], and the
yearly cost of running this cooling infrastructure can reach
up to $4-$8 million [27].

The trends described above dictate the active manage-
ment of power hungry components such as processors in
end platforms. Nonetheless, such management must take
into account another facet of modern systems, which is that
they routinely use virtualization supported by hardware [24]
and/or software solutions (e.g.,Xen [5] or VMware [30]) in
order to attain basic benefits like fault [5] and performance
isolation [16] and resource consolidation via seamless VM
migration across different physical machines [8]. It is in-
evitable that power management solutions must operate in
the context of system virtualization.

This paper considers power management for multicore
processors in virtualized system platforms. We build on
conventional power management strategies designed to use
processor support for dynamic voltage and frequency scal-
ing (DVFS) during active execution. These different volt-
age/frequency modes, known as ACPI defined P-states [13],
balance performance and power of a part while a workload
is executing. The novel element considered in this paper is
that due to increased pressure for efficient idle modes, mod-
ern processors also incorporate additional sleep, or ACPI
C-states, which can be used during extended idle periods.
Specifically, given the availability of multiple, deep C-states
in modern platforms, we are concerned with idle power man-
agement leading to our technique — IdlePower, where our
technical contribution is to evaluate the ability to attain
significant power savings by aggressively utilizing C-state
switching during short idle periods of workload execution,
possibly coupled with DVFS methods.

IdlePower provides an approach and an architecture for
idle power management, including a novel algorithm that
batches timing interrupts to increase deep C-state residency
as an increasing number of VMs are aggregated onto a mul-
ticore part. The batching scheme leverages the observation
that most commodity VMs require timing interrupts from

the hardware to keep their clocks synchronized. The Idle-
Power batching algorithm detects idle periods in the exe-
cution of the applications inside the VMs and then batches
timing interrupts during these periods to extend the deep
C-state residency of the processor. While this part of the
algorithm is straightforward, an interesting outcome of an-
alyzing IdlePower’s aggressive C-State usage relates to the
manner in which deep C-states are implemented. A particu-
lar issue here is that deep C-states power down the L2 cache,
with resulting potential impacts on application performance.
Specifically, since deeper C-states turn off first the L1 and
then the L2 caches [14], the cache contents are lost each time
the state is entered. While the effect of reloading the cache
is not felt for extended idle periods, doing so during shorter
transient idle periods observed during the execution of a
workload can cause significant performance hits. Therefore,
for workloads that suffer significant performance hits due
to cache flushing, it is desirable to temper the aggressive-
ness of the C-state switching algorithm. Toward this end
and to support dynamic C-state management based upon
workload specific characteristics, the IdlePower architecture
is extended with a novel hardware extension. Namely, using
Bloom filters [6], IdlePower obtains a signature of the cache
and observes the rate of change of cache contents during the
execution of a workload. This information is then used to
directly scale the aggression of the IdlePower C-state man-
agement algorithm.

Experimental evaluations were made in two stages. Mea-
surements for the batching algorithm and the degradation
of performance due to cache flushing were conducted on an
Intel Core Duo machine with 1Gb of memory, which was
running the KVM hypervisor [1]. Measurements for the dy-
namic assessment of a workload using Bloom Filters were
made using Simics [4], a full system emulator to emulate an
x86-based virtual machine with a modified g-cache module
to implement the Bloom Filter Signatures infrastructure.

In summary, this paper evaluates the tradeoffs and effects
of C-state management on multicore architectures in virtu-
alized systems. Contributions include:

e The IdlePower batching algorithm that consolidates
timing interrupts and increases the deep C-state res-
idency of the processor as shown with experimental
results attained on modern multicore platforms.

e An experimental analysis of the effects of cache flush-
ing due to aggressive C-state switching, using synthetic
workloads.

e A hardware extension for IdlePower consisting of Bloom
filters to obtain signatures of cache contents for deter-
mining the suitability of an application for aggressive
C-state switching. Simulation results demonstrate the
effectiveness of the approach.

Experimental evaluations of the IdlePower batching algo-
rithm illustrate improvements in C3 state residency of up to
10% for web server workloads running in commodity VMs.
The resulting exploitation of small idle periods, however, can
cause the interesting performance issues highlighted above.
In our analysis, for instance, we find that certain workloads
suffer up to 26% performance degradation due to loss of
cache contents during execution. Using Bloom filters, we
then show that workloads that are unduly affected by deep
C-states can be identified dynamically. The outcome is an

argument for creating IdlePower C-state policies that use
application-awareness to scale their aggressiveness based on
feedback from these Bloom filters.

The remainder of the paper is organized as follows. Sec-
tion 2 discusses related work, and is followed by Section 3
that motivates the problem of timing interrupts and their
effects on deep C-state residency. Section 4 discusses the
issues that arise due to aggressive switching. Section 5 dis-
cusses the architecture of our system and is followed by ex-
perimental analysis in Section 6. Finally, we conclude in
Section 7.

2. RELATED WORK

Since the dynamic power consumption of a CPU is propor-
tional to the product of frequency and voltage squared [21],
dynamic voltage and frequency scaling (DVFS) can be ef-
fective in reducing power consumption during program exe-
cution [31, 26]. When DVFS is used during memory bound
phases of workloads, power savings can be achieved with
minimal impact to workload performance [18, 15]. In other
cases, increased lengths of active periods due to frequency
scaling can affect the ability to utilize processor and device
sleep states. Recent work has shown that platform level
tradeoffs such as underlying power management schemes
or idle power management mechanisms can create a dy-
namic tradeoff between use of frequency scaling versus idle
state [19, 10, 22]. This paper considers idle power man-
agement, to explore how recent advances in providing deep
C-states for mobile and server processors can further extend
processor manageability.

A substantial amount of research for exploiting idle peri-
ods is concerned with communication devices. The benefits
of a separate low power channel [29] to determine when to
turn off these devices has been investigated. Kravets and
Krishnan [17] modify the 802.11 protocol at the client and
base station to develop a collaborative approach to putting
a wireless device to sleep. Mechanisms for energy-aware re-
source usage based upon novel I/O interfaces have also been
proposed [32]. In comparison, IdlePower focuses on per-
forming aggressive C-state management of processors during
short bursts of idle periods.

At the system level, Chase et al. [7] discuss how to turn
servers on and off based on demand in datacenters. Meth-
ods for performing server management in an application-
aware manner in virtualized systems have also been intro-
duced [23]. With respect to toggling processors between on
and off states, Diao et al. [9] use learning methods to predict
CPU idle patterns across multiple cores and switch into deep
C-states based on these predictions. Pallipadi et al. [25] use
a simpler technique, where they use the knowledge of the
next timer deadline in the scheduler to match with C-state
latencies and transition to the deepest possible one. How-
ever, both of these fail to address the associated issues of lost
cache state and the resulting performance implications from
switching to deeper C-states. IdlePower addresses these is-
sues.

3. TECHNICAL BACKGROUND

Since average system workloads rarely saturate available
hardware due to both the nature of traffic as well as over-
provisioning for peak workloads, strategies for idle power
management become increasingly important. Recent strate-

gies to manage power have been to consolidate all VMs run-
ning workloads onto a small number of physical machines.
However, for web-based workloads and for streaming appli-
cations, there also exist opportunities to exploit the smaller
idle periods that occur during the execution of the work-
load, particularly in lieu of the fact that industry is ever-
shortening the transition times between different processor
states.

Short idle times can be exploited through the use of ACPI-
defined C-states[13]. There are a series of states from Cy to
C,,. When the processor is active, it runs in Co, but when it
is idle, it can switch to progressively deeper C-states, which
are characterized by greater transition latency and lower
CPU power consumption. The processor remains in such
idle states until a break event causes it to return to Cy.
Deeper states are able to save more power by using methods
that include turning off the caches and disabling the internal
Phase Locked Loops [14].

Past work has based decisions concerning C-state transi-
tions on transition latency. An issue with this simple ap-
proach is that most current operating systems operate in a
‘tickful’ manner. As a result, when multiple idling VMs run
on the same processor, these VMs depend on a periodic in-
terrupt or “tick” from the underlying hardware to keep up
their clocks. The unfortunate outcome is that the processor
is unable to transition to a power-saving deep C-state.

100.
N W
90.

8 . A

ot -
‘s 8. \A\A\A\A\A —e— Tickless
é —0— 100Hz

5 80 \\.\. —o— 250Hz

(=

£ 7 —a— 500Hz

8 e —o— 1000Hz
i3

& 7o

65.

60.

Figure 1: C3 residency with idling VMs.

Figure 1 shows the effects of running multiple VMs on Cs
residency, measured using a utility for Linux called Pow-
erTop [3]. Higher clock frequencies of the VMs cause the
processor to be woken up more frequently and the result is
a decrease in Cs residency. The prevalence of commodity
tickful systems means that this cannot easily be dismissed,
and techniques are needed to reduce the large number of
unnecessary wakeups. Also we measure C3 residency in this
set of experiments since we observed the residencies in all
except Cs (deepest) and Co(active) to be negligible(less than
3%). The active power state for this set of experiments was
set to the lowest performance state, to factor out the effects
of P-state changes on power consumption.

To deal with tickful OSs running on C-state-capable plat-
forms, IdlePower uses the technique of batching interrupts to
decrease the number of processor wakeups and increase the
residency times in deeper sleep states. Specifically, its batch-
ing algorithm first detects when a particular running VM is
simply idling without performing useful work. It then marks
this VM as eligible for interrupt batching. Such batching

a).

b). 2

Figure 2: Batching of VM time-keeping interrupts.

essentially accumulates the clock interrupts that have to be
sent to a VM and then dispatches them together. For ex-
ample, in Figure 2, the activity of the VM is defined to be
busy in the ticks indicated by the shaded rectangles, and
batching is disabled during these periods. If the batching
factor decided by the algorithm is n, which is equal to 2 in
this case, and for the VM time period ¢, the algorithm sets
a timer for ¢ * n. After this period, n interrupts are sent in
a single batch. In this fashion, a VM clock depending on an
interrupt to increment a timer value is updated properly.

An innovative element of the IdlePower batching algo-
rithm is its observation of the execution patterns of VMs
to decide when batching can be enabled for each VM. To-
ward this end, each timeslice for a VM is classified as busy
or idle, using a heuristic based on the time spent on the
CPU by the VM during any given timeslice. A history of
this data is maintained and is used to enable and disable
batching.

As expected, batching decreases the number of proces-
sor wakeups and increases deep sleep state residency. Fig-
ure 3 compares the change in residency of Cs state for clock
frequencies of 500Hz, 1000Hz and 1000Hz with batching en-
abled, called 1000Hz-batch. As evident from the figure, with
a batching factor of 2, the Cs state residency for 1000Hz-
batch almost matches that of 500Hz for a small number of
VMs and is close to 15% more than the 1000Hz case for a
higher number of VMs.

100.

90.

80. N

NS

. \/&D\A\Aﬁ\,&
V\

—=—500Hz
—o— 1000Hz
—A— 1000Hz-batch

[= 2y

Percentage of time spent in C3

50. v\‘\’

40.

0 2 4 6 8 10 12
No. of VMs

Figure 3: Increase in C3 residency due to batching.
A batching factor of 2 used which improves the res-
idency for 1000Hz.

In the next section, we highlight some of the issues that
need to be addressed because of batching and idle power
management in short idle periods in general.

O C3 residency
m CO residency

C-state Residency(%)
C-state Residency(%)

No. of VMs No. of VMs

(a) Conservative P-State Governor

(b) Aggressive P-State Governor

o
@

IS o
& 2
n

0 C3 residency —=—Consenvaiive
m CO residency /V/O’/O/o —0— Aggressive

Power consumed (W)

W IS
& S

W
=}

No. of VMs

(¢) Power Consumption

Figure 4: Race to idle not always beneficial

4. |IMPLICATIONS OF SHORT IDLE PERI-
ODS

4.1 Interplay with P-state Algorithms

The batching approach to idle power management, char-
acterized by attempts to increase deep C-state residency
times, works well when VMs are idle for extended periods
of time. It is not clear, however, whether such an approach
can successfully reduce power consumption by leveraging the
smaller idle periods found in modern service-based applica-
tions, such as web server and multimedia workloads. An im-
portant reason for this is the interplay between batching and
active power management strategies like DVFS algorithms.
For instance, there has been prior work regarding the trade-
offs between running at high-active-power (and hence per-
formance) states to quickly reach an idle period vs. carrying
out required work by running at low-active-power states [19,
10, 22]. The appropriateness of each of these strategies de-
pends on the workload and on the power management capa-
bilities of the hardware and may be difficult to determine,
but it is clear that a simplistic race-to-idle strategy will not
work with all workloads. Figure 4, for instance, compares
the use of aggressive vs. conservative P-state governors with
an aggressive C-state algorithm for the compression utility
tar workload. The aggressive P-state governor always causes
the processor to run in the P-state characterized by lowest
frequency and voltage, while the conservative governor al-
ways opts for the highest performance P-state. Figure 4(a)
shows the case with the conservative P-state governor and
Figure 4(b) the aggressive case. It can be seen that although
the proportion of time spent in Cs state is much higher in
the conservative case this does not translate to lower power
consumption as shown in Figure 4(c). These results high-
light how IdlePower should carefully leverage C-states in the
context of P-states. In view of the considerable amount of
past work that has already developed techniques for active
and idle power management [19, 10, 22], in the remainder of
this paper we focus on the previously unconsidered implica-
tions of deep C-states on caches.

4.2 Performance Implications of Cache Flush-

Ing
The important question a C-state switching algorithm
must answer is what C-state to transition to at a given point
of time when the processor becomes idle. Recent approaches
to answering this question involve either predicting CPU
execution patterns [9] or using advance information about

timers [25] to match with the expected hardware depen-
dent transition latency and thus choose the deepest C-state
whose transition latency is within the estimated idle time.
An important factor neglected by such methods is the effect
on caches. One of the techniques used by deep C-states to
save power is to turn off cache levels progressively, which
results in loss of cache state. This can lead to significant
performance degradation, which may not be justified by the
power savings obtained. In fact, for our workloads, per-
formance degradation of up to 26% was seen. IdlePower
addresses this issue by using Bloom filters to dynamically
assess the suitability of aggressive C-state switching.

5. IDLEPOWER ARCHITECTURE
5.1 Counting Bloom Filters

L-bit Counters

Hash Function|——__

Address (N bits
() Cache Miss Indication

Figure 5: Counting Bloom Filters.

The original purpose of Bloom filters as proposed by Bur-
ton Bloom in [6] was to build memory efficient database
applications. We have taken this idea, and extended it as
a hardware component to develop a Counting Bloom filter
(CBF) for monitoring workload behavior with IdlePower.
The overall structure of our Counting Bloom filter is shown
in Figure 5. The CBF utilizes a series of observed addresses
to update a set of counters which make up a Bloom filter
bit vector. An address of N bits is hashed to k hash values
using k different hash functions. The output of each hash
function is an m-bit index value that addresses a Bloom fil-
ter bit vector of 2™ elements. Naturally m is much smaller
than N. Initially the entire Bloom Filter bit vector is set to
zero. Only the bits which are accessed by the hash values
generated are modified.

Based upon updates to the bit vector over time, the CBF
dynamically captures information regarding addresses that
have been observed. To query on a given address, the N-bit

address is again hashed using the k hash functions and the
bit values are read from the locations indexed by the m-bit
hash values. If any of the bit values are 0, it is sufficient to
conclude that the address has definitely not been observed
and this is called a true miss [12]. The Counting Bloom
filter cannot guarantee that in the case of each of the bit
values being 1 however, that the address has definitely been
observed. This would be called a false hit.

The major drawback of the original Bloom filter is that
the filter can be polluted rapidly and filled up with 1’s as
it does not have deletion capability. Thus, the Counting
Bloom filter (CBF) was proposed to allow deletion of entries
from the filter. The CBF reduces the number of false hits
by introducing counters instead of a bit vector. In the CBF,
when a new address is observed for addition to the Bloom
filter, each m-bit hash index addresses to a specific counter in
an L-bit counter array," whose counter is then incremented
by one. Similarly, when an address is observed for deletion
from the Bloom filter the counter is decremented by one. If
more than one hash index addresses to the same location for
a given address, the counter is incremented or decremented
only once. If the counter is zero, it is a true miss. Otherwise,
the outcome is not precise.

From the description of the CBF, we can see that it is a
simple, low overhead data structure that acts as a signature
of addresses present in a cache via the bit vector contents.
IdlePower uses observations regarding the rate of change of
this signature as a means of characterizing executing VMs.
In particular, we use the Counting Bloom filter to obtain
an estimate of the change in cache footprint between two
points in time, ¢; and t2. The hardware stores the bit vec-
tor state from the last time it was accessed by the software
(e.g. the hypervisor) at time ¢;. At a subsequent t2, when
it is accessed again, hardware computes the bitwise XOR of
the current and stored bit vectors, and counts the number
of positive entries. This metric gives us an idea of tempo-
ral locality of the benchmark. A high value of the metric
suggests significant changes in cache contents between suc-
cessive points in time and therefore low temporal locality.
A low value suggests minimal changes in cache content and
thus high temporal locality. There is a corner case where
there may be minimal accesses to the L2 cache, or the work-
load may have a minimal L2 cache footprint that may cause
a low value of the metric since the number of cache lines
changes will also be low. These factors can be easily ac-
counted for by also requiring that the number of L2 accesses
observed be greater than some threshold. The number of L2
accesses can be obtained by using standard processor per-
formance counters.

5.2 System Architecture

We have presented a definition of our Counting Bloom
filter, as well as a metric that can be calculated in hard-
ware to estimate changes in cache footprint. Our goal is to
provide this knowledge to the hypervisor, where it can be ex-
ported to privileged management domains that are respon-
sible for effectively determining whether utilizing deeper C-
states may impact VM performance. To accomplish this,
we provide an interface where the hypervisor can access the
CBF and obtain the current metric value, which is calcu-
lated based upon the current bit vector values and the state
capture from a previous access as described earlier. The

1L must be wide enough to prevent saturations.

Cache

miss
indication

EI-N
[CPU J hash func 1 i B
o[;O
L1 Cache 2| 2
5 | ©
& Q.
L2 Cache [e >
[hash func k T
C
Bloom Filter

Figure 6: Proposed System Architecture.

resulting architecture of the IdlePower system is shown in
Figure 6.

Since we’re mainly concerned with L2 footprint informa-
tion, the Bloom filter is attached to that layer of the memory
hierarchy. The hypervisor accesses the Bloom filter during
periodic intervals while the VM is executing on the process-
ing core. Over time this allows policies that drive IdlePower
to learn about application behavior. As we will show in
Section 6, the stream of monitored data can successfully
differentiate workloads based upon their cache usage behav-
ior. By allowing the hypervisor to obtain these trends at
runtime, the Bloom filter component of IdlePower enables
application-aware management of C-states.

6. EXPERIMENTAL EVALUATION

30

\

\\

P
.

—

—e— Timeout-based
—A— Menu

Degradation (%)
=
a

[
)

o

o

0 200 400 600 800 1000 1200
Sleep time in benchmark in us (IOness of benchmark)

Figure 7: Degradation of performance for cache-fit
measured against average length of idle periods.

6.1 Cache Implications

Our experiments to measure the effect of deep C-states
on performance degradation were run on an Intel Core Duo
processor at 2.16GHz. The size of the L2 cache used in
the experiments was set to 2MB. To test the effects of ag-
gressive C-state switching algorithms we synthesized bench-
marks cache-fit and cache-insensitive which represented ex-
treme cases for the effects of cache flushing. The cache-
insensitive benchmark was characterized by a total lack of

w
ol

\

NN
o u

:\

Degradation (%)
=
o

2 5 10 15 20 25 30
Flushing frequency

Figure 8: Degradation of performance for cache-fit
measured against frequency of occurrence of idle pe-
riods.

temporal or spatial locality of memory accesses and there-
fore showed negligible degradation due to the cache flushing
caused by C-state switching. However the cache-fit bench-
mark which contained accesses, which showed a high de-
gree of both spatial and temporal locality, showed significant
degradation.

The structure of the benchmarks consisted of iterative cy-
cles of intense memory activity followed by a sleep period.
The relative lengths of the two sections are configurable. For
our experiments, the minimum length of the sleep period
was fixed such that this value was greater that the expected
latency for transitioning to state C3 on our hardware.

These benchmarks were tested with the default C-state
algorithm in Linux version 2.6.22 [2] which is timeout-based
and progressively steps to deeper C-states and the menu
governor from the cpuidle framework [25]. The menu gover-
nor uses information available in the Linux scheduler about
the next timer deadline to match with a list of latencies
for each C-state and chooses the deepest possible C-state to
transition to.

Figure 7 shows the performance of the two conventional
algorithms for the cache-fit benchmark when the average
length of the periodic sleep time was varied. Since the length
of the sleep periods ensured that Cs state was entered during
each idle period, the L2 cache was also flushed. The resulting
degradation was measured by running the benchmark first
with Cs and Cj states disabled in BIOS and then with the
deep states enabled. The frequency of entering Cs state (and
therefore flushing the L2 cache) could be set by varying the
length of the memory-bound section. The degradation of
performance of the algorithms when the frequency of the
idle periods was varied is shown in Figure 8.

Both figures indicate that for certain workloads, the degra-
dation due to actions of workload-agnostic algorithms is con-
siderable. Therefore it is imperative that we identify work-
loads that are susceptible to performance degradation due to
aggressive idle power management. In the next two sections
we first describe our simulation setup and the show how
Counting Bloom filters were used to identify these kinds of
workloads by observing estimates of L2 cache misses during
the execution of the workloads.

6.2 Simulation Environment

We use Simics [4], a full system emulator that can run un-
modified production software like commodity operating sys-

tems, to emulate an x86-based virtual machine. The Simics
g-cache module has been modified to implement the Bloom
Filter Signatures infrastructure.

The hardware-software interface in this infrastructure has
been implemented using Simics magic instructions. The
Linux 2.6.22 kernel has been modified to incorporate calls
to the special magic instruction periodically. When a magic
instruction is executed by the Simics simulator, it passes
the control to the Simics handler. This magic handler has
been modified to pass bloom filter signatures. A kernel
module reads these signatures and makes these available to
userspace. The signatures can then be used by userspace
C-state algorithms to scale their aggressiveness.

6.3 Counting Bloom filter

Along with cache-fit and cache-insensitive, we also choose
three benchmarks from the SPEC2006 suite. The bench-
marks chosen were a ray tracer - 453.povray, a program to
solve a scheduling problem - 429.mcf and an A™ search al-
gorithm - 473.astar. The 453.povray benchmark is known to
be CPU-intensive while the 473.astar is extremely memory-
intensive. The 429.mcf benchmark represents an interme-
diate case.

Figure 9(a) shows the differences in the values represent-
ing estimates for cache misses for our benchmarks. It can
be seen that there exists a suitable gradient for different
kinds of workloads for the power management algorithms
to grade the suitability of a workload for aggressive C-state
management. We use a separate graph in Figure 9(b) to
show the large difference between the values for 473.astar
and cache-fit which indicate that the former is an excellent
candidate for aggressive idle power management while the
latter would suffer high performance degradation as shown
already. These results show that IdlePower is justified in us-
ing this parameter as a criterion for suitability of aggressive
C-state switching for a given workload.

7. CONCLUSIONS

This paper introduces the IdlePower methods for inte-
grating application-awareness to idle state management al-
gorithms. Idle power management has been used in the
sense of consolidating all workloads on fewer machines first
in non-virtualized and then increasingly in virtualized envi-
ronments. However, we argue that advances in idle power
management techniques in hardware such as low power deep
C-states and low transition latencies have made it possible to
use aggressive C-state algorithms during short idle periods
that occur during execution. We introduce a novel batch-
ing algorithm that batches timing interrupts sent to virtual
machines running workloads in order to increase the average
length of idle periods and hence the deep C-state residency.
We show an average increase of 10% in Cs state residency.
However, we also recognize that aggressive idle state man-
agement has a number of implications. The most important
one is the degradation of application performance due to the
loss of cache state, especially the L2 cache, which results
from entering deep power-conserving C-states. This means
that aggressive algorithms cannot be used in an application-
agnostic manner. Conventional C-state switching algorithms
were observed to cause as much as 26% degradation in per-
formance for certain workloads. This information regarding
the suitability of the application for such power management
measures is contained in the usage statistics of the cache. We

250 4

spec_453.povray

200 +

150 4

spec_429.mcf

100

50 4

No. of bits that changed in bitvector

'cache-insensitive

15 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 82 85 99
Ticks

(a)

No. of bits that changed in bitvector

——spec_473.astar
= cache-fit

A o £

1 5 9 13 17 21 2529 33 37 41 45 49 53 57 61 65 69 73 77 82 85 99

Ticks

(b)

Figure 9: Estimation of the number of cache misses for different workloads

tap into this information by using a simple Counting Bloom
filter which stores a signature of the cache contents. By ob-
serving the rate of change of this signature and making this
information available to the power management algorithms,
we introduce application-awareness to these algorithms.

As future work we plan to utilize the IdlePower strate-
gies developed in this paper along with our VirtualPower
architecture developed in prior work [23] to build a com-
prehensive management system for multicore chips. This
includes investigating how to account for and possibly over-
come dependencies between core sleep states. In the context
of multipackage server platforms, IdlePower can be extended
to intelligently allocation VMs onto packages so as to maxi-
mize utilization of deep C-states. Finally, we plan to extend
the use of Bloom filters as part of these allocation strate-
gies to effectively consolidate VMs while minimizing perfor-
mance impacts due to cache contention between workloads.

8. REFERENCES

[1] Kvm. http://kvm.qumranet.com/kvmwiki.

[2] The linux kernel archives. http://kernel.org.

[3] Powertop.
http://www.lesswatts.org/projects/powertop/.

[4] Virtutech simics. http://www.simics.net.

[5] P. Barham, B. Dragovic, K. Fraser, S. Hand,

T. Harris, A. Ho, R. Neugebauer, I. Pratt, and
A. Warfield. Xen and the art of virtualization. In
Proceedings of the ACM Symposium on Operating
Systems Principles (SOSP), 2003.

[6] B. Bloom. Space/time tradeoffs in hash coding with
allowable errors. In Communications of the ACM,
1970.

[7] J. Chase, D. Anderson, P. Thakar, A. Vahdat, and
R. Doyle. Managing energy and server resources in
hosting centers. In Proceedings of the 18th Symposium
on Operating Systems Principles (SOSP), 2001.

[8] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul,
C. Limpach, I. Pratt, and A. Warfield. Live migration
of virtual machines. In Proceedings of the 2nd
ACM/USENIX Symposium on Networked Systems
Design and Implementation (NSDI), May 2005.

[9] Q. Diao and J. Song. Prediction of cpu idle-busy

activity pattern. In Proceedings of High Performance

Computer Architecture (HPCA), February 2008.

X. Fan, C. Ellis, and A. Lebeck. The synergy between

power-aware memory systems and processor voltage

(17]

(18]

(19]

20]

scaling. In Proceedings of the Workshop on
Power-Aware Computer Systems (PACS), December
2003.

J. Flinn and M. Satyanarayanan. Energy-aware
adaptation for mobile applications. In Proceedings of
the Symposium on Operating Systems Principles
(SOSP), December 1999.

M. Ghosh, E. Ozer, S. Biles, and H. Lee. Efficient
system-on-chip energy management with a segmented
bloom filter. In Proceedings of the 19th International
Conference on Architecture of Computing Systems,
pages 283-297, March 2006.

Hewlett-Packard, Intel, Microsoft, Phoenix, and
Toshiba. Advanced configuration and power interface
specification. http://www.acpi.info, September 2004.
J. Horrigan, N. Thangavelu, G. Vargese, and

B. Holscher. Cache flushing, us patent 465216, intel
corporation, December 2003.

C. Isci, G. Contreras, and M. Martonosi. Live, runtime
phase monitoring and prediction on real systems with
application to dynamic power management. In
Proceedings of the 39th International Symposium on
Microarchitecture (MICRO-39), December 2006.

Y. Koh, R. Knauerhase, P. Brett, M. Bowman,

Z. Wen, and C. Pu. An analysis of performance
interference effects in virtual environments. In
Proceedings of the IEEE International Symposium on
Performance Analysis of Systems and Software
(ISPASS), 2007.

R. Kravets and P. Krishnan. Application-driven power
management for mobile communication. In
Proceedings of the Fourth ACM International
Conference on Mobile Computing and Networking
(MOBICOM), pages 263-277, October 1998.

H. Li, C. Cher, T. Vijaykumar, and K. Roy. Vsv:
L2-miss-driven variable supply-voltage scaling for low
power. In Proceedings of the IEEE International
Symposium on Microarchitecture (MICRO-36), 2003.
A. Miyoshi, C. Lefurgy, E. Van Hensbergen,

R. Rajamony, and R. Rajkumar. Critical power slope:
Understanding the runtime effects of frequency
scaling. In Proceedings of the 16th Annual ACM
International Conference on Supercomputing, 2002.

J. Moore, J. Chase, P. Ranganathan, and R. Sharma.
Making scheduling cool: Temperature-aware workload
placement in data centers. In Proceedings of the
USENIX Annual Technical Conference, June 2005.

[21] T. Mudge. Power: A first-class architectural design
constraint. JEEE Computer, 34(4), April 2001.

[22] R. Nathuji, K. O’Hara, K. Schwan, and T. Balch.
Compatpm: Enabling energy efficient multimedia
workloads for distributed mobile platforms. In
Proceedings of the ACM Multimedia Computing and
Networking Conference (MMCN), 2007.

[23] R. Nathuji and K. Schwan. Virtualpower: Coordinated
power management in virtualized enterprise systems.
In Proceedings of the 21st ACM Symposium on
Operating Systems Principles (SOSP), October 2007.

[24] G. Neiger, A. Santoni, F. Leung, D. Rodgers, and
R. Uhlig. Intel virtualization technology: Hardware
support for efficient processor virtualization. In Intel
Technology Journal
(hittp://www.intel.com/technology/itj /2006 /v10i3/),
August 2006.

[25] V. Pallipadi, S. Li, and A. Belay. cpuidle: Do nothing,
efficiently... In Proceedings of the Linuz Symposium,
June 2006.

[26] C. Poellabauer, L. Singleton, and K. Schwan.
Feedback-based dynamic frequency scaling for
memory-bound real-time applications. In Proceedings
of the 11th Real-Time and Embedded Technology and
Applications Symposium (RTAS), March 2005.

[27] P. Ranganathan, P. Leech, D. Irwin, and J. Chase.
Ensemble-level power management for dense blade
servers. In Proceedings of the International Symposium
on Computer Architecture (ISCA), 2006.

[28] B. Seshasayee, R. Nathuji, and K. Schwan.
Energy-aware mobile service overlays: Cooperative
dynamic power management in distributed mobile
systems. In Proceedings of the IEEE International
Conference on Autonomic Computing (ICAC), June
2007.

[29] E. Shih, P. Bahl, and M. Sinclair. Wake on wireless:
An event driven energy saving strategy for battery
operated devices. In Proceedings of the Eighth ACM
International Conference on Mobile Computing and
Networking (MOBICOM), pages 160-171, September
2002.

[30] J. Sugerman, G. Venkitachalam, and B.-H. Lim.
Virtualizing i/o devices on vmmware workstation’s
hosted virtual machine monitor. In Proceedings of the
USENIX Annual Technical Conference, 2001.

[31] M. Weiser, B. Welch, A. Demers, and S. Shenker.
Scheduling for reduced cpu energy. In Proceedings of
the First Symposium on Operating Systems Design
and Implementation, pages 13—-23, November 1994.

[32] A. Weissel, B. Beutel, and F. Bellosa. Cooperative
i/o-a novel io semantics for energy-aware applications.
In Proceedings of the Fifth Symposium on Operating
Systems Design and Implementation (OSDI),
December 2002.

[33] W. Yuan and K. Nahrstedt. Energy-efficient soft
real-time cpu scheduling for mobile multimedia
systems. In Proceedings of the ACM Symposium on
Operating Systems Principles (SOSP), 2003.

[34] H. Zeng, C. Ellis, A. Lebeck, and A. Vahdat.
Currentcy: A unifying abstraction for expressing
energy management policies. In Proceedings of the
USENIX Annual Technical Conference, June 2003.

