PROPHET: Goal-Oriented Provisioning for Highly Tunable
Multicore Processors in Cloud Computing

Dong Hyuk Woo

Hsien-Hsin S. Lee

School of Electrical and Computer Engineering
Georgia Institute of Technology, Atlanta, GA 30332

dhwoo@ece.gatech.edu

Abstract

In this article, we propose PROPHET, a goal-oriented provisioning
infrastructure based on execution history profile gathered from the
cloud of distributed heterogeneous computing environment. It can
autonomously tune the efficiency of a data center or satisfy the
end-users’ need when running network-based applications. With
more tunable features provided by future multicore and many-core
processors, we envision that PROPHET can be easily integrated
into today’s network infrastructure to provide value-added service
to many of us.

Categories and Subject Descriptors C.1.2 [Processor Archi-
tectures]: Multiple Data Stream Architectures (Multiprocessors);
D.4.1 [Operating Systems]: Process Management—scheduling

General Terms Design, Performance

Keywords Multicore, Heterogeneous environment, Provisioning

1. Introduction

As multicore and future many-core processors emerge with more
complex optimization features, how to achieve optimal efficiency
in terms of energy, power, and performance when running parallel
workloads poses a new challenge to both large-scale system ad-
ministrators and networked machines used by individuals. Unlike
traditional high performance computing systems which were of-
ten designed with a slew of homogeneous processing elements, a
modern computing environment such as data centers or distributed
nodes in a computing cloud will consist of a variety of multicore or
many-core processors with different underlying microarchitectures.
For example, Intel’s Core i7 processor (code-named Nehalem) is
significantly different from previous x86 multicore processors. In
addition to its hyperthreaded cores integrated with an on-die mem-
ory controller, it also supports more advanced power management
schemes. When deploying these highly tunable systems into an
execution environment with older machines, such heterogeneity
makes it impractical for software developers to determine the op-
timal runtime parameters such as the optimal number of threads
to spawn, the usefulness of hyperthreading, and the optimal volt-
age/frequency level, at static development time. Moreover, the life-
time of software deployed often span across several architectural
generations. Thus, one set of optimized runtime parameters for a
given software on a particular machine does not necessarily result
into the most efficient execution for another multicore processor
configuration.

Furthermore, workloads based on users’ input can also vary
dynamically, leading to optimization scenarios that are too complex
to understand even for one particular software. For example, user-
created content in Web 2.0 era such as online video clips can

leehs@gatech.edu

-

Relative to
single-thread execution

Rel. Energy ------ i
| Rel. Perf./Joule ===

1 1
14 8 16 32 64
of threads

Figure 1. Relative Performance, Energy, and Performance per
Joule of Bodytrack

have a wide variability, such as video length, resolution, and audio
sampling rate, which is very difficult to predict at the time of
software development. Last but not least, these computer users may
have different computing requirements or preference. For example,
business owners who host server farms may desire to optimize their
system performance for a given fixed cooling capacity to maximize
performance per watt. On the other hand, laptop users may want
to protract the runtime of a particular software (e.g., an online
game and a YouTube video decoder) for a given fixed battery power
supply, which, in essence, exploits performance per joule.

To motivate, Figure 1 shows the trends of performance, energy,
and performance per joule by increasing the number of threads
from 1 to 64 when running bodytrack, a benchmark program from
PARSEC. Even though the overall performance is improved with
more active threads thus more energy consumed as expected, the
non-linear performance improvement suggests an optimal “perfor-
mance per joule” when the number of concurrent, active threads
reaches 16. In other words, one can optimize the energy efficiency
of a system by finding the ideal number of threads to execute. Un-
fortunately, such optimality can be difficult to predict in a complex,
networked heterogeneous computing environment.

2. PROPHET Infrastructure

To tackle this problem, we propose an infrastructure called PROvi-
sioning Processing in a Heterogeneous EnvironmenT, or PROPHET,
to perform provisioning and management for future networked het-
erogeneous many-core platforms. In PROPHET, a group of many-
core processors over the Internet cloud will share application pro-
file data of each processing platform. A processor node that runs
an application previously executed by other nodes can refer to the
global history profile gathered and analyzed by a server. Based on

Application N
\\\ 2. input name / CPUID|

1. input/server name N / other info.
\

Operating 3. recof
System ~

5. profile data .~ h @
4. execution L
Many-Core Processor ,// Q

Figure 2. PROPHET Infrastructure

which, a provision can be made to perform tuning to achieve the
execution objective, e.g., optimal performance per joule. For exam-
ple, a user watching a video clip from YouTube.com on a particular
computing machine model can obtain an optimally tuned setting
by consulting input from other users who had watched the same
clip on the same machine model. Another example is online 3D
gameplay. Each gamer’s machine can be autonomously tuned to
maximize its performance per joule using settings suggested and
analyzed by the central game server based on input of millions of
others who had played the same scenario. Given these types of ap-
plications are already network-connected, the social cost to provide
this additional service will be modest.

Figure 2 shows the PROPHET infrastructure along with lay-
ers of software/hardware stack of each individual node. To obtain
optimization guidance in PROPHET, each processing node includ-
ing its multicore or many-core processor and the OS running atop
will communicate with a Profile History Server (PHS) on the cloud
to gather recommended configurations such as the most energy-
efficient number of threads to be spawned, whether to use hyper-
threading, and such. The server maintains a history of prior runs
from other nodes, and provides such recommendation to its client
equipped with the same or closest configuration. This server may
be provided by a content provider such as YouTube.com, by an ap-
plication provider such as Adobe, by an OS vendor, or even by an
individual user that runs the server in a peer-to-peer manner. This
server information should be set manually by a user, by an OS ven-
dor, or by an application provider.

Figure 2 also demonstrates a process’s interaction with an OS,
a processor and a PHS. Upon launching a new application (e.g.,
Adobe flash player to decode a YouTube clip), an OS retrieves
the name of an input set (e.g., the clip’s URL) and the name of
a profile history server (e.g., YouTube.com). Then, the OS trans-
fers the following information to the PHS including the name of
the input set, the CPUID of the processor running the OS (or a
laptop made model), and information such as the number of avail-
able cores and their CPU times, or other optimization objectives,
etc. Then, the PHS responds with a recommended configuration to
the requesting OS. According to the feedback from the PHS, the
OS will then make a decision with respect to how to provision the
system resources prior to the application’s execution. On the other
hand, after the process is completed, the OS can read profile data
from performance counters of the processor. This data may include
conventional performance counters as well as power consumption
information measured by an on-chip ammeter, which is already in-
tegrated in some commercial products (McNairy and Bhatia 2005).
Then, the OS reports the profile data back to the PHS, and the PHS
updates its database and may perform offline analysis to benefit fu-
ture requests made by similar client configurations.

3. Challenges and Directions

There are several research challenges to be addressed and an am-
ple design space to be explored in our PROPHET infrastructure.
To make PROPHET feasible, a list of basic studies regarding con-
figuration/workload mining and system provisioning are listed as
follows.

e Configuration Mining and Recommendation. The decision
of a recommended provision can be made using a simple bi-
nary search method or a complex offline analysis. The analysis
can be fulfilled by an analytical model, a machine learning algo-
rithm, or even a microarchitecture-level simulation for popular
machines and workloads.

e Input Workload Mining. For certain applications, each end-
user may have a unique input workload such as personal pic-
tures. Although the contents of such inputs are unique, they
have identical characteristics for the PHS to make provisioning
decisions. Instead of using an exact signature of input work-
load, the PHS may extract common key characteristics as the
indices for its database.

e Granularity of Provision. PROPHET can supply its provision
to the requesting system upon each application’s launch. Or,
a new provision can be re-issued whenever a new thread is
spawned when running a parallelized workload.

e Provisioning Parameters

o The number of threads: Given an objective (e.g., maximiz-
ing performance per joule), PROPHET will recommend the
optimal number of threads to be spawned.

o Dynamic voltage, frequency scaling (DVFS): PROPHET
can provision Per-Core DVFS (Kim et al. 2008) to exploit
the execution slack for saving power for certain applications.
However, DVFS may affect user satisfaction and require end-
users’ input (Shye et al. 2008).

o Cores to schedule threads: Depending on the underlying ar-
chitecture, the overall performance or energy efficiency may
highly depend on the core affinity of the execution. For ex-
ample, in a tiled architecture, the distance between cores can
affect the overall performance. We envision PROPHET will
be capable of provisioning resource allocation such as desig-
nating certain cores for executing the same group of threads
to minimize communication penalty or cache pollution.

o Chip-level scheduling and thread partitioning: Given the
future single processing node is likely to be a heterogeneous
multicore itself, e.g., an Intel multicore integrated with a
Larrabee GPGPU, the PHS in PROPHET can also provide
provision command for workload partitioning and execution
among these heterogeneous cores. This requires more in-
depth research to obtain better understandings with regard to
how can PROPHET guide such complex systems to unleash
their full potential.

References

W. Kim, M. Gupta, G. Wei, and D. Brooks. System Level Analysis of Fast,
Per-Core DVFS using On-Chip Switching Regulators. In Proceedings
of Int’l Symp. on High Performance Computer Architecture, 2008.

C. McNairy and R. Bhatia. Montecito: A Dual-Core, Dual-Thread Itanium
Processor. IEEE MICRO, pages 10-20, 2005.

A. Shye, B. Ozisikyilmaz, A. Mallik, G. Memik, P.A. Dinda, R.P. Dick, and
A.N. Choudhary. Learning and Leveraging the Relationship between
Architecture-Level Measurements and Individual User Satisfaction. In
Proceedings of Int’l Symp. on Computer Architecture, 2008.

