
DRAM Decay: Using Decay Counters to Reduce Energy
Consumption in DRAMs

Mrinmoy Ghosh Hsien-Hsin S. Lee

School of Electrical and Computer Engineering
Georgia Institute of Technology

Atlanta, GA 30332
{mrinmoy, leehs}@ece.gatech.edu

ABSTRACT
Dynamic random access memories (DRAMs) require peri-
odic refresh for preserving data stored in them. The refresh
interval for DRAMs depends on the the vendor and the de-
sign technology they use. For each refresh in a DRAM row,
the stored information in each cell is read out and then writ-
ten back to itself as each DRAM bit read is self-destructive.
The refresh process often incurs large power and bandwidth
overhead, however, it is inevitable for maintaining data cor-
rectness.

This paper proposes an innovative scheme to address the
energy issue in DRAMs. By using a decay counter for each
memory row of a DRAM memory module, all the unneces-
sary periodic refresh operations can be eliminated. The ba-
sic concept behind this scheme is that a memory row that
has been recently read or written to by the processor (or
other devices that share the same DRAM) does not need
to be refreshed again by the periodic DRAM refresh oper-
ation, thereby eliminating excessive refreshes and the energy
dissipated. Based on this concept, we propose a low-cost
technique in the design of the memory controller for DRAM
power reduction. The simulation results show that our tech-
nique can reduce 23% of all refresh operations. This saved
20% of the energy consumed for refresh operations. DRAM
system energy savings of up to 17% and an average of 6%
were obtained for SPEC2000 integer benchmark programs.

1. INTRODUCTION
Dynamic Random Access Memory (DRAM) is used as the

bulk of the main memory in most computing systems for its
high density, low cost, and low power consumption. Due to
the dynamic, leaky nature of a DRAM cell, periodic refresh
operations are required for keeping the data stored. Such
regular refreshes account for a large energy consumption in
DRAMs even in the Standby mode. For instance, a de-
tailed power analysis of the ITSY computer [13] shows that
even in the lowest power mode, the power needed to keep
the DRAM contents is about one third of the total DRAM
power dissipated. The refresh rate for DRAMs depends on
the memory vendor and the design technology they use. A
typical refresh interval is 32ms [1]. In other words, for ev-
ery 32ms, a refresh operation takes place by reading each
DRAM cell out and writing back to the same cell. This
refresh often incurs large power and bandwidth overhead,

nonetheless, it is inevitable for the sake of data correctness.
This paper describes a novel technique called DRAM de-

cay, which can eliminate all the unnecessary DRAM refresh
overheads. This technique uses a simple decay counter for
each row in a memory module, tracks the normal memory
transactions, and eliminates the excessive refresh operations.
The basic concept behind our scheme is that a memory row
that has been recently read out or written to does not need
to be refreshed again by a periodic refresh. By simply ex-
ploiting such dynamic information, the number of regular
row-sweeping refresh operations in a conventional DRAM
can be substantially reduced.

2. MOTIVATION
To motivate the case for our DRAM Decay technique,

a conjured memory access pattern in Figure 1 is used to
demonstrate the requirement for refresh operations. To sim-
plify our illustration, we assume that there are only 8 rows
in the DRAM.

In this example, we assume that the DRAM memory is
accessed by the processor with a regular access pattern such
that each memory row is accessed (represented by vertical
solid lines) right before the row is to be refreshed (repre-
sented by vertical dashed lines). For a normal, periodic re-
fresh policy, all the memory rows will be, anyhow, refreshed
by the memory controller without the knowledge of those
recent accesses. Note that each access to a memory row
initiated by the processor, in fact, performs an operation
equivalent to a regular refresh from the standpoint of data
preservation. In other words, if a row has been recently read
or written to, there is no urgent need to refresh the row im-
mediately as shown in this figure. For the above example,
in an ideal situation, there is no need to perform refresh at
all since these regular memory accesses have already accom-
plished the same effect.

Our DRAM Decay technique exploits such energy savings
opportunities by keeping a decay counter for each row in the
memory controller to minimize the required refresh cycles.
Basically, the decay counters of those rows being accessed
will be reset to a default value (e.g. the refresh interval) and
any following periodic refresh operation before the counter
decays to zero will be aborted. When applying such mech-
anism to the access pattern shown in Figure 1, the DRAM
will not be refreshed at all by the default periodic refresh,
without affecting the correctness. In theory, the best pos-

Access to Row 0

Access
to Row 1

Access to
Row 3

Access to
Row 5

Row 7
Aceess to

Refresh Interval

for Row 1
Refresh time Refresh Time

for row 3 for row 5
Refresh Time

Row 7
Refresh Time for

Refresh Time
for Row 0

Figure 1: Best Case for DRAM Decay

sible energy savings that can be achieved by using DRAM
decay is 50% of the entire DRAM memory.

The rest of the paper is arranged as follows. Section 3
describes different schemes of refreshing a DRAM. Section 4
explains how we will apply our DRAM Decay scheme to
reduce the refresh overheads and estimates the overhead.
Section 5 discusses two alternatives of the implementation.
In Section 6, we describe the evaluation methodology. Sec-
tion 7 analyzes the results and Section 8 discusses related
work. Finally, Section 9 concludes the paper.

3. DRAM REFRESH TECHNIQUES
There are two commonly used refresh modes in commer-

cial DRAM designs:

• Burst Refresh: In burst refresh, the entire refresh op-
eration of all the rows are done one after the other in
a bursty fashion. The scheme is less desirable since it
increases the peak power consumption of the DRAM.
Furthermore, during the time of the refresh operations,
the DRAM memory module cannot handle normal access
requests, thereby causing potential performance degra-
dation.

• Distributed Refresh: In distributed refresh, the memory
controller spreads out the refresh cycles for different rows
evenly throughout the refresh interval. This method is
preferred than the burst refresh scheme for the follow-
ing reasons. In addition to maintaining correctness and
refreshing all the DRAM cells on time, the memory con-
troller ensures that a large number of refresh operations
are done while the DRAM is idle and thus minimizes the
overall impact to performance. Also, since the refresh
cycles are not adjacent to each other, they do not have a
significant effect on the peak power as is the case in the
burst refresh scheme.

The following is a description of a DRAM refresh cycle
according to a Micron DRAM specification [12]. A DRAM
refresh cycle may be implemented in two distinct ways. We

must note that a refresh cycle be executed in either the
distributed mode or burst mode explained above.

• RAS ONLY REFRESH: To perform a RAS ONLY RE-
FRESH, a row address is put on the address lines and
then the RAS signal1 is dropped. When the RAS falls,
that row will be refreshed as long as the CAS signal2 is
held HIGH. It is the DRAM controllerś function to pro-
vide the addresses to be refreshed and make sure that
all rows are being refreshed at the appropriate times. It
is important to note that for refresh operations the row
order of refreshing does not matter; however, each row
must be refreshed before the data stored by the cell is
destroyed.

• CAS BEFORE-RAS REFRESH: This is also known as
CBR REFRESH, and is a frequently used method for
refresh because it is easy to use and offers the advantage
of lower power. A CBR REFRESH cycle is performed
by dropping the CAS signal and then dropping the RAS
signal. One refresh cycle will be performed each time the
RAS signal falls. The Write Enable (WE) signal must be
held HIGH while the RAS signal falls. The memory mod-
ule contains an internal counter which is initialized to a
preset value when the device is powered up. Each time
a CBR REFRESH is performed, the device refreshes a
row based on the counter, and then the counter is in-
cremented. When CBR REFRESH is performed again,
the next row is refreshed and the counter is incremented.
The counter will automatically wrap and continue when
it reaches the maximum allowable value that is equal
to the number of rows. There is no way to reset the
counter once set after initializing. CBR REFRESH is
the more favorable method of refreshing, as it consumes
lower power because the address does not have to be put
on the bus.

1Row Address Strobe
2Column Address Strobe

4. DRAM DECAY

4.1 Basic Operation
Similar to the Cache Decay technique [8], our DRAM De-

cay applies the idea of decay counters in the context of the
refresh operation for a DRAM to reduce dynamic energy
consumption. Before we discuss DRAM Decay we would
discuss the basic operation of a DRAM access in more de-
tail. Any DRAM read or write operation initiated by a bus
agent (e.g., the processor) starts with the memory controller
selecting a bank and dropping the RAS signal. It simultane-
ously posts the row address on the address bus. This causes
the corresponding memory module to activate the sense am-
plifiers for the entire row, and the data from the given row
is brought into the sense amplifiers. We should note here
that this read operation has essentially destroyed the data
present in the actual DRAM cells. Next, the CAS signal is
dropped and the column address is placed on the address
bus. This causes the column decoder to multiplex the data
out for a read operation. In the case of a write operation, the
data on the data bus is written to the correct set of the sense
amplifiers. The data for the open row stays in the sense am-
plifiers till there is an access to another bank or a different
row. In either case the data in the sense amps is written
back to the original cells and the new row is precharged. To
summarize, whenever a row is accessed, it does not need to
be refreshed for another refresh interval. This brings us to
the concept of DRAM Decay.

The basic idea of our technique is to associate a decay
counter for every (bank, row) pair of a memory module.
The proposed array of decay counters is stored and updated
in the memory controller. Each decay counter is simply a
2-bit or-3 bit binary down counter, whose value, after count-
ing down to zero, indicates that the particular row must be
refreshed. The counter is reset to its maximum value when-
ever the corresponding bank and row in memory is accessed,
hence that particular row for the accessed bank need not be
refreshed during the regular refresh period. This means that
whenever a row is accessed for a normal memory operation
(e.g., one induced by cache misses), the refresh operation for
that row is delayed. In the best case if every row is accessed
right before it needs to be refreshed, there will be no need
for a separate, default refresh operation.

4.2 Staggered Decaying
Each counter is decremented after a particular number of

memory controller cycles. The counter for a row decays to
zero within the refresh interval of that row, if the same row
is not accessed again within the refresh time interval. We
need to make sure that all the counters are not decremented
simultaneously. When this happens, a large number of the
counters could become zero at the same time. As a result,
all these rows will need to be refreshed simultaneously that
leads to a situation with issues similar to the “burst-refresh”
mode described in Section 3. This increases the peak power
of the DRAM system and during such a situation, normal
accesses to the DRAM will be hampered, affecting the over-
all performance.

To avoid the scenario when all the decay counters are
decremented simultaneously in the same cycle, the opera-
tion of decrementing counters should be staggered across
the refresh interval. We explain the process of staggering
the operations of decrementing counters with the help of an

example. In this example, we consider a simple DRAM mod-
ule with 8 rows. Each row has to be refreshed in 16 memory
controller cycles to maintain correctness. The events of up-
dating the decay counters and refresh operations for each
row are illustrated in Figure 2. We assume that for the
time interval illustrated in Figure 2, the DRAM is not ac-
cessed. The numbers above the timeline denote the memory
controller cycle numbers. We can see that for this example
Row 0 is refreshed at cycle 0 and then again after 16 cy-
cles at cycle 16. Similarly Row 1 is refreshed at cycle 2 and
will be refreshed again at cycle 18 (not shown in the figure).
Since our decay counter used in this example is 2-bit wide,
it has to count down three times, i.e. from 3 to 0 within
the 16-cycle window. So the countdown of the counter asso-
ciated with Row 0 is distributed evenly within the 16-cycle
interval. We can see that the counter for Row 0 is updated
at cycles 4, 8, and 12, respectively where it decreases from 3
at cycle 0 to 0 at cycle 12. In the same way, the counter for
Row 1 is only updated at cycle 2, 6, 10, and 14. By doing
this, the updates to the counters for different rows are stag-
gered and do not take place during the same cycle. With
the scheme illustrated in the figure, for a 2-bit counter, four
counters are updated in the same cycle. Likewise, if we use
3-bit counters instead of 2, eight counters will be updated
in the same cycle.

The timeline in Figure 2 does not show any memory ac-
cess to any row within the illustrated interval. However, for
example, if Row 2 is accessed at cycle 2, then the counter
associated with Row 2 will be reset to 3. Then it will not be
(and have no need to be) refreshed at cycle 4 as shown. In
this case, Row 2 will only be refreshed at cycle 18 instead
of 16 when the counter value eventually decays to 0. In this
way the refresh to a row is delayed using the decay counter
associated with the row. Also the operation of updating the
counters is staggered, thus at most four counters can decay
to zero at the same time given 2-bit counters are employed.

4.3 Area Overhead
We now explain the storage overhead for maintaining the

decay counters. In our design, we refresh all the ranks and all
the channels for a specific bank and row number in one single
refresh operation. Hence, we need to maintain a counter for
each row in each bank. The total number of counters needed
for our design having 16,384 rows and 8 banks is therefore
131,072. Since each counter is 3-bit long, the extra storage
overhead will be 48KB. Compared to the DRAM capacity
of 256MB, the overhead to support our counters in memory
controller is relatively small, less than 0.02%.

5. DESIGN SPACE

5.1 DRAM decay for RAS only refresh
The schematic of the circuitry controlling the refresh op-

eration in the memory controller is shown in Figure 3. We
can see that the counter update circuitry updates a specific
number of decay counters in a memory controller cycle. If
one of the counters that needs to be updated has decayed to
zero, then the row number and bank number corresponding
to the counter are inserted into the pending refresh requests
queue. The memory controller reads the addresses in the
pending queue and puts the least recent row address on the
data bus and issues an RAS only refresh command. This
does not require any change in the DRAM module itself nor

U:x,y Update Counter for Row No "x". Counter Value Is "y" After The Update Operation

U:2,0

U:6,2
U:4,1

R:0,3
U:2,0

U:6,2
U:4,1

R:0,3
U:3,0

U:7,2
U:5,1

R:1,3 U:0,2
R:2,3
U:4,0
U:6,1

U:1,2
R:3,3
U:5,0
U:7,1

U:0,1
U:2,2
R:4,3
U:6,0

U:1,1
U:3,2
R:5,3
U:7,0

U:0,0
U:2,1
U:4,2
R:6,3

U:1,0
U:3,1
U:5,2
R:7,3

0 2 8 1664 10 12 14

Legend
R:x,y Refresh Row Number "x". Counter Value is "y" After the Refresh Operation.

Figure 2: Distributed Row refresh using decay counters

�������
�������
�������
�������

Decayed Counter

Counter Being Updated

�������
�������
�������

�������
�������
�������

�������
�������
�������
�������

�������
�������
�������
�������

Pending Refresh

Request Queue

DRAM Module

Refresh

Req

RAS Only Refresh

Memory
ControllerUpdate Circuitry

Update

Figure 3: DRAM decay control schematic

the interface between the DRAM module and the memory
controller.

One issue of having a queue to store pending refresh op-
erations is to find out any possible case of DRAM access
patterns where the queue may overflow. We show that this
is not possible. A typical time taken to refresh a row is 70ns
[2]. As explained earlier, if the refresh interval is 32ms and
there are 8192 rows in the device, the counters are accessed
every 4us. Now if a counter has 3 bits, then at most 8 refresh
operations may be triggered at a time. To avoid overflow for
a queue having eight entries, it is essential that all the eight
refresh transactions are handled till the next time the coun-
ters are accessed. Since refreshing a row takes 70ns and the
counters are accessed every 4us, if there is no normal DRAM
access, the number of rows that may be refreshed between
successive counter accesses will be 57. Nevertheless, in the
worst case, we only need to refresh 8 rows at a time. Thus
a queue of length 8 is sufficient for the purpose and it will
never overflow.

We would like to emphasize that DRAM decay for RAS
only refresh does not change the interface between the Mem-
ory Controller and the DRAM module. In the next section,
we discuss one possible solution for implementing DRAM
decay in the CBR refresh system. The implementation and
results of the CBR based DRAM decay technique are how-

ever future work and outside the scope of this paper.

5.2 DRAM decay for CBR
In CBR, the problem is that the row address to be re-

freshed is stored in a register in the DRAM module and not
in the memory controller. Every time a CBR command is
issued, the DRAM memory module fetches the register, re-
freshes the corresponding row, increments the register and
stores it back. To implement DRAM decay successfully,
however, the memory controller also needs to know the value
of the register. We will need a special signal that will incre-
ment the row address in the register but not refresh the row.
We call this special signal Virtual CBR (VCBR). The fol-
lowing is the implementation of the DRAM decay assuming
the presence of the VCBR signal. For example, if the mem-
ory controller wants to refresh row “K”, where the register
in the module has a value of “L”, the idea is to issue as many
VCBR signals as required to make the register value equal
to “K”. It can be easily seen that the number of VCBR
signals required is K-L if K > L, OR (num rows + L -K) if
L > K.

6. SIMULATION METHODOLOGY
Our simulation infrastructure is based on Simics [6], a full

system emulator. Simics is an extremely fast full system

Table 1: DRAM Configuration
Parameter Value
Type DDR2 Fully-Buffered DIMM
Size 256 MB
Rows 16384
Frequency 667 MHz
Banks 8
Rank 16
Columns 1024
Channel Width 16
Row Buffer Policy Open Page
Refresh Interval 64ms

emulator that can run unmodified production software like
full blown operating systems. This infrastructure was used
to emulate a “Sun” virtual machine called “sarek” running
a version of Solaris 8. The SPEC INT 2000 benchmark pro-
grams were compiled for the Solaris machine and installed in
the virtual disk. Although Simics is a full system emulator,
we only use it for functional simulation. To simulate mem-
ory and cache behavior in details, Ruby [11] module devel-
oped by Wisconsin was loaded into Simics. Ruby leverages
the full system infrastructure of Simics and provides timing
simulation for the memory hierarchy. However, Ruby does
not faithfully simulate the DRAM behavior. The character-
istics of DRAM memory were, on the other hand, simulated
using another simulator called DRAMsim [17]. DRAMsim
can be used either as a standalone trace driven simulator or
as a module that can be integrated into Ruby. The com-
plete implementation of our DRAM decay technique was
done in DRAMsim. Table 1 shows the DRAM and other
machine configurations used in our simulation. The proces-
sor model assumed was an in-order processor model with
blocking caches. Each benchmark program was simulated
for 600 million instructions.

The calculation of power involved two distinct compo-
nents: the power consumption of the DRAM module, and
the power overhead of the decay counters. To calculate
power consumption for the DRAM module we use the power
model provided by DRAMSim [17]. For the decay counters
we assume a design consisting of an array of SRAM bits stor-
ing the counter values and a logic circuit for the decrement
operation. In this design, the energy consumption of storing
and accessing the array of SRAM bits would be much larger
than the energy consumed by the logic circuitry to decre-
ment the respective values. Thus the energy consumption
of the logic circuitry was neglected in our energy calcula-
tions. The SRAM array was designed using the Artisan
90nm SRAM library [4] to get an estimate on the dynamic
energy required to access it. The Artisan SRAM genera-
tor is capable of generating synthesizable Verilog code for
SRAMs using 90nm technology. The generated data-sheet
gives an estimate of the read and write power of the gen-
erated SRAM. The counter arrays may be accessed in two
different situations. First, when a specific row is accessed
and its corresponding decay counter needs to be reset. This
is considered as a write operation to the SRAM array. The
second case is that when a counter is checked against zero
value for triggering a refresh. When the value is positive,
it is decremented. As explained in Section 4, whenever the
counters are accessed for decrementing, eight counters are
decremented at the same time. Therefore, in our design

we count eight reads and eight writes for each such counter
access operation. The results of the simulation will be pre-
sented in the next section.

7. RESULTS
Figure 4 shows the number of refresh operations taking

place for each benchmark program. We can see that the
number of refresh operations differ greatly across different
benchmark programs even though they are simulated for the
same number of instructions. The reason behind this is that
even if the benchmark programs are simulated for the same
number of instructions, each benchmark takes a different
amount of time to complete due to stalls caused by memory
transactions. Indeed we can easily see that the memory
intensive benchmarks like bzip have an order of magnitude
more refresh operations. This is just because they have more
memory transactions and thus take much longer to execute
than compute intensive benchmarks like gcc.

Figure 4 also shows that the DRAM decay technique is ef-
fective in reducing the number of regular refresh operations.
Though the relative reduction in refreshes is heavily depen-
dent on the memory behavior of an application, we can easily
see that our technique is successful in reducing the number
of refresh operations. The reductions in refresh operations
range from as low as 5% for eon to as high as 56% in perl.
On the average our technique can reduce more that 222%
of all refresh operations over all SPEC2000 integer bench-
mark suite. We must note that the above results are just for
running a single thread. Better results can be expected if
multiple threads are executed simultaneously, since multiple
threads would access memory more and increase the chance
of DRAM decay to perform better.

Another insight from our simulations was that we consis-
tently found that our technique performed better than the
baseline. This is because lower refresh operations provide
more bandwidth to the DRAM to service normal DRAM
operations. If multiple masters controlled the DRAM, this
effect will be enhanced and performance improvement would
be even more significant.

Figure 5 shows the relative energy consumption for DRAM
Decay for refresh operations. We can see that DRAM De-
cay is successful in saving a significant percentage of energy
consumed in refreshing the DRAM. The savings range from
7% in parser to as much as 50% for perlbmk. On an aver-
age DRAM decay saves 20% of energy consumed in DRAM
Refresh.

Figure 6 shows the relative energy consumption for the
DRAM. The right-hand bar showing relative energy for the
DRAM decay technique includes the energy consumption for
maintaining the counters. We can see that the total energy
consumption easily corroborates with the relative number of
refresh operations. Thus benchmark programs such as twolf

and perl whose relative number of refresh operations was low
also show high energy savings of 10% and 17%. The power
savings range from as low as 2% in eon to as much as 16%
for perl. On average, the total savings of DRAM energy is
around 6%.

8. RELATED WORK
Using countdown timers for tracking DRAM refresh was

proposed in a patent disclosure [7]. This patent describes
a timer based circuitry to reduce the number of refresh op-

erations in a DRAM based cache. This technique is differ-
ent from ours as it is mainly aimed towards DRAM caches
and save power by invalidating lines which have not been
modified for a large number of cycles. Venkatesan et al.
in [16] introduced RAPID, a retention-aware placement al-
gorithm. This work tries to reduce refresh operations to the
DRAM by experimentally identifying that different rows re-
quire different refresh times. Our technique is orthogonal to
this technique and can be applied on top of the retention-
aware DRAM technique. Kim et al. in [9] exploits multiple
DRAM refresh times and ECC codes to reduce the number
of refresh operations. As in the case of [16], our technique
is orthogonal to this technique and thus may be used on top
of it. Ohsawa et al. used several techniques in [14] to reduce
refresh operations required. One of the techniques used by
[14]is to statically declare a line to be dead. This may also
be done with the help of the OS. The lines marked as dead
in the DRAM are not refreshed. Another scheme is called
VRA where counters are used to handle variable data refresh
times. We should point out that VRA is different from our
scheme as it is done only in the context of handling different
refresh times and not to optimize refreshes based on access
patterns.

9. CONCLUSION
This paper presented a simple, low cost technique using

decay counters to save power in DRAMs. This technique
does not involve any change in the interface between the
memory controller and the DRAM, making it highly feasible.
All additional hardware goes in the memory controller that
controls and issues the needed refresh operations. The paper
demonstrates that many refresh transactions are indeed not
needed for their corresponding rows were recently accessed
due to cache misses. This technique saved up to 17% and on
an average 6% of the energy consumed in DRAMs. Modern
computing systems like CMP, CMT, SMP and SMT would
try to exploit MLP and would have increasing number of
threads trying to access memory. In this case, the DRAM
decay technique will be instrumental in saving energy as it
is very light weight and would increase the bandwidth avail-
ability and reduce energy consumption for refresh operations
in DRAMs. The emerging 3D stacked ICs [5, 10, 15] will
enable the accesses to the DRAM memory at a much lower
latency. Also, AMD’s licensing of ZRAM technology [3] in-
dicate that future AMD processors may use DRAM type
memory using SOI technology for their caches. The DRAM
Decay technique would be very useful for such DRAM type
caches. This is because caches will be accessed more fre-
quently than the DRAM memory in current computing sys-
tems. Our technique not only will help save power but also
facilitate extra bandwidth that would otherwise be wasted
for performing redundant refresh operations.

10. REFERENCES
[1] 128Mb: x32 SDRAM data sheet.

http://download.micron.com/pdf/datasheets/dram/sdram/
128MbSDRAMx32.pdf.

[2] 512Mb D-Die DDR SDRAM Specification.
http://www.samsung.com.

[3] AMD licenses Innovative Silicon’s SOI memory.
http://www.eetimes.com/news/latest/showArticle.jhtml?
articleID=177101749.

[4] Artisan sram generator. http://www.artisan.com.

[5] Tezzaron Semiconductor, FaStack Technology.
http://www.tezzaron.com/technology/FaStack.htm.

[6] Virtutech Simics. http://www.simics.net.

[7] P. G. Emma, W. R. Reohr, and L.-K. Wang. Restore
Tracking System for DRAM, U.S Patent No 6,839,505
B1, 2002.

[8] S. Kaxiras, Z. Hu, and M. Martonosi. Cache Decay:
Exploiting Generational Behavior to Reduce Cache
Leakage Power. In ISCA ’01: Proceedings of the 28th
annual international symposium on Computer
architecture, pages 240–251, New York, NY, USA,
2001. ACM Press.

[9] J. Kim and M. C. Papaefthymiou. Dynamic memory
design for low data-retention power. In PATMOS ’00:
Proceedings of the 10th International Workshop on
Integrated Circuit Design, Power and Timing
Modeling, Optimization and Simulation, pages
207–216, London, UK, 2000. Springer-Verlag.

[10] C. C. Liu, I. Ganusov, M. Burtscher, and S. Tiwari.
Bridging the Processor-Memory Performance Gap
with 3D IC Technology. IEEE Design and Test of
Computers, pages 556–564, November-December 2005.

[11] M. M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R.
Marty, M. Xu, A. R. Alameldeen, K. E. Moore, M. D.
Hill, and D. A. Wood. Multifacet’s general
execution-driven multiprocessor simulator (gems)
toolset. SIGARCH Comput. Archit. News,
33(4):92–99, 2005.

[12] Micron. Various Methods of DRAM Refresh.
http://download.micron.com/pdf/technotes/DT30.pdf.

[13] M.Viredaz and D. Wallach. Power Evaluation of a
Handheld Computer: A Case Study. Technical report,
Compaq WRL, 2001.

[14] T. Ohsawa, K. Kai, and K. Murakami. Optimizing the
DRAM refresh count for merged DRAM/logic LSIs. In
ISLPED ’98: Proceedings of the 1998 international
symposium on Low power electronics and design,
pages 82–87, New York, NY, USA, 1998. ACM Press.

[15] K. Puttaswamy and G. H. Loh. Implementing caches
in a 3d technology for high performance processors. In
ICCD ’05: Proceedings of the 2005 International
Conference on Computer Design, pages 525–532,
Washington, DC, USA, 2005. IEEE Computer Society.

[16] R. Venkatesan, S.Herr, and E. Rotenberg.
Retention-aware placement in dram (rapid):software
methods for quasi-non-volatile dram. In Proceedings of
the Twelfth Annual Symposium on High Performance
Computer Architecture, pages 155–165, Nov. 2006.

[17] D. Wang, B. Ganesh, N. Tuaycharoen, K. Baynes,
A. Jaleel, and B. Jacob. Dramsim: a memory system
simulator. SIGARCH Comput. Archit. News,
33(4):100–107, 2005.

0

20000000

40000000

60000000

80000000

100000000

120000000

Bzip2 Eon Vpr Gcc Parser Perlbmk Twolf

Num Refresh Baseline Num Refresh DRAM Decay

Figure 4: Comparison of Number of Refreshes

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Bzip2 Eon Vpr Gcc Parser Perlbmk Twolf Average

Refresh Energy Baseline Refresh Energy DRAM Decay

Figure 5: Refresh Energy Consumption

0.75

0.8

0.85

0.9

0.95

1

Bzip2 Eon Vpr Gcc Parser Perlbmk Twolf Average

 Energy Baseline Energy DRAM Decay

Figure 6: Total Energy Consumption

