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ABSTRACT
Recently there is a growing effort in both the architecture
and the security community to create a hardware solution
for authenticating system memory. As shown in the previous
work, hardware-based memory authentication will become
a vital component for creating future trusted computing en-
vironments and digital rights protection. Almost all these
prior work have focused on authenticating memory exclu-
sively owned by a single processing element. However, in
today’s computing platforms, memory is often shared by
multiple processing elements that support a shared system
memory with a snooping cache coherence protocol. Authen-
ticating shared memory is a new challenge to memory pro-
tection. In this paper, we present a secure and fast architec-
ture for authenticating shared memory. In terms of incor-
porating memory authentication into the processor pipeline,
we propose a new scheme called Authentication Speculative
Execution. Unlike the prior approaches, our scheme does
not compromise security for performance. The novel ASE
scheme is not only secure as it is combined with a one-
time-pad (OTP) based memory encryption but also efficient
to tolerate authentication latency by executing unauthen-
ticated instructions speculatively. Results using modified
RSIM running SPLASH2 benchmark show only 5% overhead
in performance on dual and quad processor platforms. Fur-
thermore, ASE shows 80% better performance on average
over conservative non-speculative execution based authenti-
cation schemes. The scheme is of practical use for both mul-
tiprocessor systems and uni-processor systems where mem-
ory is shared by one main processor and other co-processors
on the system bus.

1. INTRODUCTION
Recently, there has been intensive research in the area of

trusted computing facilitated by hardware based authenti-
cation and decryption/encryption [15, 8, 12]. The effort of
putting security features to hardware platforms and micro-
architecture holds great promises to address many security
issues that have haunted computing industry for decades
including digital rights protection, anti-reverse engineering,
software confidentiality, secure distributed computing, and
virus protection to name just a few. Among many such
architectures, hardware based memory authentication is of-
ten an essential and absolutely necessary component. Soft-
ware based memory authentication methods, no matter how

carefully designed, always have the vulnerability of execut-
ing altered codes or accessing altered data driven by mali-
cious purposes such as bypassing security/copyright check-
ing. Virus can spread also due in part to the fact that a
modified code image can be loaded and executed without
being detected. Software and OS-based authentication on
either code or data before the program execution can help to
reduce the risk but cannot eliminate the vulnerability com-
pletely. For example, a simple software solution is to allow
the OS to schedule a process read from the disk only after
the code image of the process was authenticated. This so-
lution enhances security but cannot prevent attackers from
tampering the codes on the fly after loaded.

There has been a number of papers published recently in
the architecture community addressing the problem of pro-
viding a secure computing environment where memory is
authenticated with hardware support [4, 11, 12]. The chal-
lenge of memory authentication in the architecture design
is to enable a highly efficient memory authentication at low
cost without compromising security. However, most solu-
tions proposed thus far assume that the memory is exclu-
sively ”owned” by one processing element (often the main
processor). Inside the processor, memory is authenticated
on per process basis with a memory authentication signa-
ture computed for each process’s virtual space. This sig-
nature is generally the root of a authentication tree. Such
strong process isolation (on both the inter- and intra- pro-
cessor levels) prevents the signature from being shared by
multiple processors. When inter-processor memory sharing
is inevitable, a copy from one processor’s authenticated do-
main to another’s is required. Such copying operations often
require re-authentication of the shared memory by the desti-
nation processor. For multiprocessor (MP) systems, it is not
a trivial task to synchronize and maintain authentication
signatures for frequently shared data without significantly
degrading system performance. Worse yet, it is difficult to
achieve integrity protection of memory shared among mul-
tiple processors because of potential replay attack on either
the shared bus or the shared physical memory. This means
that all the existing approaches of hardware based mem-
ory authentication are inapplicable to the scenarios of MP
memory protection.

In this paper, we present a fast and low overhead solu-
tion to authenticate the shared memory of an MP system.
Through securing every component along the path from a
computing device to another computing device or the com-
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monly shared memory, a chain of authentication is con-
structed. The chained authentication scheme is capable of
preventing most software based and hardware based attacks
on the memory system and the shared data path among
processors. Such a secure memory environment facilitates
high speed secure data sharing for both MP systems and
some uni-processor systems that demand high performance
secure data communication between the core processor and
other peripheral agents on the system bus. The scheme also
optionally provides high performance protection on informa-
tion confidentiality for shared data.

In addition, the paper addresses for the first time, the
issue of how to tie the result of memory authentication se-
curely into the processor pipeline design. We investigated
and compared three alternative designs regarding how re-
sults of authentication is used — authentication in-order ex-
ecution (AIOE), authentication speculative execution (ASE),
and lazy authentication execution (LAE). Under authentica-
tion in-order execution, when either instruction or data fetch
incurs a cache miss and causes information fetched from the
memory, the processor pipeline stalls until the newly fetched
instruction or data is fully authenticated1. For authenti-
cation speculative execution (ASE), the processor pipeline
resumes execution immediately after the fetched informa-
tion is decrypted before the authentication completes. In
other words, instructions awaiting either un-authenticated
data or results computed based on unauthenticated data
can be speculatively issued and executed but not allowed
to retire until both the instruction itself and its dependent
data are authenticated. Furthermore, bus cycles are not
granted to memory accesses that are not considered secure
or authentication safe. A memory access is not considered
authentication safe if, 1) it tries to write un-authenticated
results back to memory; 2) it reads/writes to a memory ad-
dress generated from un-authenticated data; 3) it fetches
instructions from memory based on control flow determined
by un-authenticated data. Such memory accesses are called
authentication unsafe accesses. An authentication unsafe
access becomes authentication safe only after all the data it
depends on is authenticated. Lazy authentication (LAE) is a
weak authentication scheme that only authenticates fetched
data and instructions in groups over a relatively large time
span in the magnitude of tens of thousands of cycles.

The main contributions of the paper are:

• A unified fast and secure means for authenticating mem-
ory for both uni-processor and multiprocessor systems.
The approach relies on division of labor and distributes
security workloads to both secure processors and a se-
cure memory controller (North Bridge) thus requires a
light weight secure processor design. The approach de-
tects not only software based tampering of data but also
physical attacks including replay attacks in the shared
memory.

• An innovative secure multiprocessor bus protocol for au-
thenticating coherent bus transactions.

• A fast memory authentication approach based on OTP
(one-time-pad) and authentication speculative execution
to tolerate the latency of memory authentication for both
processor-to-processor and memory-to-processor accesses.

1Note that (1) pipeline has to stall for decryption if the
fetched information is encrypted; (2) in an out-of-order ma-
chine, other instructions having no dependency on the miss-
ing instruction or data can be issued and executed

• A secure authentication mechanism that is not only fast,
but also authentication safe, and supports precise inter-
rupts for security exceptions. Despite being fast, it does
not trade security for performance as is the case with
lazy authentication schemes like LHash [11].

The rest of the paper is organized as follows. Section 2
presents the challenges and related work of memory authen-
tication. Section 2 addresses the security risks and perfor-
mance implications for shared memory authentication. It
also presents assumptions of our targeted platforms. Sec-
tion 3 presents our solution to authenticating shared mem-
ory for multiprocessors. Performance were evaluated and
analyzed in Section 4. Section 5 concludes the paper.

2. CHALLENGES IN SHARED MEMORY
PROTECTION

In this section, we discuss many basic issues associated
with shared memory protection at high level. It presents
the basic platform architecture our solution is targeted for.
It also answers the questions such as the rationale of why
shared memory needs protection and shows the types of at-
tacks our solution is aimed to prevent and detect.

Threat of Physical Attacks: History shows that when
it comes to break security measures in a commodity com-
puting platform, attackers often are not only well motivated
but also very knowledgeable and possess the required skills
to build customized hardware to break the security protec-
tion in any imaginable way [7]. In order to crack out the
protected secret, attackers may dump all the bus transac-
tions on the system/peripheral buses, construct customized
spoofing device or hardware, exploit the coherence snooping
bus protocol by injecting artificial bus signals, replay bus
transactions, spoof, alter or replay RAM contents on the fly
through hardware, and so on. Even though software based
protections or light weight hardware based protection such
as TCG [6] provide some protection using minimal silicon
resources, it is almost impossible for them to survive from
these physical attacks.

Efficiency and Security: Almost all the recently pro-
posed security computing platforms with hardware-based
memory protections assume that everything in such a system
is insecure except the main processor with built-in security
support [15, 8, 12]. Under such assumptions, many proposed
protection solutions often have all the hardware security fea-
tures including memory authentication implemented in the
main processor. Gassend et al. [4], the CHTree authenti-
cation scheme constructs a m-ary hash tree for protecting
the memory integrity of an application process under a uni-
processor environment. As shown, CHTree slows down the
execution by around 20% with a 2MB L2 and incurs 33%
memory space overhead. The LHash scheme in [11] was
proposed to improve the authentication speed. This scheme
logs memory operations and performs integrity checks only
when a large number of memory operations is accumulated.
According to our definition, the LHash is a type of lazy au-
thentication technique. However there are potential security
risks associated with lazy authentication, especially when
used together with OTP for memory protection.

Multiprocessor Domain: Furthermore, all the existing
solutions are designed for uni-processor memory protection
and assume that the security boundary lies at the interface
between a secure processor and its system bus. Such a cen-
tralized view fits with a uni-processor platform but does not
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Figure 1: MP platform

apply to an MP system. A simple way to extend the existing
solutions to the MP scenario is to have a separate copy of
the memory for each processing element2 (PE) and have the
secure OS to copy the data from one trusted domain to an-
other using protected message passing mechanism whenever
needed. This will however significantly increase the delay
of inter-processor communication and substantially under-
mines performance of MP applications.

Replay Attacks: One of the major challenges of de-
signing a secure MP platform is how to prevent and detect
replay attacks. There are two types of replay attacks: 1) re-
play logged bus transactions, including both cache-to-cache
and memory-to-cache bus transactions; 2) replay informa-
tion stored in the physical RAM. Under the system where
the memory is exclusively owned by a single PE (i.e. core
processor), replay attack can be prevented using a hardware
implementation of a Merkle hash tree or a MAC tree inside
the PE. But such solutions do not work when the shared
memory can be updated by multiple PEs. If each PE main-
tains its own authentication tree, either Merkle hash tree or
MAC tree, to verify and synchronize the root signatures of
these authentication trees across multiple processors could
be cumbersome and lead to significant performance impact
on frequent inter-processor communication.

Distributing Secrets: Another challenge of designing a
tamper-resistant MP system is how to distribute and share
secret information among processors and devices. Such shared
information may include symmetric cryptographic keys, shared
sequence number, etc. Distributing and sharing secrets is a
unique problem to MP shared memory protection.

Architectural Support for Security Primitives: Yet
another challenge in MP protection is with respect to inter-
operability. Protections provided by a MP tamper resistant
system can be best viewed as security primitives analogous
to other architecture supports designed for synchronization
and consistency. These security primitives themselves can-
not guarantee security requirements from being violated.
But they can be used by properly developed secure operat-
ing systems and secure applications to construct a software
environment in which memory integrity and secrecy can be
guaranteed.

In summary, shared memory authentication is a unique

2A processing element (PE) can be a core processor, a co-
processor, or a peripheral in a uniprocessor system or a pro-
cessor in an MP system. We generalize such a device as a
PE.

problem. Existing uni-processor techniques based on Merkle
/ MAC tree cannot resolve this issue without tremendous
modification. To enable a fast, secure, and unified solution
for authenticating shared memory, we propose a distributed
scheme where both the main processor(s) and the chipset
contribute to create a secure environment for trusted soft-
ware execution. Our shared memory authentication scheme
is universal for both MP shared memory systems and uni-
processor systems with a memory shared by a core processor
and other peripherals/agents. Figure 1 illustrates the plat-
form architectures to which our solution is applicable.

Instead of having each PE to use its own Merkle hash/MAC
tree, our solution enables shared memory protection through
a centralized MAC tree based authentication implemented
in the memory system with a secure MP coherent bus proto-
col. The shared memory protection is achieved by securing
the data path from each PE to the shared system mem-
ory. With the MAC memory authentication tree embedded
in the North Bridge (i.e. the memory controller), the data
path between the memory controller and the physical RAM
is secured. Moreover, the secure MP bus protocol provides
a trusted and authenticated environment for both cache-
to-cache and memory-to-cache bus transactions. Untrusted
devices cannot commit any bus transaction to the protected
shared memory and any attempt to replay past authenti-
cated bus transactions can also be detected. Since both the
data path from each PE to the system memory and the data
paths among PEs are protected, secure and authenticated
sharing of the system memory is provided. Different from
the previous approaches that put all the hardware resources
for memory authentication into one single secure processor,
our solution provides a trusted environment for MP shared
memory through securing the platform.

3. SECURITY MODEL FOR SHARED MEM-
ORY

In this section, we present the detailed security model
and architectural support for shared memory authentica-
tion. We only focus on symmetric multiprocessor (SMP)
systems where a coherent snoopy bus and a large physical
RAM are shared by a number of processors. It is straight-
forward to extend the solution to situations where each pro-
cessor maintains a local memory. The proposed MP shared
memory protection scheme can be used to ensure both in-
tegrity and confidentiality for MP shared memory. We first
present a MP platform oriented security model. Then, ar-
chitectural supports for the security model and a latency-
tolerating technique called authentication speculative execu-
tion are proposed.

3.1 Multiprocessor security model
Figure 1 shows target architecture of MP systems. A

split-transaction, cache coherent system bus connects each
processor to the shared memory. The security model holds
no specific assumptions about the coherent bus protocol, nei-
ther is it tied to any particular MP system. Examples of ap-
plicable MP systems include SGI’s POWERpath-2, Alpha’s
MP protocol, and Intel Xeon based MP systems. To sim-
plify the discussion, the scheme to be presented uses a split-
transaction, SGI Powerpath-2 like cache-coherency proto-
col [3]. Applying the scheme to other MP system should
be straightforward with little changes. The shaded blocks
in the system are trusted and protected components. The
dark stars denote points of potential attacks.
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The proposed security model provides a system level spec-
ification for constructing a trusted environment for MP soft-
ware execution. It addresses four issues — management of
protected MP processes, distribution and sharing of secrets,
protection on integrity and secrecy, and software distribu-
tion. The security model assumes the existence of a secure
OS kernel [4]. A secure OS kernel is a set of trusted core OS
services. These services are executed in a trusted domain.
The secure kernel is verified by secure BIOS during system
boot [1].

3.1.1 Process control
One basic and essential protection on a multi-tasking sys-

tem is process or task isolation. Different process should not
be allowed to access other processes’ protected domain. To
achieve process isolation, two conditions must be satisfied.
Firstly, each process must be uniquely identified. Secondly,
unique per-process cryptographic information must be used
for protecting integrity and confidentiality of each process’s
memory. The traditional process id (pid) is not a good choice
because the likelihood of reusing a pid is very high. Here
we define a unique 128-bit number, process uuid, a universal
unique identifier to uniquely identify a process. The process
uuid is obtained from a random number generator. The
process uuid itself is not considered as secret and can be
securely shared among multiple processors during initializa-
tion by the secure kernel. Process uuid is treated as process
context and is protected against tampering during context
switch.

Secret padding and keys used for authenticating or en-
crypting memory information of each process is derived from
each process’ uuid. A new privileged instruction which is
used only by the secure kernel is introduced to set up process
uuid, called set uuid. Execution of the instruction includes
several steps. One step involves that the processor assigns
the process uuid to an internal uuid register and computes
a process key as described in Figure 2(a). The session key
shown in the figure is created at boot time and described in
detail in Section 3.1.3. Secret Constant is an initial value,
same for all Processing Elements (PE’s) and known only to
each PE and the secure memory controller. Other steps of
the instruction set uuid are described later in section Sec-
tion 3.2.2. relate to how the process uuid is shared by other
devices attached to the shared bus.

3.1.2 Integrity and confidentiality protection
Integrity code is also referred to as message authentication

code (MAC), a well established technique for guaranteeing
data integrity by verifying whether a piece of received or re-
trieved data was tampered during transmission or storage.
For the purpose of memory integrity protection and authen-
tication, before a PE stores a chunk of data to the insecure
memory, it will compute an integrity code using a MAC gen-
eration algorithm and keep it alongside the data. In the case
of digital rights protection or secure software execution, the
data itself may or may not be encrypted depending on the
security requirement. Later, when the same PE or any other
PE attempts to access the data, the integrity of the data
will be verified by re-generating the integrity code of the re-
trieved data using the same MAC algorithm and comparing
it against the stored one. Any tampering to the stored data
will be detected when a mismatch occurs.

In our shared memory authentication scheme, each PE
(including the North Bridge) is responsible for computing
the integrity code for data to be stored to the memory or re-

Session Key

Process Key

Process UUIDSecret Constant

AES

(a) Process Key Generation

Physical Address Cache Block Integrity Key Integrity Constant Bus Seq Num Process Key

Sha 256

Integrity Code

64 Bits

Sha 256

64 Bits

Integrity OTP

Encrypted Integrity Code

(b) Integrity Code Generation (Integrity Key and Bus Se-
quence Number generation are described in Figure 4) )

Bus Seq Num Process KeyData Constant

Sha 256

Cache Block

Encrypted Cache Block

Data OTP

(c) Data Encryption
Figure 2: Security Operations on Each Cache Block
Evicted from Processor or Transmitted as Coher-
ence Miss

quested by other PEs. When the data is shared by multiple
PEs, the key along with other necessary information for gen-
erating/verifying the integrity code must be shared among
all the involved PEs. The integrity code is encrypted using
OTP when it is transmitted through the shared system bus.
A one-time-pad (OTP) is uniquely computed using a confi-
dential shared bus sequence number which is tracked by all
the PEs on the system bus. The sequence number is incre-
mented by all the devices attached to the system bus after
each bus transaction. For protecting confidentiality of either
information stored to the memory and coherence response
to other processor’s request, the data is also encrypted us-
ing another OTP also computed based on the shared bus
sequence number.

Figure 2 shows needed operations for a cache block that is
either dirty-evicted from the protected domain or requested
by other processors. The operations illustrated are con-
ducted by a PE on each protected cache block to be written
to the system bus. They involve, generation of the process
key using the process uuid (Figure 2(a)), generation of the
encrypted integrity code using the generated process key,
bus sequence number, the data to be written and the in-
tegrity key (Figure 2(b)) and finally encryption of the data
using the bus sequence number and the process key (Fig-
ure 2(c)). SHA256 [9] and AES128 [2] are hash and en-
cryption standards. Integrity key is a 256-bit secret shared
by the units attached to the shared system bus. Session
key is an AES key uniquely initialized every time after the
system is started. Distribution of the shared secrets such
as the sequence number and the session key is addressed
in Section 3.1.3. For two blocks next to each other in the
figures implies they are concatenated. The ⊕ stands for
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XOR. Both the integrity key and the sequence number are
hidden from software access and can not be accessed exter-
nally. Similarly, computed data such as integrity code and
the process key are also hidden from software access. Only
encrypted integrity codes and encrypted cache blocks are
observable as they are transmitted over the shared bus. All
the PEs share the same constant values which are burnt
inside each PE. Most of the shared secrets, such as the ses-
sion key, the integrity key, and the sequence number are
not fixed constants. They are uniquely assigned each time
after the system is booted using approaches described in Sec-
tion 3.1.3.

Integrity verification and decryption of received cache block
(coherence reply and memory read) are shown in Figure 3.
Reading involves, computation of the process key (Figure 3(a)),
decrypting the received encrypted integrity code and en-
crypted data using the process key (Figure 3(b) and Fig-
ure 3(c)) and finally recomputing the integrity code from

the decrypted data to compare with the received integrity
code for authentication (Figure 3(d)).

The security model shown in Figure 2 and Figure 3 mini-
mizes the performance critical path between encryption and
decryption. The encryption OTP is pre-computed. In the
best scenario, the interval of transferring an encrypted cache
block consists of only time of a XOR operation on the sender,
transmission delay, and another XOR operation on the re-
ceiver. Authentication requires much more time because
integrity code has to be computed before transmission and
verified after the cache block is received.

3.1.3 Secrets distribution and sharing
How to securely distribute and share secret such as the

keys, the padding, the sequence number, and etc., is a major
challenge for designing a secure distributed system. Obvi-
ously, the secret can not be broadcast as plaintext over the
system bus. Integrity of the shared secret also has to be
maintained so that it can not be forged. Furthermore, the
shared secret such as the session keys, the sequence num-
ber must be different each time the machine is rebooted to
prevent replay attack. Here we present a novel and efficient
way for distributing secret information across multiple pro-
cessors connected by a shared bus.

Similar to a regular symmetric multiprocessor system, one
processor has to be designated as the boot processor to bring
up the system. This processor will execute its secure BIOS
and boot into a secure OS. The uniqueness of our solution
is that the shared secrets themselves are not transmitted,
instead they are computed by each involved processor in a
secure way based on information that can be openly shared.

During boot time, the bootstrap processor broadcasts the
range of physical memory to be protected to all the process-
ing units and the memory controller. It could be a portion
of the entire physical address space or all the physical RAM
space. After that, it starts key generation. During key gen-
eration, each unit attached to the shared bus is granted bus
cycles in turn to broadcast a random 64-bit number. Then
each unit concatenates all the random numbers it collects
from the bus including the one it broadcasts and computes
a hash value using some hash function. The hash result
is truncated into a 128-bit AES session key. Then, all the
shared secrets including the shared bus sequence number,
the process key, the integrity key are all synchronously com-
puted based on the session key as shown in Figure 4.

Both the secret hash key and the secret constant are con-
stants permanently burnt into the processor chip, and the
memory controller during manufacturing. They are secrets
stored in the chip inaccessible by either software running
inside or any device from outside. After a device creates
all the required keys and numbers, it will enter a synchro-
nization barrier. After all the devices on the shared bus
complete key generation and enter the synchronization bar-
rier, regular bus and memory transaction are resumed with
the appropriate protection specified in this paper.

The session key and bus sequence number are not tied
to a particular process and are not considered part of a
process context. But a process is free to specify whether
segments/pages of its virtual memory should be mapped to
protected physical memory. Note that a different session key
is generated each time after the system is freshly rebooted.

3.1.4 Software distribution and platform key
The cryptographic protection proposed is ”self-contained”

because the session key, the root of all the keys, the sequence
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number, etc, are not constants and will be modified each
time after reboot. Software vendors are not able to generate
the integrity code or OTPs used in the protection because
they do not have the session key. To execute software either
encrypted or authenticated by vendors in the mode with the
proposed protection, conversion from the vendor protected
domain to the MP platform protected domain is required.
This is achieved through a platform key. A platform key is
a pair of public-private keys with private key permanently
burnt into the MP’s chipset. Vendors encrypt the symmetric
cryptographic key used to encrypt/authenticate a software
with the public platform keys. When the software is copied
to memory from its disk image, it will be decrypted, authen-
ticated using the keys set by the software vendors, and then
re-encrypted using the methods described in Figure 2 and
Figure 3. As we will describe next, this conversion does not
necessarily require processor involvement and can be per-
formed in high speed with security enabled DMA engines.

3.2 Architectural Support of MP Security
In this section, we present a detailed architecture model

for implementing the MP security model described in the
previous section. The implementation must be efficient and
high performance while not compromising security. There
are three security enabled platform architecture components,
the shared system bus, the memory controller, and the se-
cure processors. Extra security related functionality has to
be added to these components to support the proposed MP
security model. Furthermore, new techniques must be in-
vented to minimize the performance impact of security ver-
ification. For MP systems and benchmarks, authentication
latency is an even more significant performance influencing
factor because integrity code of coherent response of cache-
to-cache communication has to be computed, transmitted,
re-computed, and verified. To tolerate the latency of in-

tegrity checking, we propose two new techniques. First, we
propose a split transaction bus model for data and its in-
tegrity code. Second, authentication speculative execution is
proposed to further hide the latency of authentication in the
secure processor.

3.2.1 Secure symmetric coherent bus protocol
The purpose of the secure multiprocessor bus protocol is

to prevent spoof and replay attack on the shared coherent
MP bus. It plays an essential role for providing a chain of au-
thentications for both cache-to-cache and memory-to-cache
accesses. Although the principle of how we secure the MP
bus is in fact not tied to any MP coherence bus protocol, but
for the sake of discussion, we restrict the design to a four-
state coherence protocol similar to SGI POWERpath-2 with
cache-to-cache transfer triggering a write-back to memory.
Each cache has four states; invalid, exclusive, dirty exclu-
sive, and shared. Each transition between states is either
initiated by the processor or by a coherent transaction. A
duplicate set of cache tags [3] is maintained by each proces-
sor interface ASIC and bus arbitration is done in distributed
manner. Similar to POWERpath-2, every bus transaction
requires five clock cycles. A system wide bus controller logic
executes the same five-state machine synchronously: arbi-
tration, resolution, address, decode, and acknowledge.

All the devices on the shared multiprocessor bus includ-
ing the memory controller share the same secret 64-bit bus
transaction sequence number described in Figure 2 and Fig-
ure 3. Since all the bus transactions are visible to all the
units attached to the snoopy MP bus, it is straightforward
for a unit on the bus to update and keep track of the se-
quence number. After a bus transaction completes, every
unit on the bus increments its copy of the sequence num-
ber internally. The sequence number is initialized during
system boot as shown in Figure 4. The number is kept as
secret by all the involved devices and never transmitted in
either plaintext or ciphertext on the bus.

One unique performance feature of our secure bus is the
split transaction of data and its integrity code. We may infer
from Figure 2 and Figure 3, that integrity code generation
and verification is the critical path of the MP security model.
To minimize the impact of authentication on performance,
our secure bus model allows data block and its integrity code
transmitted separately. For coherent response, a cache block
can be transmitted first followed by the encrypted integrity
code after it is computed. The un-authenticated data will
be used by the processor pipeline of the destination proces-
sor speculatively. We call this scheme, authentication spec-
ulative execution (ASE). After the integrity code is finally
received and verified, completed instructions using the un-
authenticated data can be retired and stalled memory oper-
ations using address generated using the un-authenticated
data can be issued. Section 3.2.3 details the ASE scheme.

Note that the 64-bit bus sequence is good enough for se-
curity protection. This is because for a bus running at speed
of hundreds of MHz or a few GHz, it would take hundreds
of years if not thousands for a 64-bit sequence number to
wrap-around.

3.2.2 Secure memory system
This section describes the architecture of the secure mem-

ory system consisting of a memory controller with an inte-
grated security engine, and a number of physical RAM chips.
We should note that for using integrity code alone is not suf-
ficient for verifying memory integrity because a hacker can
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Figure 5: MAC Tree

replace new data along with its MAC with old stale data and
MAC. Such replay attacks cannot be detected without using
techniques such as Merkle hash tree or MAC tree. When the
memory is not shared by multiple processors, all integrity
protection features can be implemented in the main pro-
cessor [4, 11, 12]. But this solution is inapplicable to MP
shared memory systems.

The primary goal of the security engine embedded in the
North Bridge memory controller is to detect alternation or
replay of data stored in the system memory. It is another
critical component in the chain of shared memory authenti-
cations. A simple solution is to have either Merkle hash tree
or MAC tree implemented in the memory controller. Note
that the integrity code itself is not transmitted in plaintext
over the MP bus and is unknown to the hackers. In our ar-
chitecture a MAC tree is employed to provide both security
and speed for memory authentication. Organization of the
MAC tree is shown in Figure 5. A leaf node represents an
individual integrity code and each internal node denotes a
MAC of all the children nodes.

The detailed operation of a memory write is as follows.
After the integrity of received data is verified, the memory
controller will update the MAC tree by substituting the new
integrity code (after it is XORed with the integrity OTP)
into the tree. Then it will send the data with the encrypted
integrity code to the memory. To be able to verify the in-
tegrity code later, the memory controller will also store the
encrypted bus sequence number to the memory. Each bus
sequence number can be encrypted using AES as shown in
Figure 6. Both the NB MAC key and the NB E key (where
NB stands for North Bridge and E stands for encryption)
used during encryption are secret information maintained
by the North Bridge itself.

To improve performance, the bus sequence numbers for
frequent data blocks are cached inside the North Bridge.
This can speed up integrity verification for data retrieved
from the physical RAM.

Upon receipt of a read request, the memory controller will
fetch both the data and the associated encrypted integrity
code from the physical RAM. The corresponding encrypted
bus sequence number will also be retrieved if it is not cached
in the North Bridge. The authentication mechanism will ex-
tract the original integrity code using the approach detailed
in Figure 3. To verify whether the integrity code and the
data is a replay, it is inserted into the MAC tree. Start-
ing from the bottom of the tree, recursively, a new MAC is
computed and compared with the cached internal MAC tree
node. If a match is found, the integrity code is verified valid.
Since it is impractical to cache all the internal nodes of the
MAC tree, many internal MAC tree nodes have to be stored
in the insecure system memory and brought into the mem-

Sha 256

Address Bus Seq Num

16 bits

Sequence Number Integrity Code

  NB MAC key

(a) Sequence Number Integrity Code Gen-
eration

AES

Bus Sequence Number

Encrypted Bus Sequence Number

Seq Num Integrity Code

   NBE Key

(b) Encrypting Bus Sequence Number
with Sequence Number Integrity Code

Figure 6: Bus Sequence Number Encryption

ory controller when needed. To prevent from leaking sen-
sitive information and jeopardizing security, confidentiality
of the internal MAC tree node has to be maintained. This
is achieved by encrypting the internal MAC tree node using
128-bit AES encryption scheme.

Memory latency is another critical issue for high perfor-
mance. Our secure memory system is specifically designed
for reducing memory latency at the same time without los-
ing security protection. The following techniques provided
by the proposed architecture are for memory latency reduc-
tion.

• The integrity OTP and data OTP are pre-computed. To
speed up the process of verifying retrieved integrity code
from memory, the North Bridge prefetches the encrypted
bus sequence number. If addresses of future memory
accesses can be predicted or speculated, the integrity and
data OTPs for these addresses can be pre-computed.

• Both the MAC tree node and the bus sequence number
for frequent data blocks are cached to improve memory
access speed.

The secure memory controller (North Bridge) is the center
of the proposed MP security model. Beside the MAC tree,
it also shares secrets with other processors on the shared
bus, maintains platform key pairs described in the security
model, and transforms protected information from the soft-
ware vendor’s domain to the platform’s domain.

The memory controller holds several security oriented reg-
isters. Fixed addresses are assigned to these registers and
access to these registers must be performed through pro-
tected bus transactions. First, there is a process uuid register
in each processor. During execution of a set uuid instruc-
tion by a secure processor, the processor also issues a secure
write access to the corresponding uuid register in the North
Bridge so that a process key can be derived by the memory
controller. Upon receipt of a new uuid value, the memory
controller computes its version of the current process key
based on Figure 2. Similar to the uuid register, there are
North Bridge registers assigned for holding software vendor
keys encrypted by the platform’s public key. The North
Bridge can extract the vendor keys using the private plat-
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form key. When the vendor keys are enabled, transactions
from peripheral devices such as disks, network devices are
first verified or decrypted using the vendor keys and then
converted using the process key and the integrity key un-
derstandable by the secure processors based on Figure 2.
The platform key pair is permanently burnt in the North
Bridge.

Note that the secure OS kernel always resides in a sepa-
rately protected memory space. Access to the secure kernel
uses a different process key and set uuid is not needed when
application switches to secure kernel mode. The memory
range of the secure kernel is also maintained by the North
Bridge. The uuid registers and encrypted vendor key regis-
ters in the North Bridge reside in the secure kernel memory
space. Another important security role served by the North
Bridge is the conversion of memory protection when data
is transmitted from peripherals such as disk to the physical
memory. The conversion mechanism supports both DMA
based and processor based memory operations. For DMA,
the involved secure processor initializes both the related
uuid register, and the software vendor key register first,
then starts the DMA engine. The memory controller will
automatically verify and convert protections from vendor’s
domain to the platform’s domain for every chunk of data
written to the memory. Similarly, when results in the mem-
ory are DMAed to the peripherals, they can be optionally
converted back to the software vendor’s domain. Both op-
erations can be achieved with support of the security DMA
engine without increasing workload on the secure processor.

3.2.3 Authentication speculative execution
As aforementioned, there are three alternatives of incorpo-

rating results of integrity verification into processor pipeline
— AIOE, ASE, and LAE. The pros and cons of each ap-
proach are listed in Table 1. To achieve a balance between
security and performance, ASE is definitely the best com-
promise. Detailed discussion of vulnerabilities of LAE is
outside the scope of this paper.

Using ASE, data and its integrity code can be transmit-
ted separately. Each data transaction on the MP bus is
tagged with a transaction number. The upper bound of the
tag is the maximum number of outstanding bus transac-
tions supported. A bus transaction is not considered com-
plete before its integrity code is received. For both inter-
processor communication and regular memory fetch, data
can be transmitted and processed even before integrity code
arrives, hence not stalling the pipeline. For inter-processor
communication, integrity code has to be computed by the
source processor, transmitted, and verified by the destina-
tion processor. For a memory fetch, integrity code has to
be verified through the MAC tree. Data transactions with
either un-verified integrity or missing integrity code are kept
in a structure we call the Sequential Authentication Buffer
(SAB) which is illustrated in Figure 7. SAB is an on-chip
buffer that keeps read transactions with outstanding in-
tegrity codes or transactions with unverified integrity codes
in the sequence they were triggered in the system. There
is an ”authenticated bit” associated with each SAB entry.
This bit is set when the integrity of a read transaction is ver-
ified. SAB broadcasts the index of an authenticated entry to
a bus shared by memory load/store queues and the re-order
buffer. Even though the transactions can be authenticated
in any order SAB entries have to be broadcasted sequen-
tially which justifies it being called a sequence buffer. Both
load/store queues and re-order buffer have an extra SAB tag

SAB Tag

SAB Tag

SAB Tag

SAB Tag

SAB Tag

SAB Tag

MAC MAC Valid Authenticated (bit)

MAC MAC Valid Authenticated (bit)

SAB Tag

SAB Tag

SAB Tag

Data Write

Data Write

SAB Tag Forward (update
according to tag rules)

Data Read

Instr Read

SAB Tag
Destination

Head of 
SAB entry

Next
free SAB entry

Physical Register

Physical Register

Physical Register

Source SAB tag

Source SAB tag

SAB Tag Mixer( decides which tag i
will be broadcasted later)

MAC MAC Valid Authenticated (bit)
MAC MAC Valid Authenticated (bit)
MAC MAC Valid Authenticated (bit)

MAC Valid Authenticated (bit)MAC

Load Queue

Authenticated SAB Entry
Broadcast Tag of

Store Queue

Sequential Authentication Buffer

Figure 7: Authentication Speculative Execution

field. If the value stored in the tag field is zero, it means
that value held in the queue or the re-order buffer is either
authenticated, or produced using authenticated data. If the
SAB tag value is a positive number i, it means that data
associated with the queue or re-order buffer is not consid-
ered authenticated until integrity of the transaction held in
entry i of the SAB is verified. When a load/store queue or
reorder buffer snoops a broadcast of index i from the SAB,
any entry tagged with index i is reset to zero.

An ASE processor allows the use of un-authenticated data
for speculative execution. However, the in-flight results will
be tagged with its corresponding entry index in the SAB. For
example, consider an instruction ”load r2, [addr]” which uses
data fetched from [addr] that misses the cache. Therefore,
data of [addr] will be fetched from memory and the trans-
action allocates an entry with an index i in the SAB. Then
the entry holding r2 value in the physical register file will be
tagged with i. The instruction is also inhibited from being
retired from the processor pipeline. However, the dependent
instructions using r2 as an input operand are allowed to be
issued and executed. For example, assume that the next
instruction is ”add r3, r3, r2”, where source r3 contains an
unauthenticated input value and tagged with a value k. Af-
ter the add instruction is completed, the destination r3 will
be tagged with either i or k depending on which one will be
broadcasted by SAB later. If i would be broadcasted later
than k, then r3 will be tagged with i, otherwise, tagged with
k. The pseudo-code in Figure 8 shows how to decide which
tag would be broadcasted later given two source tags, the
SAB tag to be broadcasted next (SABhead), and a pointer
to the next free SAB entry (next free SAB). Implementation
of the SAB tag updating rules called ARB Tag Mixer is done
in hardware.

When un-authenticated data is to be stored to the mem-
ory hierarchy or data/ instruction needs to be fetched from
memory hierarchy using address computed from unauthen-
ticated data, it is allowed to be issued to the memory hier-
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Table 1: Pros and Cons of AIOE, ASE, and LAE
Scheme Pros Cons
AIOE secure slow, support precise interrupt
ASE secure support precise interrupt, faster than AIOE, allow split transaction of data and integrity code
LAE fastest insecure, worst for protection using one-time-pad, no precise interrupt for authentication failure

tag mixer (SABhead, next free SAB, src1 tag, src2 tag){
if (SABhead < next free SAB) {

return MAX(src1 tag, src2 tag);
}else {

if both src1 tag1 and src2 tag >= SABhead
or both src1 tag1 and src2 tag <= next free SAB
return MAX(src1 tag, src2 tag);
if (src1 tag1 < =src2 tag) return src1 tag;
else return src2 tag;

}
} Figure 8: Compute a new SAB tag
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[CASE 1 - p hits either L1 or L2, ASB Tag & Stall 
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DO CASE 3; 

Processor Pipeline 

ROB with ASB Tag 

ASB 

Authentication 
Engine 

WB Buffer 

Shared System Bus 

Load/Store Queue with 
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Figure 9: Authentication Tag Cache

archy. Load/store queue of memory units are also extended
with an SAB tag field. When a piece of data is forwarded
from the store queue, its SAB tag kept in the store queue is
also ”forwarded” to update the destination register’s SAB
tag.

If the access < addr, SAB tag i > has to be issued to the
memory and hits either L1 or L2 cache and the authentica-
tion tag i can be cached somewhere, execution can be still
continued as normal. Next time, the data in addr is fetched
into some physical register again, the cached SAB tag i will
also be retrieved and used to update the register’s SAB tag
field. But, if the access is authentication unsafe and triggers
an L2 miss, it will be stalled for the purpose of security pro-
tection. The stalled access together with its authentication
tag i will be maintained in a cache, called Authentication
Stall Cache (ASC). ASC maintains all the L2 miss mem-
ory accesses that are authentication unsafe and can not be
issued to the bus because of unauthenticated SAB tags.

The Authentication Stall Cache (ASC) also receives SAB
broadcast. If a broadcasted tag is equal to the tag stored
in a ASC entry, the corresponding stalled memory access
can be removed from the cache and ready to be granted bus
cycles for the memory request.

The above description requires that authentication tag be
cached alone with the data in the on-chip cache. This can be
achieved by adding a field to each cache line. However, since

the interval between the time that an un-authenticated data
is received or produced and the time when it is authenticated
(all its sources are authenticated) is relatively short, it is
more efficient to disassociate SAB tag and the data to have
a separate small tag cache for storing authenticated tags.
Furthermore, the tag cache can be merged with the Stall
Cache to be a unified SAB Tag & Stall Cache as shown in
Figure 9.

Instruction fetch is stalled when its execution or fetch de-
pends on unauthenticated data, such as conditional branches.
The instruction is tagged with SAB tag of data sources, and
is stalled until the data sources are verified. Under ASE, if
instruction fetch hits on-chip instruction caches, it can be
optionally speculatively executed but results produced by
the instruction will be tagged with SAB tag associated with
the instruction. However, if the conditional branch triggers
an L2 miss, it will be stalled in the ASC until the data source
it depends on is authenticated.

3.3 Security Analysis
This section provides a security analysis for both the MP

bus protocol and the secure memory system. The objective
of MP shared memory authentication is to prevent unautho-
rized alternation and replay of coherent response and data
stored in the shared memory. There are a number of tech-
niques adversaries can try to exploit our system and we will
show that none of them will succeed in breaking the pro-
posed protection mechanism. First, a hacker may try to
forge the integrity code. This clearly does not work since
each unit can verify the integrity code and our integrity
code is generated using a strong cipher. The integrity key is
a secret and it is re-generated after the machine is rebooted.
Second, a hacker may try to replay both data and the associ-
ated integrity code on the MP bus, this will fail because ev-
ery bus transaction is protected by a sequence number that
does not stay the same. Third, a hacker may try to do re-
play attack on the memory. This would not succeed neither
because of the MAC tree protection. Since both the secure
MP bus protocol and the secure memory system use OTP,
people may suspect that attacker can launch known plain
text attacks. This is also impractical because plain text at-
tacks requires that attacker knows the integrity code. In
our scheme, integrity code is kept secret. It is not accessible
either by software or external devices. Only encrypted in-
tegrity code is transmitted and stored in the physical RAM.
Moving memory block and its encrypted MAC around does
not work neither because the encrypted MAC is generated
using address as part of the input. Replay data written by a
different process will also fail because the MAC is encrypted
by an OTP generated by a process key which is unique to
each process. Finally, security privileged instructions such
as setup uuid can be only used inside the secure kernel. User
program is not allowed to use these instructions thus pre-
venting spoofing of a process uuid.

4. PERFORMANCE ANALYSIS

4.1 Memory overhead
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Table 2: Memory Overhead
Structure Size (bytes)

SAB(32 entries) 32*(8b MAC+1b cntrl)=288
SAB Tag & Stall (4b addr+1b tag+1b cntrl)*64

Cache (64 entries) =384

Table 3: Applications and input parameters
Application Parameters

lu 256 by 256 matrix, block 8
radix 512K keys
water 343 molecules

quiksort 32768
mp3d 5000
fft 65536

The proposed memory protection scheme needs additional
die space to implement security related tables or caches such
as SAB, SAB tag cache, sequence number cache, etc. These
tables or caches often contain only small number of entries
and in lots of cases can be merged with other related struc-
tures. For example, SAB can be merged with the existing
table for tracking outstanding bus transactions. Table 2 lists
the memory overhead of required on-chip structures.

The sequence numbers associated with each cache line
size RAM block and the intermediate nodes of MAC tree
are stored in the RAM. The space needed is approximately
1/(m-1) of the RAM size with an m-ary balanced MAC tree.
For example, for a 256-bit cache line with a 64-bit sequence
number and MAC, the RAM overhead is about 25% of the
protected RAM space. Note that the scheme allows only
portion of the whole RAM protected. It is up to the sys-
tem on how the protected physical memory is allocated.
The caches implemented in the memory controller are se-
quence number cache and MAC tree caches for the frequent
sequence numbers and MAC tree nodes. They are typically
small from 8KB to no more than 32KB.

4.2 Simulation Environment
For characterizing and evaluating our proposed MP sys-

tem, we use RSIM [10] as our infrastructure to simulate a
4-node MP system. Each node includes a MIPS R10000
like out-of-order processor, L1, and L2 cache. We modi-
fied the simulator to support the SGI POWERpath-2 MP
coherent bus protocol and a shared main memory. Secure
snoopy bus protocol, memory authentication, and authen-
tication speculative execution are all implemented into the

Parameters Values

CPU 4-issue per cycle
reorder buffer 64 instructions

load/store queue 64 instructions
L1 cache 8-Kbyte, directly mapped
L2 cache 4-way, Unified, 32B line,

256KB
L1 Latency 1 cycle

L2 Lat (256KB) 3 cycles
Memory Latency X-5-5-5 (cpu cycles)

X depends on mem page status
Memory Bus 200 MHz, 8B wide

SHA-256 Latency 180ns
AES Latency 180ns

Bus Sequence # Cache 2Way; 8KB, 32KB; 64B line
MAC tree 2Way; 8KB,32KB; 64B line

Table 4: Processor model parameters
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Figure 10: Authentication Performance
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Figure 11: Characteristics of Cache and Memory
References

RSIM simulator. To characterize the memory transactions
more accurately, we integrated an accurate DRAM model [5]
based on the PC SDRAM specification. SPLASH-2 bench-
mark suite [14] was used. The SPLASH-2 benchmark appli-
cations [14] and its input parameters use in this study are
listed in Table 3. Table 4 lists the basic processor configu-
ration parameters used throughout the experiments unless
otherwise specified. The latencies of Mac tree and sequence
number caches were obtained using CACTI [13].

4.3 Performance

4.3.1 Authentication Performance
Figure 10 compares the performance of different authenti-

cation execution schemes. It shows IPC normalized to base-
line3 under two scenarios, AIOE, and ASE. We tried two MP
settings, 2P and 4P systems because dual and quad proces-
sor platforms are the most popular choices for today’s com-
mercial workstations. The data indicates that ASE is much
faster than AIOE and incur very little performance degra-
dation. The average performance degradation for ASE is
less than 5% for both 2P and 4P systems. The performance
improvement of ASE over AIOE on average is about 80% for
both 2P and 4P systems. Figure 11 shows two important
profiling results of the benchmarks, combined L1/L2 cache
misses and proportion of memory references with respect to
the total number of instructions executed. It will be used
later for explaining some applications’ characteristics.

Furthermore, we evaluated the effect of SAB tag & stall
cache. There are several conditions, an ideal tag cache (al-
ways hit), a 32 entry tag cache (8-way, 4 set), a 64 entry tag
cache (8-way, 8 set), and no tag cache under a quad proces-
sor setting. The results are shown in Figure 12. The IPCs
were normalized to those of ideal tag cache. As indicated,
tag cache can improve performance for some benchmarks es-

3Baseline has zero security protection of any kind.
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Figure 12: Authentication Performance under Dif-
ferent Tag Cache Setting, 32K MAC tree & 32 K
sequence number caches, Processors=4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

fft lu radix quicksort water mp3d

N
o

rm
al

iz
ed

 IP
C

(n
o

 s
ec

u
ri

ty
 a

s 
b

as
el

in
e) ideal Mac tree & seq # cache 32K Mac tree & seq# cache

8K Mac tree & seq# cache no cache

Figure 13: Authentication Performance under Dif-
ferent North Bridge Cache Resources, Processors=4

pecially quicksort, radix, and mp3d. As shown in Figure 11,
these three benchmarks are memory intensive. The aver-
age improvement is about 5%, and more than 10% for some
benchmarks compared to the system with no tag cache.

Another factor of authentication performance is the amount
of cache resources in the North Bridge. Results in Figure 13
show the effects of MAC tree and sequence number cache
size using IPC normalized to an ideal MAC tree and se-
quence number cache. On average, a 32KB MAC tree and
sequence number caches can deliver an IPC only 3% less
than that with an ideal MAC tree and sequence number
cache. The performance of 8KB MAC tree and sequence
number cache and no cache are 6% and 26% respectively.

4.3.2 Encryption Performance
The protection scheme supports information stored in the

RAM optionally encrypted. However, the latency overhead
is un-balanced. For cache-to-cache access, the overhead is
very small because the data is encrypted and decrypted
by two XOR operations given the OTP is pre-computed.
For memory-to-cache access, the overhead is bigger because
the OTP can not be pre-computed (it can be done under
prefetch but we did not evaluate its impact in this paper).
However, the memory controller can start the OTP com-
putation as soon as the request is received and the asso-
ciated sequence number is cached in the sequence number
cache. Figure 14 gives results showing categorizations of L2
misses, in which, most of the benchmarks except for a few
like ”radix” show more cache-to-cache accesses than mem-
ory accesses. The behavior of the ”radix” benchmark may
be explained by the fact that it actually does a radix sort
on a huge array of non-negative numbers. The huge number
of memory accesses in ”radix” may be explained as capacity
misses for the large array. We may also observe from the fig-
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Figure 15: Memory Encryption/Decryption Perfor-
mance

ure that cache to cache accesses for a four processor system
is larger than for a two processor system. This is because of
that for a four processor system there is more data in the
caches which causes more communication among them.

Since the sequence number cache plays a critical role in
determining the latency of encrypted memory data, we eval-
uated encryption protection performance under different se-
quence number cache sizes, no sequence number cache, 8K,
32K, and ideal. Each cache line of the sequence number
cache is 64 bytes long and holds eight 64-bit sequence num-
bers. Figure 15 shows normalized IPC results. As the results
indicated, using encryption will slow down the performance
significantly for some benchmarks. With any caches, the
averaged performance is about 45% of the baseline. The
sequence number cache can hide some of the latency over-
head. A larger sequence number cache will deliver better
IPC results. One way to reduce the overhead of encryption
is to increase the operating frequency of the North Bridge.
We evaluated this option by running the encryption logic
at 400Mhz. Normalized IPC results are shown in Figure 16.
Under the assumption of ideal MAC tree and sequence num-
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Figure 16: Memory Encryption/Decryption Perfor-
mance at 400MHz, Processors=4
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ber caches, the slow down is about 40%. Intergrating the
North Bridge with the processor chip has the same effect
with the North Bridge operates at the processor clock rate.

5. CONCLUSIONS
This paper proposed a unified hardware-based memory

protection scheme for both uni-processor and MP platforms.
It addresses the issue of protecting memory shared in an MP
system.

At the same time when our scheme was developed, uni-
processor based Loghash [4, 11] integrity protection was also
extended to the scenario of memory protection in multi-
processor environment. However, as pointed out in the pa-
per, Loghash based scheme authenticates large number of
memory accesses collectively thus is much less secure. Fur-
thermore, loghash does not support precise interrupts on
authentication exceptions. Last, loghash requires replicated
authentication tree implemented in each processor therefore
causing significant amount of area overhead than our ap-
proach, which requires only one authentication tree imple-
mented in memory controller.

Our scheme on the other hand is not only able to pro-
tect the memory integrity but also the confidentiality of an
MP shared memory. Different from the previous endeavors
on uni-processor memory protection, our scheme achieves
memory security in a platform distributed manner and re-
lies on a light-weight secure processor implementation. Un-
like previous approach that trades security for performance,
the novel authentication speculative execution (ASE) is both
secure to be combined with a one-time-pad (OTP) based
memory protection and is effective in hiding authentication
latency. Simulation results show a 5% performance over-
head on a quad processor platform and 80% improvement
over the authentication in-order execution (AIOE).
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