
Helper Transactions: Enabling ThreadLevel Speculation
via A Transactional Memory System

Richard M. Yoo

yoo@ece.gatech.edu

HsienHsin S. Lee

leehs@ece.gatech.edu

School of Electrical and Computer Engineering
Georgia Institute of Technology

Atlanta, GA 30332

ABSTRACT

As multi-core processors become readily available in the mar-
ket, how to exploit parallelization opportunities to unleash
the performance potential has become the utmost concern.
Thread-Level Speculation (TLS) has been studied as one such
enabling technique to automatically extracting possibly non-
conflicting threads for execution in a program. On the other
hand, transactional memory (TM) systems have received much
attention recently as a promising alternative for parallel pro-
gramming due to its simplicity. However, its current scope
of use is largely limited to the elimination of traditional
locks. In this paper, we discuss how TM systems can be
extended to enable TLS, thereby significantly extending the
usage model of TM systems. Among the many TLS tech-
niques, we discuss a design in-depth to effectively exploit
out-of-order procedure fall-through speculation. In this de-
sign, speculatively executed transactions gracefully degener-
ate to helper threads in the worst case scenario.

1. INTRODUCTION
Homogeneous multi-core processors are aimed at improv-

ing throughput with multiple hardware contexts. Nonethe-
less, finding enough tasks to exercise these contexts can be
a challenge. Applications such as web servers, database sys-
tems, scientific applications, etc., can be easily benefited.
Whereas, most of the common applications used by desk-
top users will unlikely obtain performance advantage of a
multi-core due to their sequential nature. For these appli-
cations, the make or break of multi-core architecture will
highly depend on how many independent multiple threads
can be extracted and executed in parallel.

Thread-Level Speculation (TLS) was proposed as a per-
formance technique to address this problem [22, 5, 20, 1,
24]. Using TLS, a program can be divided into a number
of possibly non-conflicting tasks. The spawn points of these
tasks are usually determined by high level programming lan-
guage constructs, e.g., loops, if-then-else statements, proce-
dure fall-throughs, etc. The hardware then speculatively
executes these tasks in parallel, performing squashing and
rollbacks for those tasks that violate the inter-task depen-
dency. Ideally, TLS can spawn a sufficient number of threads
to exercise these multiple hardware contexts on multi-core
processors. When correctly speculated, performance of an
application will be improved.

Transactional Memory (TM) [7, 6, 2, 19, 13] is another
approach to increase concurrency on a multi-core proces-
sor. Unlike TLS, TM does not spawn a new task to exploit

more parallelism. Rather, TM systems help the existing
threads perform better by relaxing the strict exclusion of
thread execution imposed by traditional locks. A transac-
tion essentially contains a sequence of instructions that must
be executed in an atomic fashion; these instructions either
commit or abort as a single large operation. Transactions
are allowed to execute speculatively to obtain more paral-
lelism. It is the responsibility of the underlying TM system
to detect and abort transactions that violate memory de-
pendency.

Nonetheless, the use of a TM system has been seemingly
limited to the liberation of traditional lock-based program-
ming. Compared to the complexity of implementing TM in
the hardware, the realizable benefits are rather small. In
fact, TLS and TM share many functionalities, such as de-
pendency violation detection, result buffering, checkpoint-
ing, and replay. Therefore, some recent work did attempt to
utilize TM in the context of TLS [8, 24]. However, their us-
age limits the TM only to its dependency violation detection
and result buffering capabilities.

In this paper, we show that by extending TM with proper
task spawning mechanism, context passing mechanism (Sec-
tion 4.1), and sequential ordering scheme (Section 4.2), TM
can be readily transformed into a full-blown TLS platform.
This approach significantly extends the use cases of TM sys-
tems, while lowering the implementation costs for TLS on
a TM-enabled system. In particular, we discuss a design
in-depth to effectively exploit out-of-order procedure fall-
through speculation. In this design, speculatively executed
transactions gracefully degenerate to helper threads in the
worst case scenario.

Table 1 positions our design in the context of various
parallelism-enabling techniques. As can be seen from the ta-
ble, helper transactions technique positions itself as a unique
merger of TM system and out-of-order TLS; although it na-
tively supports out-of-order procedure fall-through specula-
tion, it can still be applied to parallelize traditional locks.

2. THREADLEVEL SPECULATION
In TLS, a program is first divided into multiple tasks. In

a compiler-supported TLS implementation, the boundary
of these tasks are determined by high level programming
language constructs: e.g., loops, if-then-else statements, and
procedure fall-throughs.

Procedure fall-through speculation, in particular, exploits
the functional level parallelism between the called procedure
and the continuing code that comes right after the function

Implementation Category Architecture Operand Passing Out-of-order Lock
Network Spawn Parallelization

Multiscalar [22] TLS Dedicated Y - -
SVC [3] TLS SMP Y - -
Hydra [5] TLS CMP - Y -
PolyFlow [1] TLS SMT - Y -
TLS4OutOrder [20, 9] TLS CMP - Y -
Voltron [24, 8] TLS CMP Y Y ?
Helper Transactions TM + TLS CMP - Y Y
TCC [6] TM CMP - - Y
UTM [2] TM CMP - - Y
LogTM [13, 14] TM CMP - - Y

Table 1: Comparison of Various Parallelism-Enabling Techniques

Speculative
(fall-through code)

Non-speculative
(function body)

Figure 1: Procedure Fall-Through Speculation

call. Figure 1 shows a typical task tree for procedure fall-
through speculation.1 In this figure, upon a function call,
the main task speculatively spawns a new task with the fall-
through code, while continuing itself into the callee function.
Instructions for the function body and the fall-through code
are then executed in parallel.

When a task can spawn more than one speculative task
throughout its lifetime, the task spawning scheme is called
out-of-order spawn [20]. Figure 2 shows a typical task tree
for the case of procedure fall-through when out-of-order spawns
are enabled. In this diagram, the non-speculative task that
continued into foo() encounters another function call goo(),
spawning another speculative task (task 3). The speculative
task executing the fall-through code of main() (task 1) also
encounters another call hoo() and spawns a speculative task
itself (task 2). This task spawning scheme is called out-of-
order because the spawn order of tasks (0-1-2-3) does not
follow the sequential order (0-3-1-2) of tasks.

Maintaining sequential order in in-order spawning is rel-
atively simple; the order of processors imply the sequen-
tial order of the tasks executing on those processors [3, 11].
For out-of-order spawning, maintaining the sequential or-
der among tasks becomes much more complex. However,
there is an urge for the need for out-of-order spawning to ex-
tract additional parallelism [9, 11, 20]. Our design includes

1In this diagram and throughout the paper, the ▽ symbol
denotes spawning a new task or thread.

task 0task 1task 2 task 3

Sequential order

 function main() {
 …
 foo();
 …
 hoo();
 ...
 }

 function foo() {
 ...
 goo();
 ...
 }

 function hoo() {
 ...
 }

foo()

goo()

hoo()

Figure 2: Out-of-Order Procedure Fall-Through
Speculation

a mechanism to maintain sequential order for out-of-order
spawning.

3. MAPPING TLS ONTO A TM SYSTEM
This section overviews how the procedure fall-through

speculation can be mapped onto the TM framework. De-
tailed implementations will be described in Section 4. Sec-
tion 3.1 describes the basic approach. Section 3.2 then de-
scribes the changes needed to support out-of-order spawning
on TM systems.

3.1 The Basics
From the TM perspective, each task in TLS basically

amounts to a transaction. Figure 3 shows the result when
procedure fall-through speculation of Figure 1 is mapped
onto TM.

When encountering a function call, the main thread spawns
a new thread with the fall-through code. The main thread
then continues on to the function body. However, the func-
tion body is guarded with begin transaction and commit transaction
instructions. At the same time, the spawned thread starts
a transaction itself upon starting execution. The TM then
detects any memory dependency violation between the func-
tion body transaction and the fall-through code transaction.

begin_transaction

Function body

commit_transaction

End thread

begin_transaction

commit_transaction
(implicit)

Fall-through code

Trigger commit

function main() {
 …
 foo();
 begin_transaction;
 …
 …
 ...
}

function foo() {
 begin_transaction;
 …
 commit_transaction;
}

foo()

Trigger commit

Figure 3: Procedure Fall-Through Speculation on
TM

The most difference in this approach over a conventional
TM is that each transaction will execute a different code re-
gion. Therefore, there must be a sequential order among
transactions. In Figure 3, the transaction executing the
function body sequentially precedes the transaction execut-
ing the fall-through code. Hence, the function body trans-
action must commit before the other transaction.

This can be achieved with 2 mechanisms. First, for TM
systems with eager conflict detection [2, 13], the TM should
abort the fall-through transaction in favor of function body
transaction upon detecting conflicts. The aborted transac-
tion will rollback to the point right before the fall-through
code, and resume execution. Notice that on a multi-core sys-
tem with a shared L2 cache, the aborted transaction, in fact,
may improve the overall execution performance by warming
up the instruction cache with the fall-through code [18].

Second, upon reaching the commit transaction instruction,
the fall-through transaction should be stalled until the func-
tion body transaction commits. This can also be achieved by
not inserting any explicit commit transaction instruction in
the fall-through transaction; the pairwise order is recorded,
and the commit of the function body transaction implicitly
triggers the commit of the fall-through transaction. The
implicit commit scheme can optimize performance since it
allows the fall-through transaction to continue execution,
instead of stalling and waiting for the function body trans-
action to commit. Figure 3 also depicts such optimization.

3.2 Supporting OutofOrder Spawn
The greatest challenge in supporting out-of-order spawn

on a TM system lies in how to define the semantics of a
transaction spawning new transactions. This can be easily
achieved by mapping out-of-order spawns to nested transac-
tions [17, 15, 14, 12, 16]. In a TM system supporting nested
transactions [17, 12, 14], a transaction may have multiple
concurrent children transactions.

begin_transaction
level = 1

begin_transaction
level = 2

commit_transaction
level = 2

begin_transaction
level = 2

End thread

commit_transaction
level = 2 (implicit)

commit_transaction, level = 1

End thread

begin_transaction, level = 1

commit_transaction
level = 1 (implicit)

Trigger commit

Trigger commit

Figure 4: Out-of-Order Procedure Fall-Through
Speculation on TM

Specifically, there are two distinct schemes in supporting
nested transactions: closed nested transaction [14, 17] and
open nested transaction [12, 16]. Due to the space limi-
tation, we only focus on the case of closed nested scheme.
However, our approach can be implemented on the open
nested scheme as well, since we commit a transaction only
when it is guaranteed that its outer transaction will commit.

Figure 4 shows the task tree when an out-of-order spawn
is mapped to nested transactions. In this diagram, all be-
gin transaction and commit transaction are explicit instruc-
tions except where denoted as implicit. Basically, at each
spawn point, the spawning thread increases its nesting level
by 1. At the same time, the spawned thread starts a transac-
tion at the same nesting level as the spawning transaction.
For example, in Figure 4, the rightmost transaction (the
non-speculative one) increases its transaction level from 1
to 2 at the second spawn point; the spawned thread then
starts a transaction at the same level (=2).

In the same way as in Section 3.1, sequential ordering is
maintained by 1) aborting more speculative transaction in
favor of less speculative transaction upon conflict, and by
2) stalling the commit of the more speculative transaction
until the less speculative transaction commits. Again, in
Figure 4, all speculative transactions should stall on explicit
commit transaction instruction. The figure also shows the
case where the commit of the less speculative transaction
triggers the commit of the more speculative transaction. In
this figure, the rightmost transaction triggers the commit of
the middle transaction, and so forth.

In this particular example, the middle transaction en-
counters commit transaction instruction after the rightmost
transaction encounters commit transaction instruction. Fig-
ure 5, on the contrary, shows the case where the middle
transaction (more speculative) encounters commit transaction

End thread

commit_transaction
level = 1 (stall)

End thread

begin_transaction, level = 1

Trigger commit

begin_transaction
level = 2

commit_transaction
level = 2

begin_transaction
level = 2

commit_transaction
level = 2 (implicit), 1

Figure 5: Speculative Transaction Stalling for Less
Speculative Transaction

instruction before the rightmost transaction (less specula-
tive) commits.

As described in the figure, the more speculative transac-
tion stalls for the less speculative transaction to commit.
Notice that there is a strict ordering among the commits —
a transaction can commit only when it is least speculative
(non-speculative). Otherwise, a transaction should stall on
an explicit commit transaction instruction.

The mechanism described so far would be sufficient to sup-
port TLS on a TM system. However, without the dedicated
operand passing network, spawning the fall-through code as
a new transaction on a remote core can be costly when all
the register dependencies between the code prior to the func-
tion call and the fall-through code should be converted into
memory dependency. Figure 6 shows the modified approach
to alleviate this problem.

In this modified approach, upon encountering a function
call, the main thread spawns a new thread with the func-
tion body rather than the fall-through code as shown in Fig-
ure 4 or in a generic TLS implementation. The main thread
then increases its transaction level, and continues onto the
fall-through code. This way, the memory traffic for context
passing can be radically reduced. Moreover, this approach
significantly simplifies the compiler’s support (Section 4.1).

Nonetheless, this scheme requires the partial abort sup-
port [12, 14] from the TM system. As in Figure 6, if the
middle transaction conflicts with the rightmost transaction,
the middle transaction should be aborted due to the sequen-
tial ordering. Without the partial abort support, this will
end up aborting the middle transaction up to and including
transaction level 1. With partial abort support, the middle
transaction only needs to rollback up to the point where it
started transaction level 2. This way, the transaction infor-
mation pertaining to transaction level 1 will be kept intact.

In summary, with closed, nested TM supporting partial
abort, the out-of-order spawn can be implemented on TM.
However, there is one caveat — by a nested TM we refer to
a ‘true’ nested TM which can support multiple concurrent
child transactions. Notice that not many hardware TM im-
plementations faithfully implement nested transactions [2,

begin_transaction
level = 1

begin_transaction
level = 2

commit_transaction
level = 2

begin_transaction
level = 2

End thread

commit_transaction
level = 2 (implicit)

commit_transaction, level = 1

End thread

begin_transaction, level = 1

commit_transaction
level = 1 (implicit)

Trigger commit

Trigger commit

Figure 6: Out-of-Order Procedure Fall-Through
Speculation on TM (Revised)

6, 13, 14]; what they implement is actually ‘linear nesting,’
which only supports one child transaction at a time. Follow-
ing the specification and the discussion in [17], a true nested
TM should support multiple child transactions. Hardware
architects have long ignored this point since they assumed
such an execution model does not exist. Our design shows
that a true nested TM is crucial to implement out-of-order
TLS on TM.

4. EXTENDING TM SYSTEM
This section discusses how to actually implement the de-

sign presented in Section 3.2. Since TM does not include
task spawning mechanism and context passing mechanism,
these functions should be implemented in the compiler (Sec-
tion 4.1). Moreover, the sequential ordering mechanism
should be built into the TM; this is then discussed in Sec-
tion 4.2.

4.1 Compiler Support
To support task spawning, the compiler should insert codes

for thread creation. As discussed in Section 3.2, the newly
created thread should execute the function body guarded
with transactions. Moreover, the continuation thread should
start a transaction itself. Listings 1 and 2 show the neces-
sary transformations.

Listing 1: Sample Code Before TLS Transformation

int main (int argc, char∗ argv[])

{
int a, b, c;

...

foo(a, b, c);

...

}

int foo (int arg0, int arg1, int arg2)

{
... // function foo body

}

Listing 2: Sample Code After TLS Transformation

int in memory a, in memory b, in memory c;

int main (int argc, char∗ argv[])

{
int a, b, c;

...

in memory a = a;

in memory b = b;

in memory c = c;

create thread(tls foo);

begin transaction;

...

}

void∗ tls foo (void∗ arg)

{
int arg0, arg1, arg2;

arg0 = in memory a;

arg1 = in memory b;

arg2 = in memory c;

begin transaction;

foo(arg0, arg1, arg2);

commit transaction;

}

int foo (int arg0, int arg1, int arg2)

{
... // function foo body

}

Listing 1 shows the original code, while the listing 2 shows
the code after the necessary transformations were applied.
Upon encountering the function call foo(a, b, c), the com-
piler should generate a new function tls foo() whose body
is actually the function call itself. Also, the body should be
guarded with begin transaction instruction and commit transaction
instruction. Then, the function call is replaced with the
thread spawning directive, to spawn a new thread with the
newly created function tls foo(). Finally, the begin transaction
instruction is inserted right before the fall-through code so
that the spawning thread will start a transaction itself.

Note that the compiler does not insert any explicit com-
mit transaction instruction to the fall-through code. This fa-
cilitates the use of implicit commit. In this implementation,
the begin transaction instruction and the commit transaction
instruction should be modified to denote whose child trans-
action the instruction is beginning (committing). This can
be accomplished by assigning a unique ID to each of the
transactions, and then passing this ID as an argument [17].

Moreover, assuming the new thread will be executing on
a remote core, all register dependencies should be converted
into memory dependencies, so that the correct register val-
ues are passed on to the spawned thread. However, since
we are spawning a new thread for the callee, not the fall-

Shared L2
Stall Signal
Generator
(Section
4.2.3)

User
registers

Register
checkpoints

Core

Transaction begin PC
Handler PC

Peer xact ID (Section 4.2.3)

TLS
level

Encoding value
(Section 4.2.1)

Parent xact ID (Section 4.2.2) Transaction
contexts

Transaction
contexts

Transaction
contexts

L1 I/D Cache Comparator
(Section
4.2.1)

Interconnect

Core 0

Core 2

Core 1

Core 3

...

...

Figure 7: Helper Transactions Hardware Overview

through code, the register dependency only exists through
the arguments of the callee function. Therefore, only the
arguments for the called function need to be translated into
memory dependencies.

This can be achieved by assigning a ‘conduit’ for each of
the arguments. A new variable which has the same type as
the original argument is declared to reside in memory, and
the argument is passed through this variable. The compiler
should insert store instructions to copy the arguments into
the memory, and load instructions to retrieve them back.

Notice that global (static scope) variables will reside in
memory by default. However, on platforms which could pass
global variables through registers, the compiler should force
these variables to reside in memory. This is typically done
by adding a volatile attribute to the variable [9].

4.2 Hardware Extensions
Hardware extensions focus on implementing the sequen-

tial ordering scheme. Figure 7 shows the modifications re-
quired to support TLS on TM systems. Darker blocks indi-
cate the added modules. Section 4.2.1 first discusses on how
to encode the ordering information in hardware. Based on
this encoding scheme, Section 4.2.2 discusses how to abort
transactions. Lastly, in Section 4.2.3 we present the hard-
ware module to guarantee sequential ordering for transac-
tion commits.

4.2.1 Encoding the Sequential Ordering

As pointed out in Section 3.1, now that the transactions
are executing different code regions, there must be a sequen-
tial order among the transactions. This ordering should be
directly implemented in the TM since it determines 1) which
transaction to abort when there is a dependency violation,
and 2) which transaction should stall on commit. To better
deliver the idea, we introduce the notion of binary tree to
sequential ordering.

Figure 8(a) shows an example task tree, which is the TM
view of the task tree in Figure 2. Figure 8(b) shows this
example task tree encoded in a binary tree. In this binary
tree, each node represents a single nested transaction — two
child nodes represent the two child transactions of a transac-
tion. The root node represents the state where there are no
active transactions. Notice that according to the definition
of nested transactions [16, 17], only the leaf nodes represent
the currently executing transactions. In this diagram, the

transaction 0transaction 1transaction 2 transaction 3

Sequential order

 function main() {
 …
 foo();
 …
 hoo();
 ...
 }

 function foo() {
 ...
 goo();
 ...
 }

 function hoo() {
 ...
 }

foo()

goo()

hoo()

(a) Example Task Tree

0 1

00 01 10 11

root

Sequential order

0

0 1

1

0

foo()

goo()
1

hoo()main() fall-through foo() fall-through

main() fall-through

(b) Task Tree Encoded in a Binary Tree

Figure 8: Encoding the Sequential Order in a Binary
Tree

value in each node represents the encoded sequential order-
ing.

The value is maintained as follows. When a transaction
reaches a function call site, it starts two child transactions:
one with the function body, and the other with the fall-
through code. Notice that the child transaction executing
the function body sequentially precedes the child transac-
tion executing the fall-through code. This information is
passed down to child transactions as bits 1 and 0; the child
transaction executing the function body receives 1, while
the other child transaction executing the fall-through code
receives 0. Each child transaction then appends this bit to
its parent’s encoding value as its own encoding value.

Overall, the node value encodes the ‘lineage’ of the cur-
rent transaction. For example, when the value is 10, we
know that the transaction has been reached by executing a
function body at the first spawn point, followed by the exe-
cution of the fall-through code at the second spawn point.

By comparing these encoding values, we can determine
which transaction precedes the others in sequential order-
ing. For example, in Figure 8(a), when the transaction con-
tinues executing the fall-through code of foo() (transaction
3) and the transaction executing function hoo() (transaction
1) conflict over a memory block, by comparing their encod-

0 1

00 01

root

Sequential order

0

TLS level 0

TLS level 1

TLS level 2

0 1

1

Figure 9: An Example Requiring Valid Digits

ing values 10 and 01, we know that transaction 3 precedes
transaction 1 in sequential order. Therefore, transaction 3
should be continued in this case.

Nonetheless, to compare bit patterns, we need the notion
of valid digits. Figure 9, for example, represents the situa-
tion after the two least speculative child transactions have
committed.

To guarantee correct sequential ordering between the trans-
action encoded as 1 and the transaction encoded as 01, we
need to know how many digits to compare. TLS levels can be
used for this purpose. TLS levels denote the nesting depth of
the current transaction. In our encoding scheme, TLS level
actually denotes the number of valid digits to compare. The
pseudo-code to compare encoding values with TLS level in-
formation is given in Listing 3.

Listing 3: Pseudo Code to Compare Sequential En-
coding Values

bool remoteIsOlder (Message inMsg)

{
int local encoding = m encoding;

int local tls level = m tls level;

int remote encoding = inMsg.encoding;

int remote tls level = inMsg.tls level;

int diff = abs(remote tls level −
local tls level);

if (local tls level < remote tls level) {
remote encoding >>= diff;

} else {
local encoding >>= diff;

}

return (remote encoding > local encoding);

}

The code in Listing 3 returns true if the remote transac-
tion precedes the local transaction in sequential order. Ap-
plying this scheme to compare (encoding = 01, TLS level =
2) against (encoding = 1, TLS level = 1) yields true, cor-
rectly representing that 1 precedes 01 in sequential order.

By including the encoding and the TLS level information
in cache coherence messages, and by performing the com-
parison in each memory controller, each transaction can de-
termine the sequential ordering between its peers and itself
without storing the binary tree in a central structure.

In the rest of the paper we assume that the valid digits
are implicit: e.g., encoding value 01 implies that it has two
valid digits.

4.2.2 Aborting a Subtree of Transactions

In Section 4.2.1 we showed how to utilize encoding values
and TLS levels to determine which transaction precedes the
other in sequential ordering. This information can be used
to abort the offending transaction. However, when aborting
a speculative transaction, transactions that are more specu-
lative than the aborting transaction should also be aborted
to maintain the proper sequential order. In our implemen-
tation, we conservatively abort a subtree of transactions.
Listing 4 describes the algorithm to determine the root of
such aborting subtree.

Listing 4: Pseudocode to Determine the Root of the
Aborting Subtree

Node getSubtree (Node victim, Node offender)

{
while (victim.TLS level != offender.TLS level)

{
if (victim.TLS level > offender.TLS level) {

victim = victim.parent;

} else {
offender = offender.parent;

}
}

while (victim.parent != offender.parent)

{
victim = victim.parent;

offender = offender.parent;

}

return victim;

}

In Listing 4, the first while loop level the victim and the
offender by replacing a node with its parent until they are
at the same TLS level. The second while loop then perco-
lates the information up until the victim and the offender
reach the same parent. In hardware, victim.parent opera-
tion amounts to passing the offender information up to its
outer transaction, and offender.parent operation amounts to
shifting the encoding bit of the offender.

For example, in Figure 9, when transaction 01 and trans-
action 1 conflicts, from Section 4.2.1 we know that the trans-
action 01 should be aborted. In the first while loop of Listing
4, transaction 01 percolates the information up to its outer
transaction, transaction 0. The second while loop will return
right away since transaction 0 and transaction 1 share the
same parent. So in this example, transaction 0 becomes the
root of the aborting subtree.

The root then initiates the aborting process by recursively
aborting transactions in postorder: its left child first, then
its right child, then itself. Each aborting transaction is re-
sponsible for aborting its two child transactions. This abort-
ing process guarantees that the transactions are aborted in
reverse sequential order: from the most speculative trans-
action to the least speculative transaction. Note that only
the root node transaction should resume after the abort; it
is semantically incorrect to resume the nested transaction
when its outer transaction has been aborted.

2 00
TLS level Encoding value

1 1

2 01

Core 0
Core 1

Core 2
Core 3
Core 4
Core 5

Core 6

Core 7

(a) Example Status of the Mod-
ule

2 00
TLS level Encoding value

1 1

2 01

2 01

TLS level Encoding value

>

>
>
>
>
>
>
>

0

1

0

0

0

0

0

0

1

(b) Module Generating Stall Signal

Figure 10: Hardware Mechanism to Order Transac-
tion Commits

In this context, when to resume the aborted transaction
could be an interesting optimization choice. Instead of restart-
ing the aborted transaction right away, the TM could deter-
mine to stall [13, 21] resuming the transaction until the con-
flicting less speculative transaction commits. In this case the
aborted transaction effectively becomes the helper thread.
In TM systems supporting contention manager [21, 10], this
can be easily implemented by integrating the sequential or-
der with the contention management scheme. On those sys-
tems without contention manager, a sequential order aware
transaction scheduling could be applied [23].

4.2.3 Ordering the Commits

Due to the sequential ordering, commits of transactions
should occur in a specific order. There should be a cen-
tral module to serialize the commits, similar to the way a
reorder buffer serializes the commits of out-of-order instruc-
tions. Figure 10 shows the organization and the operation
of this module.

In this module, each entry in the table maintains the TLS
level and the encoding value of the current transaction. As-
suming that the TM can support only one transaction per
core, there should be as many entries as there are cores.
When a transaction begins, it updates the pertaining entry
with its TLS level and the encoding value, as calculated in
Section 4.2.1. When a transaction commits, if the transac-
tion was the left child of an outer transaction, it updates the
entry with outer transaction’s TLS level and the encoding
value. When it is the right child transaction or it does not
have an outer transaction, it simply clears the entry. Figure

10(a) shows the status of the module when executing the
task tree of Figure 9.

Upon reaching the explicit commit transaction instruction,
a transaction should consult this module to determine whether
to stall or not. Figure 10(b) shows the example of transac-
tion 01 consulting the module in the context of Figure 9.

In this diagram, each comparator next to the entry per-
forms the encoding comparison as in Listing 3. This time,
the local encoding variable in the pseudo-code notation per-
tains to the transaction querying the module. Each compar-
ison is performed in parallel, then the output is ORed to gen-
erate the stall signal. Notice that the pseudo-code correctly
generates value 0 for the comparison with itself and with
an empty entry. Stall signal will be 1 when a sequentially
preceding transaction is executing — the querying transac-
tion should stall. By polling this module periodically, the
transaction can determine when it is the least speculative
transaction: when it can commit. To guarantee atomicity,
the table should be single-ported.

Moreover, to facilitate implicit commit (Section 3.1), func-
tion body transaction should trigger the commit of its sibling
fall-through transaction. This can be achieved by assigning
a unique ID to each of the transactions, and then storing the
sibling information in the transaction context. This trigger
message should be buffered on the receiving side, because it
might receive the trigger message while it has been aborted
but has not resumed yet, or it could be executing a different
transaction.

5. FUTURE WORK
Procedure fall-through speculation has been pointed out

as a significant source of speculation. Similar to out-of-order
execution that exploits ILP, TLP can be exposed by enabling
out-of-order spawning, in particular, for a future many-core
system which may find in-order spawning scheme too re-
stricted in exploiting TLP. Many prior research thrusts [22,
9, 11] have already demonstrated that out-of-order spawn-
ing can significantly improve performance over its in-order
spawning counterpart.

More quantitatively, Marcuello et al. [11] pointed out that
about 76% of the SPEC INT95 application code can poten-
tially benefit from the procedure fall-through speculation.
It was also shown in [1] that procedure fall-through tasks
comprise more than 30% of the entire TLS tasks. In more
realistic implementations supporting out-of-order spawning,
techniques in [20, 1] showed that the procedure fall-through
speculation alone realizes 10% to 20% speedup for SPEC
INT2000, over the single-threaded execution. We expect
our implementation to show similar speedup results.

There are previous researches utilizing TM in TLS context
[24, 8, 4]. However, in these works, the use of TM was
significantly limited either 1) to statistically parallelizing the
loop [8] or 2) to support in-order spawning only [4]. To the
best of our knowledge, our paper is the first to exploit out-of-
order spawning on TM framework. It will be interesting to
observe to what extent the parallelism can be exploited when
procedure fall-through speculation and lock parallelization
are applied at the same time.

6. CONCLUSION
In this paper, we proposed and discussed a design in-depth

to show how to extend a TM system to support TLS. In par-

ticular, we studied the procedure fall-through speculation.
Compared to TLS systems, TM systems lack task spawn-
ing mechanism, context passing mechanism, and sequential
ordering mechanism. By implementing task spawning and
context passing mechanism in a compiler, and by implement-
ing sequential ordering mechanism in hardware, we have
successfully demonstrated a TM framework that supports
TLS. Specifically, by mapping the out-of-order task spawn-
ing scheme onto the closed nested transaction semantics, we
proposed a holistic way to support out-of-order spawning
directly on TM systems.

7. ACKNOWLEDGMENTS
This work was supported in part by an NSF CAREER

Award (CNS-0644096).

8. REFERENCES

[1] M. Agarwal, K. Malik, K. M. Woley, S. S. Stone, and M. I.
Frank. Exploiting postdominance for speculative parallelization.
In Proceedings of the 2007 International Symposium on High
Performance Computer Architecture, February 2007.

[2] C. S. Ananian, K. Asanovic, B. C. Kuszmaul, C. E. Leiserson,
and S. Lie. Unbounded transactional memory. In Proceedings of
the Eleventh International Symposium on High-Performance
Computer Architecture, pages 316 – 327, February 2005.

[3] S. Gopal, T. N. Vijaykumar, J. E. Smith, and G. S. Sohi.
Speculative versioning cache. In Proceedings of the 4th
International Symposium on High-Performance Computer
Architecture, pages 195–205, 1998.

[4] L. Hammond, B. D. Carlstrom, V. Wong, B. Hertzberg,
M. Chen, C. Kozyrakis, and K. Olukotun. Programming with
transactional coherence and consistency (TCC). In Proceedings
of the 11th Intl. Conference on Architectural Support for
Programming Languages and Operating Systems, October
2004.

[5] L. Hammond, M. Willey, and K. Olukotun. Data speculation
support for a chip multiprocessor. In ASPLOS-VIII:
Proceedings of the 8th International Conference on
Architectural Support for Programming Languages and
Operating Systems, pages 58–69, 1998.

[6] L. Hammond, V. Wong, M. Chen, B. D. Carlstrom, J. D. Davis,
B. Hertzberg, M. K. Prabhu, H. Wijaya, C. Kozyrakis, and
K. Olukotun. Transactional memory coherence and consistency.
In Proceedings of the 31st Annual International Symposium
on Computer Architecture, pages 102 – 113, June 2004.

[7] M. Herlihy and J. E. B. Moss. Transactional memory:
Architectural support for lock-free data structures. In
Proceedings of the 20th Annual International Symposium on
Computer Architecture, pages 289 – 300. May 1993.

[8] S. A. Lieberman, H. Zhong, and S. Mahlke. Extracting
Statistical Loop-Level Parallelism using Hardware-Assisted
Recovery. Technical Report CSE-TR-528-07, University of
Michigan, February 2007.

[9] W. Liu, J. Tuck, L. Ceze, W. Ahn, K. Strauss, J. Renau, and
J. Torrellas. POSH: A TLS compiler that exploits program
structure. In Proceedings of the 11th ACM SIGPLAN
Symposium on Principles and Practice of Parallel
Programming, pages 158–167, 2006.

[10] V. Marathe, W. Scherer III, and M. Scott. Adaptive software
transactional memory. In Proceedings of the 19th
International Symposium on Distributed Computing, 2005.

[11] P. Marcuello and A. González. A quantitative assessment of
thread-level speculation techniques. In 14th International
Conference on Parallel and Distributed Processing
Symposium, pages 595–604, May 2000.

[12] A. McDonald, J. Chung, B. D. Carlstrom, C. C. Minh,
H. Chafi, C. Kozyrakis, and K. Olukotun. Architectural
semantics for practical transactional memory. In ISCA ’06:
Proceedings of the 33rd Annual International Symposium on
Computer Architecture, pages 53–65, 2006.

[13] K. E. Moore, J. Bobba, M. J. Moravan, M. D. Hill, and D. A.
Wood. LogTM: Log-based transactional memory. In
Proceedings of the 12th International Conference on High
Performance Computer Architecture, pages 254 – 265,
February 2006.

[14] M. J. Moravan, J. Bobba, K. E. Moore, L. Yen, M. D. Hill,
B. Liblit, M. M. Swift, and D. A. Wood. Supporting nested
transactional memory in LogTM. In ASPLOS-XII: Proceedings
of the 12th International Conference on Architectural Support
for Programming Languages and Operating Systems, pages
359–370, 2006.

[15] J. E. B. Moss. Nested transactions: An approach to reliable
distributed computing. PhD thesis, Massachusetts Institute of
Technology, 1981.

[16] J. E. B. Moss. Open nested transactions: Semantics and
support. In Workshop on Memory Performance Issues, 2006.

[17] J. E. B. Moss and A. L. Hosking. Nested transactional memory:
Model and preliminary architecture sketches. In The 2005
Workshop on Synchronization and Concurrency in Object
Oriented Languages, held at OOPSLA, October 2005.

[18] J. Pierce and T. Mudge. Wrong-path Instruction Prefetching.
In Proceedings of the 29th Annual ACM/IEEE International
Symposium on Microarchitecture, pages 165–175, 1996.

[19] R. Rajwar, M. Herlihy, and K. Lai. Virtualizing transactional
memory. In Proceedings of the 32nd Annual International
Symposium on Computer Architecture, pages 494 – 505, June
2005.

[20] J. Renau, J. Tuck, W. Liu, L. Ceze, K. Strauss, and
J. Torrellas. Tasking with out-of-order spawn in TLS chip
multiprocessors: Microarchitecture and compilation. In ICS
’05: Proceedings of the 19th Annual International Conference
on Supercomputing, pages 179–188, 2005.

[21] W. N. Scherer, III and M. L. Scott. Advanced contention
management for dynamic software transactional memory. In
Proceedings of the 24th Annual ACM Symposium on
Principles of Distributed Computing, pages 240 – 248, 2005.

[22] G. S. Sohi, S. E. Breach, and T. N. Vijaykumar. Multiscalar
processors. In Proceedings of the 22nd Annual International
Symposium on Computer Architecture, pages 414–425, 1995.

[23] R. M. Yoo and H.-H. S. Lee. Adaptive transaction scheduling
for transactional memory systems. In Proceedings of the 20th
ACM Symposium on Parallelism in Algorithms and
Architectures, Special Track on Hardware and Software
Techniques to Improve the Programmability of Multicore
Machines, June 2008.

[24] H. Zhong, S. Lieberman, and S. Mahlke. Extending multicore
architectures to exploit hybrid parallelism in single-thread
applications. In Proceedings of the 2007 International
Symposium on High Performance Computer Architecture,
February 2007.

