
Improving TLB Energy for Java Applications
on JVM

Chinnakrishnan S. Ballapuram
School of Electrical and Computer Engineering

Georgia Institute of Technology
Atlanta, Georgia 30332–0250

chinnak@ece.gatech.edu

Hsien-Hsin S. Lee
School of Electrical and Computer Engineering

Georgia Institute of Technology
Atlanta, Georgia 30332–0250

leehs@gatech.edu

Abstract—Java platforms are widely deployed and used rang-
ing from ultra-mobile embedded devices to servers for their
portability and security. The TLB, a content addressable memory,
can consume a significant power in these systems due to the
nature of its associative search mechanism. In this paper, we
propose and investigate three different optimizations for the
TLB design, aiming to improve its power consumption for
Java applications running on top of Java Virtual Machines.
Our techniques exploit unique memory reference characteristics
demonstrated by the JVM and its interaction with the Java
applications running atop. Our first technique J-iTLB shows an
average of 12.7% energy reduction in the iTLB with around
1% performance improvement for eliminating conflict misses
between the JVM code and the Java application code. The second
technique combines the J-iTLB with an object iTLB scheme and
achieves an energy savings of 51% with a small 1% performance
impact. Our third technique, a read-write partitioned J-dTLB,
shows an average of 34% energy savings in the dTLB with 1%
performance impact. Finally, when the J-iTLB with an object
iTLB is combined with the J-dTLB, we obtained 42% overall
TLB energy savings.

I. INTRODUCTION

The concept of “write once, run anywhere” has made the
Java platforms and their applications widely adopted from
wireless mobile devices to high performance servers. The
applications being incorporated into these platforms are also
becoming more sophisticated and diversified, as a result,
consuming more energy. To extend the battery lifetime and
reduce the cost of cooling solutions, energy efficiency is no
longer a desired feature but a design constraint. To address
the overall energy consumption, it becomes inevitable that a
designer needs to consider energy efficiency in all different
design stacks including circuits, microarchitecture, compilers,
and even programming languages.

The Java language combines different features from differ-
ent programming paradigms. The features include portability,
object-oriented design, multithreading, garbage collection, and
exception handling. These rich features come at the expense
of decreased performance caused by the additional hardware
abstractions. The Java source code is first translated into the
architecture-independent bytecodes. These bytecodes can then
be executed on any platform that supports an implementation
of the Java Virtual Machine (JVM). The JVM insulates Java
application from any contact with the underlying hardware.

The JVM is an abstract computer implemented on top of
a real hardware and operating system to run compiled Java
bytecodes.

A JVM can be implemented via the following mechanisms:
an interpreter, a Just-In-Time (JIT) compiler, a dynamic com-
piler, and a direct hardware execution. There are pros and
cons with respect to performance and power to each of these
techniques. The interaction between the Java program and the
JVM for the shared resources also influences the power and
performance of the overall system. An interpreter emulates
the virtual machine by continuously fetching, decoding, and
executing the bytecode until the program completes. Although
the size of the interpreter is typically small (within hundreds
of kilobytes), the per-bytecode translation can result in low
performance. A JIT or a dynamic compiler compiles the
bytecodes into the corresponding machine-specific binaries to
execute them natively on the machine. Further, the native code
can be dynamically optimized using runtime feedback profile
with a dynamic compiler, leading to better performance for
Java applications. But the performance also depends on the
effectiveness of the JIT compiler itself. Today, a sophisticated
compiler needs more than hundreds of kilobytes and memory
space to translate and optimize the code for higher application
performance. The last option is to run the bytecodes directly
on a Java processor. This eliminates the abstraction of the soft-
ware translation and promise the best possible performance.
In this paper, we concentrate on the JIT and dynamic compiler
approaches for their prevalence in practice.

The Java programming language offers features such as
strong type checking and dynamic garbage collection with
the extra layer of the JVM implementation that impacts both
power and performance. In the embedded domain where
Java is widely deployed with virtual memory support, power
efficiency becomes even more important. Prior studies have
shown that the memory behavior of Java applications is very
different from regular C/C++ programs [9], [15], [20], [22]. In
particular, the characteristics become very interesting when the
compiler, optimizer, and garbage collector of a JVM interacts
with the Java bytecodes within the same address space.

The instruction TLB (iTLB) and the data TLB (dTLB) are
accessed by the JVM code, its associated data, and also by
the Java application code and data. Due to the interference of

these assorted accesses, the TLB power and performance of
Java applications are unexpectedly exacerbated. In this paper,
we propose three TLB mechanisms to improve power and
performance for Java applications. The contributions of this
paper are:

• We study the memory reference characteristics of a
Java application running on a JVM and its interactions
between them.

• We propose an energy efficient iTLB and dTLB mech-
anisms for the Java applications running on the JVM
without compromising performance.

• Our split iTLB technique achieves an energy savings of
12.7% with 1% performance improvement. Our second
technique combines a small object iTLB at first level
with the first technique and reduces energy by 51% with
1% performance impact. The third technique splits dTLB
reduces energy by 34% with 1% performance impact for
the SPECjvm98 benchmark suite. Finally, when the J-
iTLB with object iTLB is combined with J-dTLB, we
obtained 42% overall TLB energy savings with less than
1% performance impact.

II. MOTIVATION

To gain better understandings regarding the interaction of
memory accesses between the JVM and the Java applications,
we briefly discuss the way JVM loads a Java program and
executes it in the interpreter, JIT, and dynamic compilation
mode.

A. Interpreter Mode
In the interpreter mode, the JVM first loads the Java class in

the dynamic heap memory. The JVM will then fetch, decode,
and execute the Java application bytecode that flows through
the dTLB and data cache (dCache). So, the dTLB and dCache
are accessed by both the JVM’s private data and the Java
application bytecodes.

B. Just-In-Time and Dynamic Compilation Mode
In the Just-In-Time mode, the JVM first loads the Java

class into the heap memory. A JVM compiler first compiles
the bytecode to the native machine binaries of the target
processor. In the dynamic compilation mode, the compiler
may initially generate an unoptimized code. At runtime, the
dynamic optimizer will continuously optimize the binaries
with dynamic information. In both modes, the compiled code
is stored in the heap space, which will always access the dTLB
and dCache. In addition, the JIT or dynamic compiler that
optimizes the code during runtime will also go through the
dTLB and dCache as part of its own private data accesses.

Once the optimized/unoptimized code is written to the heap
through dTLB and dCache, the native code on the heap will be
executed through the iTLB and the instruction cache (iCache),
so does the code of the JVM itself. This behavior is quite
different from the normal execution of a C/C++ program,
where instructions are only accessed within the code space.
In the JIT or dynamic compilation mode, the JVM code will

0

500

1000

1500

2000

2500

3000

3500

4000

ch
eck db jac

k
jav

ac jes
s

mpe
ga

ud
io mtrt

av
era

ge

of

 m
em

or
y

re
fe

re
nc

es
 in

 M
illi

on
s

code accesses in text region code accesses in heap region
data accesses in global static region data read accesses in heap region
data write accesses in heap region

Fig. 1. Distribution of instruction and data memory references to different
memory regions by the Java application running on a JVM

access the heap memory to fetch the Java application’s code.
As such, the iTLB is accessed by both the JVM and the
Java application. This cross-sharing creates interference in the
iTLB, increasing the iTLB miss rate, as the heap accesses
for Java applications are dynamic and active. The activity is
even busier in the dynamic compiler mode since the dynamic
JVM optimizer will attempt to optimize the code at runtime
while these accesses will potentially conflict with its own
instructions in the iTLB and iCache, penalizing performance
of both the Java applications and the JVM itself.

Fig. 1 shows the distribution of instruction and data accesses
to different regions of the virtual address space for the seven
SPECjvm98 [3] benchmark programs using input set s1. The
distribution information was collected using the Dynamic
SimpleScalar [1], [10] simulator simulating the Jikes RVM [2]
running the Java applications. We modified the Dynamic
SimpleScalar simulator to identify the regions of memory
accesses and collect the distribution profile.

In this figure, the first two bars are plotted for the instruction
side while the rest of the three are plotted for the data side. The
leftmost bar shows the number of memory accesses to the code
region followed by a bar showing the number of instruction
accesses to the heap. The JIT compiler generates and writes
the machine-dependent native instructions to the heap. These
native instructions are read from the heap to execute the Java
application. Notice that these heap accesses are dominant in
the instruction side, accounting for almost all the instructions
accessed.

The next three bars show the distribution of data memory
accesses. The third bar shows the number of accesses to the
static global region, which is apparently insignificant. The last
two bars show the numbers of “data” reads from and writes
to the heap. As mentioned earlier, part of these accesses are
caused by the activities that the JIT compiler reads the Java
bytecode and generates native code that is written onto the
heap. We will exploit these memory access characteristics
between the JVM and the Java applications for achieving an
energy-efficient TLB design.

0
1 1

0

31

ld_code_end

ld_code_start

iCache

Java application
iTLB

Virtual Address
PC

JVM code
iTLB

Instruction Address Router
(IAR)

Fig. 2. JVM and Java iTLB (J-iTLB)

III. JVM AND JAVA ITLB (J-ITLB)

As indicated in the second bar ofFig. 1, most of the
instructions that go through the iTLB are in fact coming from
the heap. These heap accesses are to fetch the native code
and execute it. Unfortunately, these highly active accesses
can adversely conflict with the normal JVM’s code accesses,
increasing the iTLB misses in the traditional iTLB structure.
To address this interference issue, we propose a new structure
that segregates the iTLB into two distinct TLB structures
to improve both performance and power. Using two distinct
iTLBs, the JVM code and the JIT-compiled application code
will be stored separately to eliminate the iTLB interference
completely. Also, as the JVM code itself is static, the re-
quirement of its iTLB can be designed much smaller than
one holding the JVM-compiled code. On the other hand, Java
application codes are much more dynamic since the objects are
created and freed at runtime in the Java programs. Worse yet,
the unused or deallocated objects can be highly fragmented
before they are recycled by the garbage collector. As a result,
new objects will be less likely to be allocated within the same
memory page or in consecutive pages, causing more TLB
misses.

Fig. 2 illustrates our proposed iTLB organization in which
the iTLB is horizontally split into two TLBs: one dedicated for
the JVM code accesses, and the other for the Java application
accesses to the heap. Not only does such segregation eliminate
the conflict misses of address translations from two unrelated
code space, it also improves power consumption when only
one of the TLBs is looked up. During the program’s start,
the loader identifies the ld code start address (code start)
and ld code end (code end) of the JVM. This information
is readily available as part of the ELF or COFF executable
format. The sizes of various sections such as .text, .init, .data,
.rodata, and .bss sections are clearly defined in the executable
file. These two addresses are then kept by a special hardware
register pair stored inside the Instruction Address Router (IAR)
as shown in the figure. The IAR will route each of the
incoming PC virtual address based on this register pair. All

0
1

1
0

31

ld_code_start
ld_code_end

0

7

iCache

Java application
2nd level iTLB

JVM code
iTLB object iTLB

Virtual Address
PC

Instruction Address Router
(IAR)

Fig. 3. JVM and Java iTLB (J-iTLB) with object iTLB

incoming PC virtual addresses are checked against the register
pair. If an address falls in the JVM’s text range, it is routed
to the JVM iTLB; otherwise, it is forwarded to the Java
application iTLB. Also, the outcome of these comparisons by
the IAR is used to clock-gate the unused iTLB for power
savings.

A typical Java program creates many objects interacting
with other objects using the methods. Once the object com-
pletes the work, its resources are released and re-allocated
for other objects. These objects generally access both code
and data memory regions, and are typically small with good
locality and short life span [13]. In fact, these short-lived
objects constitute a high percentage of the total memory
references. Given the Java objects are small and dynamic, we
introduce an object iTLB to exploit this behavior for reducing
power.

Fig. 3 shows our proposed iTLB organization. In addition to
the partitioned scheme shown in Fig. 2, the iTLB for the Java
application code is further stratified into two levels. The first
level, a smaller TLB, is inserted to support the dynamic object
code accesses in the Java applications. It is then backed up by a
second-level, larger TLB to improve the TLB miss rate. Again,
the IAR routes the addresses based on the virtual address as
explained earlier. We charge an additional extra cycle when it
misses the object iTLB and looks up the second-level iTLB.
We will analyze the power and performance of these two iTLB
organizations in the experiments sections.

IV. JVM AND JAVA DTLB (J-DTLB)

As shown in the last three bars of Fig. 1, the numbers of
reads and writes to the heap account for the majority of data
memory accesses in Java applications, dwarfing the number
of reads in the global static data region. The JIT compiler
translates the Java application bytecode into the native code
and writes it in the heap space. These writes flow through the
dTLB and the dCache. Finally, the underlying hardware reads
the translated native code through the iTLB and the iCache.

1
0

31

0
1

7

dCache

Load/Store
Virtual Address

Load Store
Buffer Buffer

read TLB
(rTLB)

write TLB
(wTLB)

Fig. 4. JVM and Java dTLB (J-dTLB)

0
1

read TLB
(rTLB)

write TLB
(wTLB)

1
0

31

Java application
2nd level iTLB

iTLB
JVM code

Virtual Address
PC

1
0

31

0
1

7

Load/Store
Virtual Address

Load Store
Buffer Buffer

0

7

object iTLB

iCache dCache

Unified L2 Cache

Instruction Address Router
(IAR)

Fig. 5. Complete organization of iTLB and dTLB

To exploit the characteristics of data accesses by Java
applications, we propose to modify the dTLB as shown
in Fig. 4. In this new organization, the dTLB is split into
two distinct TLBs, one for reads and one for writes. All load
addresses are directed to the read TLB (rTLB) while all store
addresses are routed to the write TLB (wTLB) to minimize the
contention between them. Also, when the Java application is
in execution, the JIT or dynamic compiler uses the wTLB for
native code writes while the rTLB is used by the JVM and the
Java application data accesses to read the data from the heap
simultaneously without the need to multi-port a monolithic
dTLB. Fig. 5 shows the complete schematic of our proposed
energy efficient TLB structure for Java applications running
on JVM.

V. EXPERIMENTAL RESULTS

Our power and performance evaluation infrastructure is
based on Dynamic Simplescalar (DSS) [1] [10] simulator.
The Dynamic Simplescalar simulator simulates Java programs

running on a JVM that uses Just-In-Time or dynamic compi-
lation. The Dynamic Simplescalar allows JIT compilers such
as Jikes RVM to be simulated on top of it. The DSS also
supports many other interesting features such as PowerPC ISA
target, checkpointing, a vastly improved memory model, and
a Wattch-based power model [6] [8] using 100nm technology.
As the DSS simulates PowerPC ISA as the underlying target
machine, we used GNU cross compiler tools and utilities to
generate the Jikes RVM PowerPC binary, and the RVM code
and data images on a Linux hosted Intel IA-32 machine. The
Jikes RVM developed by IBM researchers includes an ag-
gressive optimizing compiler and a flexible dynamic adaptive
compilation infrastructure.

The SPECjvm98 benchmark suite [3] consists of eight
programs and most of them are derived from real world
applications. The SPECjvm98 allows users to evaluate the
performance of both the hardware and the software aspects
of a JVM platform. On the software side, it evaluates the
performance of the JVM, JIT, and the operating system
implementations. On the hardware side, it includes the CPU,
the caches, and the memory subsystem. We simulated all the
Java applications in the SPECjvm98 suite except compress,
which had problems when running on Dynamic SimpleScalar.
We ran all the programs in the SPECjvm98 from start to its
completion without fast forwarding or skipping instructions.
The simulated processor configuration is shown in TABLE I.

32-bit Processor Parameters Values
Execution Engine in-order

Number of baseline ITLB entries 32
Number of baseline DTLB entries 32

Number of JVM ITLB entries 2
Number of object ITLB entries 8

Number of 2nd level ITLB entries 32
Number of read DTLB entries 32
Number of write DTLB entries 8

Page size 4 KB
L1/L2 cache hit latency 1 / 6 cycle

Memory latency 150 cycles
TLB hit latency 1 cycle

L1I and L1D cache baseline 4-way associative
32KB, 32B line

L2 cache 4-way 512KB,
32B line

Number of TLB ports used 1
Each 20-bit comparator power 300µW

TABLE I
PROCESSOR MODEL PARAMETERS

First, we evaluated the effectiveness of the new J-iTLB
structure as proposed in Fig. 2. The power savings for this
configuration is shown in the leftmost bar of Fig. 6. In this
experiment, we focus on the iTLB and assume a 32-entry
conventional dTLB for all the experiments. The extra energy
consumed by the two comparators in the Instruction Ad-
dress Router is taxed every cycle. Each comparator consumes
300µW using 100nm technology based on SPICE modeling.
The energy savings is around 12.7% without any performance
penalty. In fact, there is slight performance improvement
around 1%. The reason is that the interference between the

0%

10%

20%

30%

40%

50%

60%

70%

ch
ec

k db jac
k

jav
ac jes

s

mpe
ga

ud
io mtrt

ha
rm

ea
n

%
 P

ow
er

 s
av

in
gs

Power savings using J-iTLB
Power savings using J-iTLB with object iTLB
Power savings using J-dTLB
Combined TLB energy savings

Fig. 6. Power savings using J-iTLB, J-iTLB with object iTLB, and J-dTLB

0.975
0.98

0.985
0.99

0.995
1

1.005
1.01

1.015
1.02

ch
ec

k db jac
k

jav
ac jes

s

mpe
ga

ud
io mtrt

ha
rm

ea
n

Pe
rfo

rm
an

ce
 im

pa
ct

 (b
as

el
in

e
=

1.
0)

Performance impact using J-iTLB
Performance impact using J-iTLB with object iTLB
Performance impact using J-dTLB

Fig. 7. Performance impact of J-iTLB, J-iTLB with object iTLB, and J-dTLB

JVM and the Java application accesses is eliminated in the new
partitioned TLBs. The performance improvement is shown in
the leftmost bar of Fig. 7.

The second experiment is based on the TLB configuration
depicted in Fig. 3, where the J-iTLB is combined with a first
level object iTLB. This configuration achieved higher energy
savings of 51% as shown in the second bar of Fig. 6. We
charge an extra cycle for the object iTLB misses that access
the second level iTLB. The performance impact is around 1%
as shown in the corresponding bar of Fig. 7.

The third experiment we conducted evaluates the power and
performance impact of the segregated d-TLB configuration
proposed in Fig. 4. The third bar in Fig. 6 shows the power
savings achieved using the split dTLB for reads and writes.
The power savings is around 34% on average. As the effective
number of dTLBs are now divided, they cause around 1%
performance impact. The performance impact is shown in the
rightmost bar of Fig. 7.

We finally combined the J-iTLB with object iTLB config-
uration and the J-dTLB configuration to evaluate the overall
TLB power savings in the processor. In this combined configu-
ration, we obtained 42% overall TLB power savings as shown
in the rightmost bar of Fig. 6 with less than 1% performance
penalty.

VI. RELATED WORK

A number of TLB power reduction schemes have been pro-
posed for the regular C/C++ applications. Kadayif et al. [12]
added a register called Current Frame Register (CFR) to the in-
struction address translation. Instead of looking up the i-TLB,
the processor fetches the translated address from the CFR un-
less there is a memory page change. Way-prediction [11] was
proposed to reduce cache energy by speculating one predicted
way instead of looking up all ways in a set-associative cache.
Other approaches for TLB power reduction include selective
filter-bank TLB [17], semantic-aware partitioned TLB [16],
low-power TLB exploiting synonymous addresses [5], and
entropy-based TLB [4].

Ramesh et al. [19] studied the characteristics of Java ap-
plications and SPECjvm98 suite and analyzed the memory,
object size footprint, and instruction mix of the Java appli-
cations running on JVM. There interaction between the Java
application and the JVM on which it is running was studied
by Georges and Tia [9], [18]. It has been shown [22] that the
dTLB miss rate of SPECjvm98 benchmark is around 2% that
is much higher than 0.1% reported for SPEC95 benchmarks
written in C/C++ workloads [15]. Similarly, the L1 data cache
miss rates and more specifically the data write miss rates are
also higher [9], [20].

Kim et al. [13] analyzed the memory reference patterns
of applications in the SPECjvm98 suite and found that the
size and the lifetime of the objects is small. Vijaykrishnan et
al. [24] proposed an architectural support for object manipula-
tion, stack processing, and two-level hybrid cache to improve
the performance of Java applications. Shimizu and Kon [21]
extended the basic idea in traja processor of java object
lookaside buffer for Java applications running in interpreted
mode or directly on Java processor. Java object lookaside
buffer speeds up the resolution of constant pool references.

Vijaykrishnan et al. [23] presented a characterization of
the energy consumption by the caches and the main memory
when executing the SPECjvm98 benchmarks in the JIT and
interpreter modes. The energy consumption is profiled for
different hardware and software configurations. They made
the observation that from the energy perspective JIT mode
is better than the interpreter mode. The main memory energy
consumption is more dominant than that of the caches, with the
main contributor being data references. The energy consumed
in the JIT mode is mainly due to code installation and the
subsequent misses. Chen et al. [7] modified the cache orga-
nization to include a small cache for storing the dynamically
generated native code to reduce the energy consumption in
the caches for the Java applications running on JVM. Kim et
al. [14] proposed an energy efficient Java execution using local
memory and object co-location. In the object co-location, they
study the static profile of Java programs running on JVM and
use the results to intelligently place the objects in the heap
space such that it reduces the energy consumption.

VII. CONCLUSION

In this paper, we investigate an energy-efficient Translation
Lookaside Buffer (TLB) design for Java applications running
on the JVM. Our analysis and insight led us to use a partitioned
TLB structure that exploits memory reference characteristics
and the interactions between the JVM and Java applications,
which can not only reduce energy consumption but also incurs
very little performance perturbation. The method horizontally
partitions the traditional monolithic iTLB and dTLB into
distinct, smaller TLBs for special purposes targeting for Java
applications. Our J-iTLB scheme can reduce energy by 12.7%
with a performance improvement of 1%. The performance
improvement was obtained from the elimination of conflict
misses between the JVM code and the Java application
accesses in the iTLB. The energy saving is increased to
51% by combining the J-iTLB with a first-level small object
iTLB at the expense of 1% performance impact. The J-dTLB
organization, where the dTLB is split into two for reads and
writes provides an energy saving of 34% with 1% performance
impact. When the J-iTLB with an object iTLB is combined
with the J-dTLB, we obtained 42% overall TLB energy savings
with less than 1% performance impact.

VIII. ACKNOWLEDGMENT

This research was supported in part by NSF Grant CNS-
0325536 and an NSF CAREER Award CNS-0644096.

REFERENCES

[1] Dynamic SimpleScalar 1.0.1. http://www-ali.cs.umass.edu/DSS/index.
html.

[2] JikesRVM Home Page. http://jikesrvm.sourceforge.net/.
[3] Spec JVM 98 Benchmarks. http://www.spec.org/osg/jvm98.
[4] Chinnakrishnan Ballapuram, Kiran Puttaswamy, Gabrieh H. Loh, and

Hsien-Hsin S. Lee. Entropy-Based Low Power Data TLB Design. In
Proceedings of the ACM/IEEE International Conference on Compilers
Architecture and Synthesis for Embedded Systems, 2006.

[5] Chinnakrishnan S. Ballapuram, Hsien-Hsin S. Lee, and Milos Prvulovic.
Synonymous Address Compaction for Energy Reduction in Data TLB.
In Proceedings of the ACM/IEEE International Symposium on Low
Power Electronics and Design, 2005.

[6] David Brooks, Vivek Tiwari, and Margaret Martonosi. Wattch: a
Framework for Architectural-level Power Analysis and Optimizations.
In Proceedings of the 27th International Symposium on Computer
Architecture, 2000.

[7] G. Chen, M. Kandemir, N. Vijaykrishnan, and M.J Irwin. Energy-aware
Code Cache Management for Memory-constrained Java Devices. In
Proceeding of International Conference on Systems-On-Chip, 2003.

[8] James Dinan and Eliot Moss. DSSWattch: Power Estimation in Dynamic
SimpleScalar. In Technical Report, UMass ALI Lab, Amherst, MA.

[9] Andy Georges, Dries Buytaert, Lieven Eeckhout, and Koen De Boss-
chere. Method-level Phase Behavior in Java Workloads. In Proceedings
of the 19th annual ACM SIGPLAN conference on Object-oriented
Programming, Systems, Languages, and Applications, 2004.

[10] X. Huang, J. E. B.Moss, K. S. McKinley, S. Blackburn, and D. Burger.
Dynamic simplescalar: Simulating java virtual machines. In Technical
Report TR-03-03, University of Texas at Austin, Department of Computer
Sciences, 2003.

[11] Koji Inoue, Tohru Ishihara, and Kazuaki Murakami. Way-predicting Set-
associative Cache for High Performance and Low Energy Consumption.
In Proceedings of the ACM/IEEE International Symposium on Low
Power Electronics and Design, 1999.

[12] Ismail Kadayif, Anand Sivasubramaniam, Mahmut Kandemir, Gokul
Kandiraju, and Guangyu Chen. Generating physical addresses directly
for saving instruction TLB energy. In Proceedings of the 35th Interna-
tional Symposium on Microarchitecture, 2002.

[13] Jin-Soo Kim and Yarsun Hsu. Memory system behavior of java
programs: Methodology and analysis. In In Proceedings of the SIGMET-
RICS Conference on Measurement and Modeling of Computer Systems,
2000.

[14] S. Kim, S. Tomar, N. Vijaykrishnan, M. Kandemir, and M.J. Irwin.
Energy-efficient java execution using local memory and object co-
location. In IEE Proceedings in Computer and Digital Techniques,
volume Vol.151 No.1, 2004.

[15] Dennis C. Lee, Patrick J. Crowley, Jean-Loup Baer, Thomas E. An-
derson, and Brian N. Bershad. Execution characteristics of desktop
applications on Windows NT. In Proceedings of the 25th International
Symposium on Computer Architecture, 1998.

[16] Hsien-Hsin S. Lee and Chinnakrishnan S. Ballapuram. Energy Efficient
D-TLB and Data Cache using Semantic-aware Multilateral Partitioning.
In Proceedings of the ACM/IEEE International Symposium on Low
Power Electronics and Design, 2003.

[17] Jung-Hoon Lee, Gi-Ho Park, Sung-Bae Park, and Shin-Dug Kim. A
Selective Filter-bank TLB System. In ISLPED, 2003.

[18] Tia Newhall. Performance Measurement of Interpreted, Just-in-Time
Compiled, and Dynamically Compiled Executions. Master’s thesis,
University of Wisconsin, Madison, WI, 2003.

[19] R Radhakrishnan, J Rubio, and L.K. John. Characterization of Java
Applications at Bytecode and Ultra-SPARC Machine Code Levels. In
Proceedings of the International Conference on Computer Design, 1999.

[20] A. S. Rajan, Shiwen Hu, and J. Rubio. Cache Performance in Java
Virtual Machines: a Study of Constituent Phases. In International
Workshop on Workload Characterization, 2002.

[21] Naohiko Shimizu and Chiaki Kon. Java object look aside buffer for
embedded applications. In Proceedings of the 2003 workshop on
Memory performance, 2003.

[22] Yefim Shuf, Mauricio J. Serrano, Manish Gupta, and Jaswinder Pal
Singh. Characterizing the memory behavior of java workloads: a
structured view and opportunities for optimizations. In Proceedings of
SIGMETRICS international conference on Measurement and modeling
of computer systems, pages 194–205, 2001.

[23] N. Vijaykrishnan, M. Kandemir, S. Kim, S. Tomar, A. Sivasubramaniam,
and M. J. Irwin. Energy behavior of java applications from the
memory perspective. In In USENIX Java Virtual Machine Research
and Technology Symposium (JVM’01), 2001.

[24] Narayanan Vijaykrishnan, N. Ranganathan, and Ravi Gadekarla. Object-
oriented architectural support for a java processor. In Proceedings of
the European Conference on Object-Oriented Programming, pages 330–
354, 1998.

