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SUMMARY

The main objective of this research is to provide &iiceent and reliable method for
using multi-level cell (MLC) phase-change memory (PCM) as amme@emory. As DRAM
scaling approaches the physical limit, alternative menmecinologies are being explored
for future computing systems. Among them, PCM is the most reatith announced
commercial products for NOR flash replacement. Its fast sxtatency and scalability
have led researchers to investigate PCM as a feasible caadataDRAM replacement.
Moreover, the multi-level potential of PCM cells can enhatieescalability by increasing
the number of bits stored in a cell.

However, the two major challenges for adopting MLC PCM arelitmged write en-
durance cycle and the resistance drift issue. To allevimenegative impact of the limited
write endurance cycle, this thesis first introduces a sewgar-leveling scheme called
Security Refresh. In the study, this thesis argues that a P&\¥d not only has to con-
sider normal wear-out under normal application behaviarsmmportantly, it must take
the worst-case scenario into account with the presence bfimes exploits and a com-
promised OS to address the durability and security issumegl&ineously. Security Refresh
can avoid information leak by constantly migrating theiygical locations inside the PCM,
obfuscating the actual data placement from users and sysitware.

In addition to the secure wear-leveling scheme, this thalsis proposes SAFER, a
hardware-éicient multi-bit stuck-at-fault error recovery scheme whican function in
conjunction with existing wear-leveling techniques. Timaited write endurance leads
to wear-out related permanent failures, and furthermaehrology scaling increases the
variation in cell lifetime resulting in early failures of mg cells. SAFER exploits the key
attribute that a failed cell with a stuck-at value is stilhdable, making it possible to con-
tinue to use the failed cell to store data; thereby redudneghtardware overhead for error

recovery.

Xi



Another approach that this thesis proposes to address Wes lrite endurance is a
hybrid phase-change memory architecture that can dyndlynassify, detect, and iso-
late frequent writes from accessing the phase-change nyebis proposed architecture
employs a small SRAM-based Isolation Cache with a detectienhanism based on a
multi-dimensional Bloom filter and a binary classifier. Tleehniques are orthogonal to
and can be combined with other wear-out management schenwsdin a synergistic
result.

Lastly, this thesis quantitatively studies the currentfartMLC PCM in dealing with
the resistance drift problem and shows that the previousnigoes such as scrubbing or
error correction schemes are incapable of providinicent level of reliability. Then, this
thesis proposes tri-level-cell (3LC) PCM and demonstratas3hC PCM can be a viable
solution to achieve the soft error rate of DRAM and the perfance of single-level-cell

PCM.
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CHAPTER 1
INTRODUCTION

Given the grim prospect of technology scaling in DRAM, reshars recently have a grow-
ing interest of seeking for alternative memory technolegied integrating them into the
main memory hierarchy of a computing system. The common afidng features of
these new classes of memory include non-volatility, highsitg, fast access time, solid-
state without slow, power-consuming mechanical operatietc. Most importantly, these
memories demonstrate better scalability with shrunk feasize than currently deployed
memory technologies. Out of several emerging memory caels] phase-change memory
(PCM), which stores data based on the resistivity of mat@talses, is the most mature.
Commercial PCM products from Samsung and Micron-Numonyx lhaen announced to
replace NOR flash for mobile devices, and the processor r@seammunity is taking a
step further to study the feasibility and the correspondingllenges to move PCM closer
to the processor cores in the memory hierarchy [1, 2, 3, 4].

A PCM cell typically uses chalcogenide alloy that consist$sef Sb, andTe. The
material has two distinct states, namely, a low resistiystatline state (SET) and a high
resistive amorphous state (RESET). The crystalline statebe reached by heating the
material above the crystallization temperature while it ba switched into the amorphous
state by melting and quickly quenching it. Furthermorengdine-grained partitioning of
the resistance range between the two states, it is possilsi®ite multiple bits per PCM
cell. Although PCM is slower than DRAM to read and much sloveewtite, architecture-
level solutions have been explored to mitigate these hitgntaes and to féectively use
PCM as a DRAM replacement for a main memory. However, PCM cotdra few ma-
jor challenges for the universal adoptiare., its low write endurance and resistance drift

causing permanent faults and transient faults, respégtive



According to ITRS report, the current write endurance of a P@M is around 19,
which is a few magnitudes lower than today’s DRAM. Withouhsmlerable enhancement,
thus, the weak endurance may bring about lots of reliakidgyes. To address these relia-
bility challenges, #ective and #icient wear-out management schemes must be designed to
extend the cell’s lifetime or to maintain faultless opevas at the presence of dysfunctional
cells.

We broadly classify these wear-out management technieguedaur types. The first
group of techniques simply minimizes the number of memorifesrto eliminate silent
stores [1, 2, 5, 4] andr perform writes with an inverted coding method based on kiarg
distance [6, 7]. Even though such techniques could extem@rldurance to some certain
degree, they are of no use in the face of the worst-case wsé@rasios or deliberately
designed malicious write sequences.

The second type is to perform wear-leveling. Similar to themployed in commodity
flash memory, wear-leveling techniques aim to evenly dista the writes across the given
memory address space by periodically g the physical locations of memory blocks to
mitigate the likelihood of write hot-spots. Given that taeeew memories can be updated
much faster (thus failed quicker) than floating-gate flasimares, malicious wear-out
attack, which is a novel security concern, must be takenantmunt when designing wear-
leveling schemes [8, 9].

The third category is to maintain correct memory operatievesn in the event of per-
manent faults resulting from aging. Such techniques hagentbmory operated as if it
has self-healing capability. Conventional error corregtmechanisms, commonly found
in on-die SRAM and fi-chip DRAM, can be classified into this category. Recent psaul
architectural techniques such as ECP [10], DRM [11], and FHREE?] are also such a

type dealing with aged faulty cells.



The final group integrates durable memos/g.,, DRAM or SRAM) into the less
reliable yet bulkier resistive memories to meet the requeat of desirable lifetime. We
call such desighybrid resistive memorylhe design principle is to filter out frequent same-
address writes from accessing the resistive main memorye Mat, these four solution
classes are completely orthogonal. One can mix and implethem together for resistive
memories to achieve synergistic results for reliabilityl aobustness.

Another reliability issue in PCM is incurred from the phenoroe that the resistance
of the cell increases over time, which is called resistandé dSince its major cause is
the structural relaxation of the amorphous phase [13], tifelzhrely atects both of the
SET state composed of the crystalline phase and the RESteTtIsé is already high resis-
tive. However, multi-level cell (MLC) PCM uses partial cryiitze statesj.e.,intermediate
states between the two distinct states. Although the MLC P@Mincrease the amount
of information stored in a cell, the drift can shift the reaisce level of a intermediate state
to the next adjacent state. Thus, to reliably retrieve tbeest states we must place an ad-
equate margin between any two adjacent states to guard gdehfrom the drift. If the
margin fails to guard, it produces transient errors thneiaigg PCM reliability.

Recently, four-level (two-bit) cell PCM has been designedl@raluated [14, 15]. How-
ever, diferent from the evolution of NAND flash from two-level to folavel to eight-level,
itis too challenging to increase the number of levels in MLCMP As the number of levels
in a cell increases, the distance between any two adjacezisIbecomes too close to se-
cure a reliable margin against resistance drift, which $e@dundesirable errors due to the
state changes. This new type of soft errors caused by resestift, if left unaddressed,
will make MLC PCM completely useless.

Therefore, this dissertation focuses on those two reltghdsues in PCM such as the
limited write endurance and the resistance drift. The fissttgbution of this research is
the finding that the limited write endurance incurs both theadility and security issues

simultaneously, and thus, a secure wear-leveling schemegjisred to prevent malicious



writes to PCM. In this study, we propose afi@ent wear-leveling scheme called Security
Refresh which can dynamically change physical address mgpypth random keys.

The next observation is that as technology scales, the andervariation of cells in-
creases and the lifetime of the PCM memory is dictated by trekes cells. We mitigate
the growing variation impact on the PCM lifetime with a muléigtuck-at-fault error recov-
ery scheme. The scheme called SAFER exploits two propestistuck-at-faults caused
by cell aging,.e.,readability and permanency.

Another contribution for protecting PCM from malicious ve# is to propose a new
hybrid PCM architecture using low-cost hardware féfieetive wear-out management. In
this architecture, a detection mechanism based on a muaoigstsional Bloom filter and
a binary classifier isolates malicious writes to a small SRé&d¢he. This mechanism not
only reduces write frequency to PCM main memory but also makesar-leveling fficient
by conservatively sensing the existence of malicious k$tac

The last contribution of this study is to address the negatiyact of resistance drift
on the MLC PCM reliability. We mathematically formulate thefdinduced soft-error
rates of MLC PCM. With this analytical model, we evaluate thevpusly proposed ideas
for reducing errors and show that four-level PCM is infeasié main memory without
any device-level progress. Then, we propose tri-levdl{¢IC) PCM and shows that 3LC
PCM can achieve the soft error rate of DRAM and the performaricgngle-level-cell
(SLC) PCM.

The remainder of this document is organized as follows. Ghd@presents the details
of prior works related with this research and demonstrdies tveaknesses. In Chapter 3,
Chapter 4, and Chapter 5, we introduce our proposals to overtbenweaknesses caused
by the limited write endurance of PCM. Chapter 3 describesarsdow-cost wear-leveling
scheme to protect a limited-write-endurance memory froniaiwais write attacks. Chap-

ter 4 describes a new stuck-at fault recovery scheme expidite properties of stuck-at



faults to reduce hardware costs. Chapter 5 describes a hytarmdory architecturef-
ciently isolating frequently written memory blocks to an/&AR cache. Chapter 6 proposes
a reliable tri-level-cell (3LC) PCM as a main memory and démsidgficient ways to use
the 3LC PCM in the conventional binary computing systemstizaShapter 7 concludes

this dissertation.



CHAPTER 2

PRIOR WORK FOR PCM RELIABILITY AND THE
WEAKNESSES

2.1 Vulnerability of Prior Wear-Out Management Schemes

While phase change memory is often considered as a poteegpiElcement of DRAM,
the primary roadblock for using PCM as part of the main memsnysi much lower write
endurance compared to DRAM. Several recent studies hasmnptitd to address this is-
sue by either reducing PCM’s write frequency or using wewaeliag techniques to evenly
distribute PCM writes. Although these techniques can extbadifetime of PCM under
normal operations of typical applications, we found thatstnaf them fail to prevent an
adversary from writing malicious code deliberately desigrio wear out and fail PCM.
For instance, the schemes to reduce write frequency, sudatascomparison writg5]
andFlip-N-Write [6] do not prevent an adversary from intentionally wearing the target
memory bits, because of their deterministic patterns thathe easily detoured.

In wear-leveling schemes [4, 9], on the other hand, a rushritésvto the same loca-
tion can be dispersed toftkrent locations by changing physical memory mappings with
another address translation layer. However, the prior eaaling schemes have the in-
herent weaknesses caused by regulaffshg pattern, coarse-grained $Hing, and static
randomization. From their weaknesses, an adversary caacexhapping information of
the additional translation layer and focus on attackingetbits.

Furthermore, all the prior art did not consider the circusmsies when the underlying
OS is compromised and its security implication to PCM desi@rompromised OS will
allow adversaries to manipulate all processes and exptEtchannels easily, which de-

duces useful mapping information and accelerates the waaof targeted PCM blocks.



2.2 Prior Error-Correction Schemes

Repeating writes to a PCM cell causes the cell to be expandi&dantracted repeatedly,
which leads to mechanical stress and eventually incursrageent stuck-at-fault failure.
Furthermore, as technology scales down, the endurancatieariof cells increases, which
causes the early failure of many cells. In the absence of eeovery techniques, the
lifetime of the PCM memory is dictated by the weakest cell. §hwe need an error
recovery scheme capable of correcting multiple stuck-atga

The existing error correcting code (ECC) schemes, such ag#e4) Hamming Cod-
ing scheme, can be applied to recover from permanent stifekiés even though they are
primarily devised for recovering from transient faults. wkyver, unlike transient errors, the
number of stuck-at faults gradually grows with time (witlpeated write cycles), making
it necessary to providefigcient multi-bit error correction capability.

Another important requirement for a stuck-at fault recgmvechnique is that the tech-
nique must operate in the presence of existing wear-leyaigorithms. Otherwise, it
makes the memory system vulnerable to malicious attackecesly when the OS is com-
promised. To do so, it should be lightweight enough to be eldbé inside a chip, since the
existing wear-leveling schemes typically have their owdrads translation layer in either
the memory controller or the chip itself.

Recently, architectural techniques have been proposedei@ame multiple stuck-at
faults in PCM [11, 10]. Ipeket al. proposed Dynamic Pairing scheme to reuse faulty
pages [11]. In the Dynamic Pairing scheme, each byte hasvitsfail indication bit. If
a new fail occurs, the indication bit of the correspondingelg set and the OS adds the
corresponding page to a waiting list of faulty pages. On aebpcation, the OS selects
a pair of faulty pages such that their fail bits are not at thee dfset within the page.
One of the pages of the pair is maintained as the primary cpythe other as a backup
copy. Dynamic Pairing provides the ability to reuse faulagps with more than one fail

bit per data block. However, since the OS manages faultygdbes scheme makes the



memory system vulnerable to malicious attacks, espeardtign the OS is compromised
as mentioned in Section 2.1.

Error-Correcting Pointer (ECP) scheme [10] stores six faihpars for each 512 bits
of data block and replaces the fail cells with eyggare cells. This ECP scheme is more
efficient than the (72,64) code from the standpoint of both hardwverhead and fall
recovery because it can recover six fails per 512 bits wittb®bverhead. Furthermore,

this technique operates in the presence of existing weatihg algorithms.

2.3 Prior Hybrid-Memory Architecture

To extend the lifetime of PCM, the first priority is to reduce bsolute number of writes

to the physical memory cells. Toward thiS@t, processor architects have suggested to en-
large the size of the last-level cache (LLC) [2] or employ amgalelayed write queue [9].
Given the presence of data temporal locality, the larger Ica@ help to collapse multiple
writes to the same location, reducing the total number ofesrio the PCM main memory.
Essentially, the large LLC is used as a write shield to filtet write accesses with high
temporal locality.

However, this simplistic solution has several drawbacksstFthe expected data re-
currence in the write Hiiers or LLC may take a long time to be observed and captured.
Worse yet, this design will not defend the worst-case sées@r malicious attacks where
an adversary can intentionally concoct a process with p@eiche miss patterns to bypass
the LLC and directly write to thefé-chip PCM as described in Section 2.1. Therefore, we
need a moreféective, robust protection mechanism to guarantee usdbterie under the
circumstances of worst-case write patterns/anthalicious wear-out attacks.

As briefly mentioned in Chapter 1, one way to extending théhfe of limited-endurance
memory is to have a hybrid memory architecture by integgatinrability-proof memory
to harden the less durable PCM. Here we classify them into ywest serial (vertical)

and parallel (horizontal). The serial approach simply itssa DRAM cache backed up



serially by a PCM main memory in the memory hierarchy [16, 2heTDRAM serves
as a filter cache to capture high-locality writes. The patadcheme [17] consists of a
DRAM memory alongside with its PCM counterpart. In this scleethe OS maintaining
page-worn information is responsible for managing pageratiign between two types of
memories.Although these previous works related to the fpm@aches would work well
for normal applications, however, a reliable memory sysiteuost consider the worst-case
scenario under malicious attacks. For the serial apprahelarge DRAM cache schemes
have deterministic patterns that attackers could expddityppass the cache [18]. Also, the
approach relying on the OS becomes vulnerable as soon as3fie €@mpromised by an

attacker.

2.4 Prior Resistance-Dirift Resilient Schemes

The primary approach to alleviate the negative impact aktasce drift is to use a wide
drift margin between any two adjacent levels. However, dhsra trade-fi for deciding
the width of margins. Since the controllable range of PCMstesice is bounded by the
SET and RESET states, using wider margins demands to makealtieange of each level
narrower. As a result, more write-and-verify steps are m&glto finely tune the resistance
level for the narrower valid range, which incurs the writelarance issue.

Therefore, recent works have proposed drift-tolerant iggpies such as encoding in-
formation in the relative order of resistance levels in asseord [19], using reference cells
to indicate level boundaries with extra cells [20], andrasting the resistance drift based
upon resistance statistical model [21].

Although these prior studies can be leveraged by error cbae schemes, increasing
the number of levels in a cell induces fast level shifts cdusethe drift, which negatively
affects PCM reliability after all. This explains that the chisdm of three-bit (eight-level)
cell PCM is immature while only experimental results fromtptgpe two-bit (four-level)

PCM chips have been reported in recent papers [14, 15, 19].



CHAPTER 3

SECURITY REFRESH: PROTECT PHASE-CHANGE
MEMORY AGAINST MALICIOUS WEAR-OUT

As mentioned in Section 2.1, prior studies mainly focusedertending the lifetime of
a PCM-based system that runs conventional applicationsailatifto protect the system
against deliberately-crafted malicious attacks. A malisi application can exploit the
properties of a durability solution to destruct a PCM porteasily. Although durability
and security seem to be two separate issues in PCM designslhiaeg a common goal
and should be addressed at the same time. In this researdrgwe that a correct, us-
able PCM design should consider the worst-case wear-outr nmalecious attacks such as
side channel exploits to make PCM practical and commercigdlyle. In general, if PCM
can sustain malicious attacks, they should simultaneaddyess the durability issue. To
circumvent these intentional exploits, we must keep adwvars from inferring an actual
physical PCM location. Furthermore, the address space neusttlified dynamicallyover
time to avoid useful information leaked through side-cledan

To achieve this goal, we propos&kcurity Refresh Similar to the concept of pro-
tecting charge leak from DRAM, Security Refresh, a low-dustdware embedded inside
PCM, prevents information leak by constantly migrating pbgslocations of PCM data

(thus refresh) and obfuscating the actual data placememt fisers and system software.

3.1 Security Refresh
3.1.1 Security-Refresh Controller

First, we define one more address space,Rb&eshed or Remapped Memory Address
(RMA), inside a PCM bank to dissociate a memory address (MA) fromatiieal data

location. After receiving an access command (in MA) from themory controller, each

1The original paper was published in the 37th InternatioyahSosium on Computer Architecture, Saint-
Malo, France, 2010.
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PCM bank re-calculates its own internal row and column add(es RMA). To allow
such mapping, in this work, we propoSecurity RefreshSimilar to DRAM refresh that
prevents charge leaking from a DRAM cell, our Security Reffrprevents address informa-
tion leaked from PCM accesses by dynamically randomizingpimgpbetween MAs and
RMAs. On the other hands, rather than refreshing based anitidRAM cell, our Secu-
rity Refresh scheme refreshes a PCM region based on.asehe number of writes. Our
Security Refresh is controlled byecurity Refresh ControllglSRC), which is embedded
inside the PCM bank. The SRC not only remaps an MA into an RMAalad periodically
changes the mapping between these two address domainsxtriimely low-overhead
hardware. The rationale and advantages of employing an 88@eia PCM bank are as
follows:
e To obfuscate the address information regarding the actiyasipal data placement
from applications, the (compromised) OS, and the memoryrother.
e To obfuscate potential side-channel leakage, if any.
e To prohibit any physical tampering,g, memory bus probing.
e To allow a memory controller to exploit bank-level parabeh for better scheduling.
e To provide high éiciency without disturbing thef&chip bus during data slfiling
and swapping.
e To enable a high-bandwidth data swapping mechanism witheuly constrained by
limited, off-chip pin bandwidth.
e To allow PCM vendors to protect their product without relyioig a third-party such

as the OS or the memory controller.

3.1.2 The Basics of Distributed Security Refresh
Since our proposed SRC will be implemented inside each PCM thaat will likely be
manufactured with a process optimized for PCM cell denditg, hardware overhead for

the SRC should be kept low to make it practical. Furthermasajemonstrated previously,
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information can leak through side channels. Afgient amount of such information al-
lows an adversary to assemble useful knowledge and devide-aglsannel attack for target
PCM locations. Simply hiding internal memory addresseseablill not address this is-
sue properly. Thus, we need to constantly update the addrapping to obfuscate any
relationship among information leaked from side channels.

Before explaining our algorithm, we first introduce our norolature in Figure 1. First
of all, we treat one PCM bank as one region. As shown in Figuag, ine region is
composed of many memory blocks (To simplify, we show onlyrfouthe figure). A
memory block should be no smaller than a cache line to keepeasldbokup simple. For
everyr writes ( = 2 in Figure 1(b)), the SRC will “refresh” a memory block by patially
remapping it to a new PCM location using a randomly generaggd We will detail our
algorithm in Section 3.1.3.We call this number of writes,, which denotes theecurity
refresh intervalanalogous to DRAM'’s refresh rate. The refresh operatiomsicoe for all
memory blocks in each region. A complete iteration of rdfreg every single memory
block in a region is called aecurity refresh roundsimilar to DRAM’s refresh period. To
begin another security refresh round, the SRC will genesiatew random key and use it

together with the key from its previous refresh round.

3.1.3 Security-Refresh Algorithm

Now we use an example to walk through our algorithm followgdtb formal definition
and description. Figure 2 depicts an example of one secrgitgsh round. From Fig-
ure 2(a) to (e), we start from an initial state with eight sssive security refreshes for
eight memory blocks in one PCM region. In each sub-figure, éftecblumn shows MAs
(memory addresses) of these blocks with their data in ddpitars while the right column
shows the RMAs (refreshed memory addresses) and the aetiagbldcement in PCM. We

explain each sub-figure in Figure 2.

2We differentiate these two terms: refresh and remapping. A refréisbe evaluated upon the due of a
security refresh interval, however, as we will show latemay or may not lead to an address remapping in
PCM space.
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Figure 1:Security-refresh terminology.

1. Figure 2(a) shows the initial state in which all eight RM&are generated by XOR-
ing their corresponding MAs with a ke wherek, = 4. For example, the memory
address MAO (000) XORg (100) is mapped to RMA4 (100) in the physical PCM.
Also note that, Figure 2(a) has reached the end of a secefitysh round as all the
MAs have been refreshed wil3. Upon each security refresh, the candidate MA to
be refreshed is pointed by a register cali@grrent Refresh Pointer (CRRBhown as

a shaded box in the figure. The CRP is incremented after eaahtyeefresh.

2. Upon the next security refresh (Figure 2(b)), a new secuefresh round will be
initiated because CRP has reached the first MA of a region. Qoesdly, a new
key (k; = 6) will be generated by a hardware random number generatheiisRC
for refreshing all MAs in the current round. At this point, NDAs refreshed and
remapped from RMA4 to RMAG. Since the datg of MAO is now moved to RMAG6
where the data®) of MA2 used to be. Hence( should be evicted from RMA4
and stored somewhere else. Interestingly, because of theenat XOR, MA2 will

actually be mapped to RMA4 using the new key(R, = 4), i.e.,the RMA of MAO
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Figure 2:An example of one complete security-refresh round.

from the previous round (& ko = 4). This security refresh, essentially, swaps data
between MAO and MA2 in their PCM locations. We call this instheg property
the pairwise remapping properfywhich will be defined and proved formally later.
Note that the SRC will be responsible for reading and writimg memory blocks to

physically swap the data between them.

. Similarly, in the next security refresh (Figure 2(c))talfor MA1 and MA3 (a victim
evicted by MA1) in PCM are swapped between RMAS5 and RMAY7.

. In Figure 2(d), MA2 pointed by CRP is supposed to be remajgfied its security
refresh. However, it has been swapped previously (Figu® #( the current security
refresh round. Thus, we will not swap again but simply inceatrthe CRP pointer.
To test whether an MA has already been swapped in the cuwwantrcan easily be
done by exploiting the pairwise remapping property. All veed to do is to XOR the

current candidate MA with the key used in the prior refrestmne and the key used
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in the current round. If the outcome is smaller than CRP, itdatks the memory
block has been swapped in the current round. For instancegurd-2(d), we XOR
MA2 with 4 (ko) and 6 k) giving a result of 0 (26 4@ 6 = 0). Since it is smaller
than CRP £2), it indicates that MA2 has been swapped in the currenéséfround.

We will show the formal proof later in this section.

5. The next five memory blocks are refreshed in the same marAiggr the eighth
security refresh in the current round, CRP will wrap around esach MAO again,
completing the current security refresh round (Figure R(&)pon the next refresh,
a new keyk,, will be generated and a new round starts usingndk,. ko will no
longer be needed. Note that, for each refresh round, onlynibst recent two keys

are needed.

Now, we formally explain the pairwise remapping propertyyieh allows us to ex-
change a pair of memory blocks only with two keys. For our addremapping, assume
that we use a binary operatian, closed on a s&}, which satisfies the following properties
for all x, y, andz, the elements 0% whereS is a set of possible addresses in a PCM region.

e Associative Property:X@y)®z= x& (Y& 2).
e Commutative Propertyx@y = y® X.
e Self-Inverse Propertyx & x = e, wheree is an identity element so thats e = x.

Basically, we find an RMA for a given MA by simply performingistbinary operation
between MA and a randomly generated kky df the same lengthe, MA® k = RMA
Here, we define several notations used in this proof as shoviable 1.

According to associative and self-inverse properties,iwiyg newly occupies,, Bn,
can be easily detected by performisgoperation betweed,, andk, because\,, @ k, =
(Bm@kp) @k, = Bn. More interestingly, the new locatiol(,) thatB,, should be mapped to
with k; is the old location4y) thatA, used to be mapped to wiky becaus®;, = Bnok. =
(A, @ kp) ke = (Amo k) ®kp) ® ke = An@ Ky = A, In short, we can simultaneously
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Table 1:Notations used in the proof.

ko A previous key generated in the previous security refresimdo
ke A current key generated in the current security refresh doun
A, An MA to be refreshed in the current refresh

Ar, An RMA to which A,, was mapped witk, (i.e., A, = An @ Kp)
A..  An RMA to which A, will be mapped withk; (i.e., Ar, = An @ Kc)
Bm An MA mapped toA,, with k, thus to be evicted b,

B, An RMA to which B, was mapped witk, (i.e., By, = By ® k)
B.. An RMA to which By, will be mapped wittk; (i.e., B;, = Bn @ k)

map a pair of MAs into their new RMA locations by simply swapgpithe physical data of
their old PCM blocks. Consequently, the actual swapping dip@isin a security refresh
round will be done by one half of all security refresh opemasi. The simplest function that
satisfies all three properties is an eXclusive-OR althouglhave proved that any function
satisfying the above three properties can be used as tlesheémapping function. For the

rest of this chapter, we use XOR.

3.1.4 Key Selection for Address Translation

To correctly find the data location in PCM, we need to trandlaegiven MA to its current
RMA using the right key. It seems that the most straightfodwaay to find the right key
is to add one bitin SRC for each MA to indicate whether it ndedse translated using the
key in previous refresh round or the current key. Even thalipit per block seems small,
for a 1GB PCM region with 16KB memory blocks, we will need 8K82{° bits) extra
space. In fact, hardware overhead for maintaining tralmsiahformation of each block
is the main reason why the prior table-based approach [4jaasupport fine-granularity
segments.

Fortunately, in our scheme, the pairwise remapping prgddng with the use of the
linearly increasing CRP value property allows us to deteenthre right key without any
table. In particular, when a memory controller wants to r&ach or write to an MAC,,,
we need to use the current kég)(in the following two cases, otherwise, the key in previous

refresh roundKp) should be used.
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e If C, is less than the value of CRP, we should use the current kgsihceC,, has

already been refreshed in the current security refreshdoun

o If Crok, ®k:is less than the value of CRP, we should use the current keyJtos is
not very intuitive, so we will describe it with a formal methdwhat we want to detect
in this condition is whethe€,, was a victim that is evicted when another MB,, iS
remapped to the old RMA value G, i.e., G, ® k,. As explained in Section 3.1.3, we
can reconstrucb,, by simply performing an XOR operation between the RMA value
and the current key, which i€, @ k,) @ k.. If we compareD,, against the value of
CRP, we can detect wheth€f, was a victim that is already remapped whep was

remapped.

3.1.5 Implementing Security-Refresh Controller

The main additional hardware for supporting Security Rins the Security Refresh Con-
troller (SRC) (Figure 3(a)) per region. Each SRC consistsoof fregisters, a random
key generator (RKG), address translation logic (ATL), remiag checker (RC), swapping
logic (SWL), and two swap Uters. The four registers required are: (1) KEYO register
to store a prior key (logn bits wheren is the number of memory blocks in a region), (2)
KEY1 register to store a current key, (3) a global write cen{iGWC) to count the to-
tal number of writes to a region for triggering security esth, and (4) the current refresh
pointer (CRP) that points to the next MA to be refreshed. A newik generated by RKG
in-between two security refresh rounds using thermal ngeseerated by undriven resistors
in the SRC [22]. These keys can never be accessed or leavdentits PCM chip.

The ATL (Figure 3(b)) performs address translation. It etisély maps an MA from
the memory controller to a corresponding RMA. As explainadier, the translation pro-
cess needs to understand whether a given MA has been remapfiex current round.
This algorithm is implemented in the RC (Figure 3(c)), whadmsists of only two bitwise

XOR gates, two comparators, and one OR gate. Additionddl/,RC is also responsible
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Figure 3:The block diagram of security-refresh controller (SRC).

for finding an address to be remapped. Upon every securitggief the RC provides the
same output to the SWL (Figure 3(d)) so that SWL can decide wendétle MA should be
remapped or not. And if needed, the SWL performs a swap operatith a pair of swap

buffers.

3.1.6 Memory-Controller Design Issues

In a conventional DRAM-based system, a memory controllelenstands whether a given
memory request will hit in a row liter or not. Consequently, it can schedule its commands
so that the return data of those commands will not conflict meanory bus. However,

in our proposed PCM system that obfuscates internal addnéssmation, the memory
controller cannot schedule the external PCM bus alone likengentional DRAM memory

controller. To utilize the bus mordieciently, we envision that future PCM chips should be
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actively involved in bus arbitration. For example, a PCM otem send a data ready signal
to the memory controller once the requested data are broaghé row bufer. Based on

this ready signal, the memory controller can utilize the imase intelligently.

3.1.7 Testability

As mentioned earlier, our Security Refresh scheme is endzkoigide PCM to avoid leak-
ing useful information. However, it is also important to neake memory module testable
when our scheme is applied. To suppress randomized addmespping performed by
Security Refresh so the physical data locations can berdeted, we can set both the key
registers KEYO and KEY1 to zero in test mode. Also, to makeatteess latency determin-
istic, the refresh asserting signal from the GWC should bekethsBy doing the above, we
can use existing test methods to test the memory cell alraygddress decoding logic, and
the data path. Lastly, a scan chain along with an isolatiog can be used to test the SRC

itself. Note that this test mode must be disabled to forbigptal side-channel attacks.

3.2 Implementation Trade-Off of Security Refresh

So far, we have discussed how Security Refresh works andivisngage from the stand-
point of malicious wear-out. However, there are severaldrdts in the PCM design space.
For example, if the total number of writes required to stameav security refresh round is
larger than the PCM write endurance limit, an adversary cawddr a PCM block out be-
fore a new refresh round is triggereaustnesg. On the other hand, extra PCM writes
are induced for swapping two blocks upon remapping. Freggwaps may unnecessarily
increase the total number of PCM writes even for normal appbos (vrite overhead),
leading to performance degradatigre(formance penalty). Thus, we must carefully ex-
amine these design tradé&®of Security Refresh to maximize its robustness while mini-
mizing the write overheads and its performance penalty.uemtjfy the trade-fi, we used
simple analytical models to estimate robustness and wrgen@ad. From our analysis, we

made the following observations:
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1. Alarger region distributes localized writes across géamemory space.

2. A large region requires a shorter refresh interval to @ase the frequency of ran-
domized mapping changes. Otherwise, if one refresh roumaobisong, it may in-
advertently leave a mapping unchanged for too long as welkimg potential side

channel attacks possible.

3. A shorter refresh interval will, nonetheless, inflict héy write overheads because of

its more frequent swapping, which can lead to higher peréoroe penalty.

Given the first observation, we first evaluated a region sizkai@e as a PCM bank as
illustrated in Figure 4. Note that the reason why we did natleste multiple banks in
a PCM chip as a region is to allow a memory controller to exgbaink-level parallelism
for better scheduling. As explained in our second and thbsleovations, we found that
the write overhead of a bank-sized region is undesirably higthis one-level scheme

of Figure 4, which motivates us to investigate other techegjto mitigate them.

Rank 0 y
Chip0 Chipl Chip7 | |_Region
u l SRC
BankO BankO **|| BankO
A & 'y 3~ RM 7'y
T T | MA
MA vData yData yData v

Figure 4:0ne-level security refresh (four ranks, four banks per rank).

3.3 Two-Level Security Refresh

To address the issues of write overheads and performanedtperhile still taking advan-
tage of a large region size, we propose a hierarchical, evellSecurity Refresh scheme

as illustrated in Figure 5. In lieu of using a very small refienterval that increases write
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overheads, we break up a region into multiple, smaller giens. Each sub-region con-
tains its ownSub-region SR@ perform address remapping itself based on an inner-level
refresh interval. In addition, an outer-levieegion SRGs employed to distribute writes
across the entire region with its own refresh interval. Tagonale behind our two-level
Security Refresh scheme is that, given a refresh intensahall sub-regionféectively trig-
gers address remapping more frequently because of a smaheber of memory blocks
within each sub-region. On the other hand, an outer-levél 8&casionally remaps an MA

of a given memory block across sub-regions. This addititeadl efectively enlarges a

region size as will be detailed later.

‘ Rank 0 Sub-region

IRMA SRc .
Chip0 Chipl Chip7 | N |_Region
BankO BankO BankO N Sub-region
A 4 A y 'yt
! ] _
MA vyData yData yData

Figure 5:Two-level security refresh (four ranks, four banks per rank).

So far, we have laid out a logical basis for the two-level Sig&Refresh scheme. Now,
we will explain how a security refresh of each level is perfied and how it maintains
the integrity of its own address remapping. Each individseturity Refresh level can be
regarded as an independent layer. In other words, eachgevi@irms the Security Refresh
algorithm with its own register values and settings, and Seeurity Refresh algorithm
guarantees the integrity of the address remapping as nmextio Section 3.1.3. Even at the
same level, dferent regions can haveftirent settings such as their memory block sizes
and refresh intervals, though they are preset in a manufagtphase for the maximum
lifetime and the hardware feasibility.

Figure 5 depicts a block diagram of the two-level Securitjrésh embedded ina PCM
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bank. Basically, the two-level Security Refresh works ieeursive fashion. An outer-level
Security Refresh controller.€.,, Region SRC) accepts a demand memory request from the
memory controller as its input. The Region SRC remaps a mgeddress (MA) of the
demand request to an intermediate remapped memory adtiRMA). Meanwhile, if the
demand request is a write that triggers a new refresh, thoR&RC performs the demand
write request and then generates a swap operation thast®ostwo read requests and two
write requests for two IRMAS. Note that the region size of dlger-level Security Refresh
is the size of a bank. Consequently, eveywrites to a given bank (wheg is the security
refresh interval of the outer-level Security Refresh) wrijger one new refresh operation
in the bank. Furthermore, to keep the integrity of its adsinresnapping, the outer SRC
should halt other requests until the swap is completed. Emeamd request or the swap
requests generated by the outer SRC are forwarded to thaicowesponding sub-regions
according to a sub-region index field (Figure 6) in their IRMA

On the other hand, each sub-region operates the SecuritgRedlgorithm with its own
sub-region SRC. The sub-region SRC takes a request from thierRERC, which can be
either a demand request or a swap request generated by tienFRC. The sub-region
SRC will use the IRMA of those requests to find a correspon&NBA, which is the actual
physical cell location inside the sub-region. Meanwhifehe request from the Region
SRC triggers an inner-level, sub-region refresh, the |gien SRC atomically performs
a swap operation of two RMAs inside the sub-region. Consetyesvery r; writes to
a given sub-region (wheng is the security refresh interval of the inner-level subioeg
Security Refresh) will trigger one new refresh operationha sub-region. Also note that
when the first write request of a swap operation from the Re§RC triggers a sub-region
refresh, the second write request of the outer-level swagsation is performed after the
completion of the inner-level refresh to guarantee thegiitye of the address remapping in

the sub-region.
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Figure 6 shows an example of address remapping from MA to IRMAugh the outer-
level Security Refresh and that from IRMA to RMA through tikaer-level Security Re-
fresh. In this example, each 1GB bank is divided into 512 regjiens while the memory
block sizes for both region and sub-region are 256B. As shaowre MSBs from a row
address is used as a sub-region index. In other words, a rowarPCM bank is virtually
partitioned into 512 sub-regions. Basically, in each sedfien, the inner-level SRC will
perform the operations of Security Refresh as explainedi®@e8.1. Similarly, the Region
SRC will perform the same operation across the entire banite fhat the Region SRC
may swap two memory blocks that belong téfeiient sub-regions because the sub-region
index is a part of output values of the XOR operation. Suclppiveg between distinct sub-
regions triggered by Region SRC allows us to distribute lined writes across the entire

bank without using a large region at the inner-level.

33 24 (21 (18|16 (14 |11 |7 0
Physical addr. physical page number | page offset
LL$ indexing tag | index | line offset
(a) Memory addr. (MA) row addr | | | column addr
XOR w/
an outer key PP PED [ayay ey ayey sy

Intermedi
(b) Ré?resﬁg(?ﬁA (IRMA) | row addr | | | column addr |
XOR w/ ey e e PP
aninner key
(c) Refreshed MA (RMA) | row addr | | | column addr |
— “—> > —>
Sub-region rank ID' bank ID Memory
index block size

Figure 6:Two-level security refresh within a bank.

3.4 Evaluation
3.4.1 Robustness and Write Overhead

To evaluate the robustness, we evaluated the averagenkdtr both our single-level and

two-level Security Refresh mechanisms by exercising asymaites as the system can
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possibly take. Birthday paradox attacks (BPA) [23] base@& sandomized functionfi-
ciently fail wear-leveling schemes employing randomizatwith a high probability [24].
To evaluate the vulnerability of Security Refresh againdABwe implemented our mech-
anisms, iteratively simulated each configuration, andutated the average lifetime under
a pinpoint attack that writes to one single logical non-@atile address by toggling its
data bits. Note that this attack method has the saffieetenith BPA because our Secu-
rity Refresh remaps all memory addresses with a new randgnfokesvery refresh round.

Throughout this subsection, we assume the same baselimésatare used in Section 2.1.

3.4.1.1 Single-Level Security Refresh

Figure 7 shows the average lifetime of the single-level 8scRefresh. Here, we varied
the memory block size from 256B to 8KB and the refresh intiirean 1 to 128. We keep
the same 1GB bank size for PCM with four banks and four rankd us8ection 2.1. The
read and write latencies are 150ns and 450ns, respectA®lshown, for a given memory
block size, as we refresh more frequently with a shorteresdfrinterval, our system is

more robust. Unfortunately, such benefit comes at the cdsgbkr write overhead, which

the number of additional writes
he total number of writes to PCM

were all accounted for when calculating the average lifetifior example, if our refresh

is calculated byt Note that, the extra write overheads
interval is one, the write overhead is 50%. Such additionétlew can accelerate the wear-
out, but we found that the additional latency caused by thesdional writes &ectively
delays the attack as well, resulting in a longer lifetitne.

On the other hand, given a fixed region size, if a smaller mgrhtorck is used, we get
more blocks in aregion. As aresult, the probability of a i@mél selected block mapped to
the same physical cell decreases, thus robustness issecredowever, a smaller memory
block often negativelyféects robustness because, given a fixed refresh interval fxeta
region size, more blocks in a region increases the requinetber of writes to trigger a new

security refresh round. In other words, the frequency ofegating a new random key is

3Note that our lifetime result here accounts for additioaéhcy of performing those additional writes.
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Figure 7:Single-level robustness.

reduced. These traddfs are manifested in Figure 7. As shown, the average lifetendg
to increase as we reduce the memory block size down to 512B,itllecreases when we
further reduce it to 256B. Note that for blocks smaller th&6R (the cache line size of the
last-level cache) may require multiple PCM accesses toexetra single cache line, thus
we did not simulate such configurations.

Overall, we found that the longest lifetime, 422 days, isiem#d when we use 512B
as the memory block size. This, however, may not satisfy tireeot average server’s

replacement cycle that is usually three to four years [2}, 26

3.4.1.2 Two-Level Security Refresh

Figure 8 shows the average lifetime of our two-level SeguRefresh scheme when the
refresh interval of an outer-level Security Refresh is 188this evaluation, we use the
same memory block size, 256B, for both inner and outer le\&ilsce the last-level cache
line size is 256B, it is likely that the datapath of the baselPCM, with respect to power
and performance, will be optimized for 256B as well. Furthere, we found that the
PCM with a memory block size of 256B under two-level Securigfr@sh demonstrated

reasonably long lifetimes. Therefore, we only presentltesuith 256B memory blocks.
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Figure 8:Two-level robustness vs. sub-regions.

To study the sensitivity, we varied the number of sub-regiand the inner-level re-
fresh interval. Note that we did not simulate extremely sihamer-level refresh intervals
simply because they incur too much write overhead. As shovthe figure, we found that
the configuration with 512 sub-regions and refreshing mgnbbwcks every eight writes
inside a sub-region can sustain around 78.8 months. This\&sh81.2% of the lifetime
of the perfect wear-leveling scheme, which is 97.1 monthh thie same block size. Itis
noteworthy that this average lifetime is very pessimisiave@ assume that an attacker can
monopolize the entire system resources to perform a pinpdiack continuously for 78.8
months.

Figure 9 shows the average lifetime of the two-level SeguRefresh scheme with
64 or higher outer-level refresh intervals. The resultsgasy that the average lifetime is
more sensitive to the inner-level refresh interval thandbter-level. This is explained by
the following. Since a sub-region (inner level) containgde memory blocks, a shorter

refresh interval will provide better wear-leveling.

3.4.2 Hardware Overhead
In this subsection, we describe the hardware cost of ourf@g®efresh. To calculate the

size of registers required to implement the single-level8igy Refresh, we need a detailed

26



o)
o

| Outer-level Refresh Interval

70 4 064 [O128 h
Ze | |B25 2% I
é 50 [[] i h
% 30
220
10 -
0 L LL L1 LL LLEEHS [

64 | 128 | 256 | 512 | 64 | 128 | 256 | 512 | 64 | 128 | 256 | 512

256 Sub-regions 512 Sub-regions 1024 Sub-regions

Inner-level Refresh Interval

Figure 9:Two-level robustness vs. refresh intervals.

configuration. First, assume that a 4GB PCM rank is composeiybt PCM chips as in
a conventional SDRAM DIMM while each chip consists of founks. Then, to build a
16GB PCM system, we need 32 PCM chips. If an SRC is in charge of a P&, 128
SRCs exist in the 16GB PCM system. When a memory block size is 206BSRC’s
refresh rate is 64, each SRC consists of three 22-bit regitte KEYO, KEY1, and CRP,
and a 6-bit register for GWC. Since eight chips are accessedrallgl to serve a 256B
request, each chip has a pair of 32B swaffdns per bank. In sum, the total register size
required for a chip is 292B< 4banksx (3 x 22bit + 6bit + 2 x 32Bytg).

In case of the two-level Security Refresh, each sub-regiem lzas a dedicated inner-
level SRC. To model the area overhead, we assume the follewibgan outer region is
divided inton sub-regions, 2) the outer region and each inner sub-regiotams 2 and 2!
memory blocks, respectively, and 3) their refresh intennaak 2 and 2, respectively, then
the total hardware cost per outer region without considgsinap biffers can be calculated
like (x+ 3 x p) + nx (y + 3x Q) bits. On the other hand, swapfbers can be shared in
the same level because a bank allows only one request tosaited3¥CM cell array at a
time, which serializes all requests. This serializatiooparty, along with the atomicity of

the inner refresh, allows all sub-regions to share physieap bdters. That is, each level
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needs one pair of swap fars.

Figure 10 shows the hardware cost of those configurationd us&ection 3.4.1.2.
The hardware cost grows exponentially as the number of sgiems increases. Thus, if
more than 5 years of attack endurance is required, dividibgrik into 512 sub-regions
can satisfy this requirement with around 12KB of the harémvemst. (Note that these
configurations can sustain for 64.5, 63.3, and 61.5 monthsdisated in Figure 9.) Itis
the trade-& between the cost and the high security requirement for wearsé or malicious
wear-out. Unlike the conventional DRAM process, PCM faliraraprocess is compatible

with CMOS, thus those hardware overhead will not be significan
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Figure 10:Two-level hardware cost per 512MB PCM chip.

3.4.3 Wear Leveling

In this section, we study how well writes generated by arclttae distributed across the
memory space. To count the number of writes for each memagkbive use PIN [27]. In
this simulation, we use the two-level Security Refresh sehevith four 1GB PCM banks,
each divided into 512 subregions. Each PCM bank is one regiarhermore, we use the
same memory block size (256B) for both the region and theegidn while the refresh

interval for Region SRC (outer level) is 128 writes. To stuldg sensitivity of inner-level
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refresh intervals, we use threefigirent inner-level refresh intervals — 32, 64, and 128
writes.

Figure 11 shows the accumulated number of writes (includimgp write overhead in
our scheme) for a given pinpointed physical address (132B2A8for 1¢ times and 18
times. The y-axis of this chart plots tleecumulatechumber of writes across the memory
addresses on the x-axis. To read the number of writes to &part PCM address,
one has to obtain the values Afand(A-1) on y-axis in this chart and take a subtraction.
As shown in Figure 11(a), without any wear-leveling scheale]10® writes hit the same
location. With our two-level Security Refresh, these wgitge distributed across the entire
memory space. The more linear a curve is, the more evenlyilisgd the writes are.
Based on this, as shown in Figure 11(a), we found that a firengd swap interval tends
to lead to a more balanced wear-out distribution. Not sanpgly, as the number of writes
is increased to 10, they are even better distributed as shown in Figure 11(b).

The figures also show how many writes are additionally geedrhy the swap opera-
tions during refreshes. For example, in Figure 11(a), tiffeince between the final accu-
mulated number (on the right) and®itick on y-axis represents the extra writes contributed
by swap operations. The percentage increase of writes éothilee diferent inner-level

refresh intervals are.8%, 23% and 15%, respectively.

3.4.4 Performance Impact

Finally, we evaluate the performance impact of our Seciréfresh scheme using SESC [28]
with 26 SPEC2006 benchmark programs. Similar to previoudie$/2, 9], our system em-
ploys an 8MB L3 DRAM cache for hiding PCM’s relatively long tekatency. Also, we
modeled a memory controller that exploits bank-level palism and arbitrates requests to
improve PCM row bifer hits. We used a two-level Security Refresh scheme witlsdinee
configuration in Section 3.4.3 to compare against a basalitteout any wear-leveling
technique.

As shown in Figure 12, the performance of most of the benchmpargrams is barely
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Figure 11:The accumulated number of writes over the memory space.

affected with our Security Refresh for the three inner-levilesh intervals experimented.
The two exceptional cases a@3.milc and459.GemsFDTD, which contain not only many
PCM writes but also many PCM reads. As such, the swapping opesdbr Security Re-
fresh often increases the latency of the reads However,gbmgtric means of instruction-
per-cycle (IPC) variations are found to bd.2%, —0.7%, and-0.5% when we use 32,
64, and 128 as our inner-level refresh interval, respelgtivéot surprisingly, such trend is
analogous to our write overhead of those configuratior&9323%, and 15%.
Furthermore, note that in our scheme, the nature of bitwiO&Xperations allows the

memory controller to utilize data locality at a rowfber. In particular, as shown in Figure 6,
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Figure 12:Relative IPC.

our remapping method uses a bitwise operation withouffshg address bit positions. This
means that one MA row address is mapped to one RMA row addndssh allows the
memory controller to utilize spatial locality inside a roarbetter scheduling. Furthermore,
the bitwise remapping allows us to send a row address of MAREH chip separately
from a column address of the MA similar to conventional DRAMmry commands. As
a result, even though a refresh often closes a row opened teymps demand request, our
simulation results show that the row hit rates decrease by®nd%, 0.3%, and 0.2%, for
the three inner-level refresh intervals we simulated, eesipely. Overall, the performance

impact with our Security Refresh scheme is negligible.

3.5 Summary

In this study, we argue that a robust PCM design must take kathrisy and durability
issues into account simultaneously. More importantly, uistrbe able to circumvent the
scenarios of intentional, malicious attacks with the pneseof a compromised OS and
potential information leak from side channels. By analgzprior durability techniques
at architectural level, we demonstrated practical attagkinodels to wear out and fail
PCM blocks. For example, prior redundant write reductiorhtegues do not obfuscate
addresses, making a victim memory block easy to target. Seeae-leveling technique
performs address randomization. However, the mapping tedis sit boot time, leaving

open side channels for adversaries to glean and assemlflé inggrmation.
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To address these shortcomings, we profseurity Refreska novel, low-cost hardware-
based wear-leveling scheme that performs dynamic randdioizfor placing PCM data.
Security Refresh relies on an embedded controller insida PELM to prevent adversaries
from tampering the bus interface or aggregating meaningfakmation via side channels.
Furthermore, we evaluated the implementation trafi@fdSecurity Refresh and quantified
the reliability for a two-level Security Refresh mechanis@iven a 1GB PCM bank with
512 sub-regions at the inner-level, our two-level secustiyesh can endure more than 5
years with a 256B memory block using 128 and 64 writes for thiemle and inner-level
refresh intervals. In addition, we also applied pinpoinaeits to understand the wear-out
distribution using Security Refresh. We found that as thaloer of pinpoint writes to the
same memory address is increased, our technique will lnlis&ithe data placement more
uniformly, improving durability. Finally, we analyzed thpeerformance impact of Security
Refresh with normal applications (SPEC2006) and showeduwbage IPC degradation is
below 1.2%.
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CHAPTER 4

SAFER: STUCK-AT-FAULT ERROR RECOVERY
FOR MEMORIES

As mentioned in Section 2.2, our objective for a new errorecting scheme is tagciently
recover the original data from permanent stuck-at faultse Of the key attributes of stuck-
at faults, which prior works have overlooked, is that thd wéth a stuck-at value is still
readable. We exploit this property to reuse the faulty céthwhe stuck-at value to provide
hardware #icient multi-bit stuck-at fault error recovery. This becasmecessary because,
with technology scaling of resistive memories, the norfarm distribution of lifetime
variations may be exacerbated leading to more frequentrmauees of multiple permanent

stuck-at faults per data block.

4.1 SAFER: Stuck-At-Fault Error Recovery

We now describe our stuck-at-fault error recovery (SAFEREhnique, which enables a
hardware-éicient multi-bit error recovery by dynamically partitiorgrthe data blocks to
ensure that each partition has at most one fail bit. We begim avdiscussion of how to
partition a data block such that each partition has at mostfaih bit, and then describe

how to recover from those fail bits.

4.1.1 Partition Technique for Double Error Correction
We first explain how we partition a data block for double eworrection (DEC). The key
idea of SAFER for DEC is to partition a data block into two gositensuring that the two
fail bits belongs to dferent groups and to use single error correction (SEC) tecienper
group.

If we assume an bit data block, we havgi/—2 possible ways to partition the block into

two n/2 bit groups. However, if the goal is to only ensure that the fail bits are not in

1The original paper was published in proceedings of the 4&#rhational Symposium on Microarchitec-
ture, December, 2010.
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the same group, the number of ways to partition them into tvewgs is reduced to only
[logo,n]. We now describe the partition technique to handle DEC uamgxample shown
in Figure 13.

Partition Fix

Partition FieId‘:
DataBlock: [ | | | | | | | |

BitPointer: 7 6 5 4 3 2 1 0 LT TTTTTLT] [o]o] [o]
(1) Partitioned by 1st LSB

CIT T 1T [ [of1] [of

(2) Partitioned by 2nd LSB

CITTT 11 [ [afo] [0

(3) Partitioned by 3 LSB

(a) Three partition candidates.

Data Block : \ ‘ ‘ ‘ ‘F‘ ‘ ‘ ‘
BitPointer: 7 6 54 3 2 1 0 - LT [T Tl T ] [o]o] [o]
1 (1) Partitioned by 1st LSB

One Fail I T Tl 1] [o[1] [0

i (2) Partitioned by 2" LSB

(b) One fall.

pataBlock: [ [ [ [ [F] | [F]
BitPointer: 7 6 5 4 3 2 1 0 - L1 [T [F] [TF] [o]o]
: ; (1) Partitioned by 1st LSB

01 1

© 00 0ot | T B TE) (o[

i (2) Partitioned by 2" LSB

i o T [1]0]

************************** { (3) Partitioned by 3 LSB

(c) Two fails.

Figure 13:An example of partitioning two fails.

The partition technique of SAFER identifies the location atle data bit in a block
using a bit pointer. Each data bit is assigned a bit pointerguydog,n] bits. Figure 13(a)
shows an example of partitioning an eight bit data block imto groups. Three bits are
required to represent each bit position in this eight bitcklo In this figure, each box
indicates one data bit cell and gray and white boxes are uséddicate two diferent
groups, say G and W. The data block can be partitioned intogiwaps in three dierent
ways, namely, GWGWGWGW, GGWWGGWW, and GGGGWWWW, based on whether
the least significant bit (LSB), the second LSB, or the mogti§icant bit (MSB) of the
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three-bit bit pointer is used, respectively. In other wormspossible 28 fail bit-pairs that
are selected in the eight-bit block can be separated intagheops by using one of these
three patterns.

Thus a block with at most one fail bit can be partitioned by\gsany arbitrary bit of a
bit pointer. Figure 13(b) shows that if the first bit to failasbit position 3, any of the three
ways of partitioning discussed above can be used.

Now, if the second bit to fail is at bit position 0 as shown igtiie 13(c), the partition
should be fixed to separate the two fail bits intéfelient groups. The partition technique
uses XOR operation to determine thedfelience vector of the two fail pointers (0@0
011 = 011). The number of 1s in thefterence vector indicates the possible choices for
partitioning the data. With two bits being 1 in theffdrence vector there are two ways to
partition the data block. If we choose the first LSB of th&atence vector, the resulting
partition is shown in Figure 13(c)(1), and instead if we ctmdhe second LSB of the
difference vector, the resulting partition is shown in Figur&cl(2).

The “partition field” identifies which bit of the ¢ierence vector was used to partition
the data block. For a bit data block, the “partition field” usg$og,([log,n1)] additional
bits to identify how a block is partitioned. For our exampieFigure 13, with an eight bit
data block, the partition field idog,([109,81)1(= 2) bits with a value of either “00”,“01”, or
“10” depending on the bit position (the first, second or thi®B) of the diference vector
chosen for partitioning the data. Furthermore, the partits not fixed unless there are two
fail bits. Hence, a “partition fix” bit is used to indicate wther the partition is fixed, or not.
In Figure 13(b) the “partition fix” bit is set to 0, and it is det 1 only in Figure 13(c) as
soon as a second fail bit happens.

To summarize, the partition technique of SAFER identifiesttho fail positions using
their [log,n] bit pointers. An XOR operation on the two fail pointers deteres a bitwise
difference vector between the two fail pointers. Finally, tlehteque selects a bit position

with a value 1 from the dierence vector, and resets all the other bits to 0. For example
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if the selected bit position is theé" LSB in the diference vector, the partition technique
splits then bit data block into two groups according to tkie LSB of the pointer for each
bit inside the block. ThugJog,n] group patterns exist and onfiog,([log,n1)] additional
bits are needed to identify how a block is partitioned.

Furthermore, for blocks with two fail bits, the partitionave to be fixed to ensure that
the fail bits are in dierent groups. Therefore, one additional bit is requirednttidate
whether a partition is fixed, or not. Thus, the total storagerleead for an bit data block is
(1 + [oga([logzn1)1) bits.

As shown in the above example, the partition technique ofESRAFor DEC is success-
fully able to partition the data block such that the two fatskare not in the same group;

thereby, enabling the use of SEC per group.

4.1.2 Partition Technique for Multi-Bit Error Correction

To be able to handle more than two bit fails in a data block, ghgition technique is
extended to dynamically partition the data block into nupléi(> 2) groups by selecting
multiple bits in the diference vector. We describe the extensions of the partéicmiique
to handle multi-bit errors using an example shown in Figute 1

Figure 14 shows an example data block of 16 bits with fourldag to be partitioned
into four groups, which are depicted with foufidirent gray-levels. The partition technique
associates a group index for each bit in the data block usingoits from the bit pointer.
When a data block is composed of 16 bits, the bit pointdog16 = 4) bits, which implies
that there ar€C; = 6 possible ways to choose two bits out of them. Based on theifai
locations, one of these six possible ways is chosen to detertie four groups.

In Figure 14(a), the initial partition arbitrarily uses ttierd and the first LSBs. For each
data bit, the concatenation of these two bits in its bit pingpresents its group index. For
example, the 12 data bit has a bit pointer of “1100” and concatenating thedthind the
first LSBs results in a group index of “107(2).

The “partition field” is extended to record which bit posii®are used for partitioning
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Partitioned Data Block :
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1st Partition Field : m
2nd Partition Field : Additional bits to describe partitions

Fixed Partition Counter :

(a) Initial state.
Bit Pointer : 1514131211109 8 7 6 5 4 3 2 1 0

Partitioned Data Block : ... ....

Grouplndex: 323 2101032321010
1st Partition Field : Fixed Partition Counter :

[1]o]
2nd Partition Field :
=
Partitioned Data Block : F .......

Groupindex: 3 2 3 2323210101010

1st Partition Field : Fixed Partition Counter : ﬂ
2nd Partition Field :
<=
Partitioned Data Block : L1 | [ Il [F]
Groupindex: 3 32 2332211001100
1st Partition Field : Fixed Partition Counter : m

2nd Partition Field : n

(b) Dynamic patrtition.

Figure 14:An example of four-group partition.

the data. In this example, the two partition fields indictta the third and the first LSBs
are used from the bit pointer. The “partition fix” field is ertied to a counter, “fixed
partition counter”, to keep track of the number of partisdhat are fixed. In Figure 14(a),
there are no fails, hence the value of the fixed partition t&xus zero.

Figure 14(b) shows how a partition can be changed dynamgitalhccount for a new
fail bit. If the first fail bit occurs at bit position 8, the itial partition is still valid because
none of groups has more than one fail bit. Now, if the secoid&zurs at bit position 2,

there are two fail bits in group 0. Thus, a new partition skdag derived so that the two



fail bits are in diferent groups. Using the partition technique described ati&@24.1.1, the
difference vector of the two fails is (10@0010= 1010), which implies that the second
and the fourth LSBs are candidates for the first partitiordfiaCorrespondingly, the first
partition field is set to “11”. The fixed partition counter neases by one to account for
fixing the first partition field. After this partition, groug® and 2 each have one fail bit.
Note that even if the second fail bit was not located in gropin® fixed partition counter
would have to be incremented although the first partitiomfetkdes not need to be changed.
At this point, if a third fail happens, the second partitiogldi should be fixed with a
proper value. If the third bit fails in position 0, the curtgrartition has two fail bits in
group 0. Applying the same partition technique as abovedifierence vector of the two
fails is (00104 0000= 0010), which implies that the second LSB position is the cdate
for the second partition field. After this re-partitioningroups 0, 1, and 2 each have one
fail bit. Furthermore, the fixed partition counter is incrented and reaches its maximum
value of two, making it impossible to re-partition furthérhus, in this example, we can
recover from a fourth bit failure only if the failure occurs bits belonging to group 3.
Based on the above discussion, it is clear that the hardwgrgrement is proportional
to the number of groups required to partition the data to ensme fail bit per group.
For an bit data block and & group partition, the number of additional bits required is
[logK] x [logz[logon]] + [logz([logzK] + 1)1, where,[log.k] is the number of partition
fields, [logy[logzn]] is the size of each partition field, afbbg,([log.k] + 1)] is the size
of the fixed partition counter. For 512 bits of data block topaetitioned into 32 groups,
additional 23 bits are required to represent the partitiamch is still only 4.50% overhead

compared to the data size.

4.1.3 Using Data-Block Inversion
The partitioning technique described in the previous seatixploited the fact that stuck-at
faults are permanent (not transient) to ensure that at messtuck-at fault bit is present

in each partition. In this section, we propose a recovergsehby exploiting the fact that
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if a resistive memory’s cell wears out resulting in a stutkaalt, then it is still possible
to read the cell content as the permanent stuck-at value xplpiéng this readability of

failed cells, the recovery scheme reduces the number ofiaddi bits required to recover
data written to a stuck-at cell.

If a data block has only one fail bit and the data being writtete fail bit position is the
opposite of the stuck-at value, then the data can be stomadimverted form with a marked
flip-bit. When reading the data, the original data can be reeay by inverting the stored
data if the corresponding flip-bit is marked. The idea of niwg a data block is similar to
bus-inverting coding [29] and Flip-N-Write [6]. However, ioobjective in inverting a data
block is to recover a stuck-at fail while the bus-invertimgdng [29] inverts a data block
to reduce /O power and the Flip-N-Write [6] utilizes it for removing reddiant writes to
PCM.

The proposed technique to invert the data can be used by SARERafter verifying
that the data write has failed to store the intended valuds Whte verification can be
performed by reading the data written and comparing it wité original data. When
the verification fails, the positions of fails and its stuckiue can be revealed from the
comparison result. Note that iterative write techniquest tlequire a write verification
phase are already needed for resistive memories using-lewi cells [30].

The proposed data inversion technique uses only one addlitlit per partition to
indicate that the data value has to be inverted prior to a.rébdmvever, the drawback is
that the decision to invert and store the data can be madeaftalya first write fails the
verification, resulting in two writes to store the data, #i®yr dfecting the endurance of the
cell.

To alleviate this problem, we propose a relatively smaledirmapped cache called
“fail cache”, to keep track of data blocks with recent statkails. For these blocks re-

cent fail positions and their stuck-at values are maintainethe cache. Figure 15 shows
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the fail cache organization that is composed of 16 banks. Véhaing new fail infor-
mation, its block address and fail pointer are used to cateulhe corresponding cache
entry by separating into a cache tag, an index and a bank ssldfenew fail information

is detected during the write verification phase, the failifpms and the stuck-at value are
known. Therefore, they can be stored with its tag portiorhand¢orresponding cache entry.
The tag, the cache index, and the bank address can also b&atadicfrom its block address
and the fail pointer. On every write request from the memanytmller, all fail information
for the corresponding-bit data block should be extracted from the fail cache. Tedo
the 16 banks are simultaneously accesseafa6 iterations. For example, 32 iterations
are required for a 512-bit data block. As a result, tabit vectors are generated — a fail
indication vector and a stuck-at value vector. These twaoredor each write request can
be exploited to avoid the additional write. If a fail indigat vector indicates errors, the
corresponding bits to be written are suitably inverted andesl according to their stuck-at
values and partition information. Note that a read requesite¢ same data block precedes a
write request to eliminate redundant writes, and the patinformation is collected dur-
ing the read. Thus, if all fail information for a write dateobk is found in fail cache, the
second write can be avoided. Also, since the preceding reade used to gain enough
time to access fail cache foy 16 iterations, the performance impact of the fail cache will

be insignificant.

4.1.4 Putting It All Together

SAFER comprises two techniques, namely, the dynamic rguttip partition and the data
block inversion. The dynamic multi-group partition ensutbat each group includes at
most one fail bit by partitioning the data intofidirent groups. With each group now in-
cluding at most one failed cell, the data block inversionessl can be applied to recover
from the stuck-at fault for that group. The total hardwarebdoidget of SAFER, to recover
from a maximum ok failures, is[logyk] x [log,[log,n1] + [logx([1ogok] + 1)1 + K, wheren

is the size of a data block arkds the number of partitioned groups.
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Figure 15:Fail-cache organization.

Another hardware overhead is bit manipulation logic foradalock partition and data
inversion. As our partition technique is based on the kndgaeof fail positions, detecting
a new fail position in a write verification phase is importatitcan be implemented with
simple combinational logic, anto-[log,n] priority encoder for each partition group. If a
priority encoder generates a valid fail pointer in the firstification phase, the correspond-
ing group will be re-written in an inverted form. If a prioyiencoder still generates a valid
fail pointer after the inversion write, it indicates the acence of a new fault in the corre-
sponding group. Then, the data block is re-partitioned withtwo fail pointers revealed
at the two verification phases. That is, re-partition can &dégomed with the priority en-
coders and a simple FSM described in Figure 16. For both reddvaite data inversion, a
partition decoder is required to select correspondingtbitse inverted.

Figure 17 shows an example of SAFER for a 16 bit data block dadrayroup partition.
Additional six bits are required for the four-group paditi and four flip bits are used to
indicate whether the data in the corresponding groups redto an inverted form or not.
Note that the six bits used to describe the partition are tgadanly when a new fail bit

occurs. On the other hand, the four flip bits will be update@wery write that tries to store
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Figure 16:The sequence of a write request in SAFER.

to the fail bit a value that is the opposite of the stuck-atigalln this example, fail bits
are present in group 0, group 1, and group 2. Thus, the flipfbitthose groups may be
changed on every write. However, the flip bit for group 3 wiille zero until a new fail

happens in group 3.

Partitioned Data Block : - | - | | | | | | |F| |Fl
Grouplindex: 3 32 2332211001100
1st Partition Field : Group 0
2nd Partition Field : [0]1] Flip Bits Group 1
. . . Group 2
Fixed Partition Counter : n

Group 3

Figure 17:An example of SAFER.

4.2 Hficient Implementation of SAFER

In this section, we address three key issues necessanyfiifoiest implementation and
use of SAFER, namely, where to place SAFER logic, what isdlealidata block size to

maximize SAFER ffectiveness, and how to limit the overhead of the “fail cache”

42



4.2.1 The Location of SAFER Logic

Fail recovery schemes are mainly used to prolong the lifetohresistive memory espe-
cially after fails occur, but they are not geared towardsrel@sing the number of writes
to improve the lifetime. Hence, fail recovery schemes mustibed in concert with other
schemes that delay the occurrences of failures, such asdadtwrite reduction schemes[1,
2,5, 4, 6] and wear-leveling schemes [4, 9, 18]. These schamgetypically implemented
in the memory controller or in the memory chip itself. For eyae, the wear-leveling
schemes maintain their own address translation layer tolyweear out the entire memory
space, and ousecurity Refrestogic described in Chapter 3 is located inside the memory
chip to protect against malicious attacks. To use fail recpgchemes in conjunction with
these other schemes, it is necessary that they be embedttednremory chips. Thus, we

propose to locate the SAFER logic inside the memory chip.

4.2.2 Ideal Data Size for SAFER Hectiveness

SAFER dynamically partitions a data block into multiple gps according to fail locations
and supports one bit correction for each group. Therefdre ldrger the data block, the
more dficient the fail recovery. For example, a double error coroecper 16 bytes is more
efficient than a single error correction per eight bytes. Siryildour bit error correction
per 32 bytes is moreficient than the two bit error correction. However, the uppaurixd
of the size of a data block will be decided by the memory chigigle which is optimized
to increase the density of the memory cell.

Figure 18 shows an example of a typical 4Gb 8 bank DDR3 DRAMitcture that
is highly optimized for density. We expect the new resistivemory architecture to be
similar to that of the DRAM because of the density issue. Bekample, each bank is
composed of 2048 sub-arrays whose size is’6522 bits [31, 32, 33].

Here, the column decoder generates column selection sigmalub-arrays, and pass-
transistors, which act as column multiplexers, are locaiear by each sub-array. This

is important so as to minimize area for long wires from thesgeamplifiers to interface
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Figure 18:DRAM architecture.

peripherals by multiplexing them. Thus, the size of data thiait are transferred to interface
peripherals at any time is equal to the minimum burst leng#i the chip supports. For
instance, the DDR3 interface has a fixed burst length of eifithe 1/O data bus width is
16, 128 bits can reach to the peripherals.

To minimize the area overhead SAFER is best located in thphpals, which implies
that the size of a data block can be at most 128 bits in this ¢deeever, historically the
interface size continues on an upward trend from SDR to DDRDR2, and to DDR3.
Thus, we can safely assume that the size of data reachingthmherals may be 512 bits
in the near future. We evaluate thifextiveness of SAFER varying the block size from 64

to 512 bits in Section 4.3.

4.2.3 The Area Overhead of Fail Cache

Since we decided to embed SAFER logic inside the memory théfail cache should

be located inside the memory chip with other peripheralgtufately, a PCM process is
CMOS compatible, and it poses no process technology humiegtiementing an SRAM

cache. Hence, one of the major concerns is the area overhtad tail cache”. According
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to ITRS projection [34], the cell sizes of SRAM and PCM, in 20@#4 be 140F2 at 10 nm
and @2 at 8 nm, respectively, implying that 3% times cell area fierence may exist
between SRAM and PCM. Table 2 shows the area overheads ofd-dispped SRAM
“fail cache” considering the 386 times cell area éierence. For example, if we assume an
8Ghit PCM chip with a fail cache with 128K entries, in which kamtry is composed of
16 bits of tag, a valid bit and a stuck-at value, then the i@ of the cache is 2.25M bits,
which is only about 1.00% area overhead relative to the 88GM. In Section 4.4, we

show the &ectiveness of the “fail cache” varying the number of entfiesn 1K to 128K.

Table 2:SRAM fail cache overhead for an 8Gb PCM chip.

Number of| Tag Size| Entry Size| Cache Size Area

Entries (bits) (bits) (bits) Overhead
1K 23 25 25.6K 0.01%
2K 22 24 49.2K 0.02%
4K 21 23 94.2K 0.04%
8K 20 22 0.18M 0.08%
16K 19 21 0.33M 0.15%
32K 18 20 0.63M 0.28%
64K 17 19 1.19M 0.53%
128K 16 18 2.25M 1.00%

4.3 Methodology

In this section, we present the methodology for evaluatiAgEBR and for comparing it
against two existing techniques, namely the idéamming Coding35] and theECP[10]
technique. We compare agaitshmming Codindoecause it represents a theoretical limit
of memory lifetime for existing ECC schemes designed to @brieansient errors. The
number of bits required for the Hamming Coding implementattoprovided by the Ham-
ming Bound:| < n-log,Z,_,C/'1, wherel is the size of datay is the size of the hamming
code including meta-data for correction, anid the number of correctable bits [36]. For
example, a 512 bit data block needs 58 additional bits to I tabcorrect eight fails.

Again, these 58 bits may serve only as a lower bound and aigahithplementation may
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require more bits. In addition, Hamming Coding has a high legate for the meta-data.
Hence, an additional bit is needed to determine if the mata-i$ valid. The indication bit
also helps avoid cells for meta-data from failing earlieartidata cells. In our evaluation,
the Hamming Coding scheme is referred tddealECC

Since our focus is to implement SAFER inside the memory clipiting the area
overhead is important. We define area overhea@%%mtar:or instance, the
area overhead of the (72,64) hamming code is 12.5%2%4). For comparison, we use
the area overhead of the (72,64) hamming code as the uppedtouour evaluation and
exclude all configurations of SAFERCP andldealECCthat exceed this area overhead.

Figure 19 shows the hardware overheads for tii@dint configurations fddealECC
ECP, and SAFER. The configuration names for each of the techeimetude the maxi-
mum number of fails that can be recovered. The number abarelsa in the graph shows
the size of meta-data for the corresponding configuration ekample, for the 512 bit data
block, ECP6 represents the ECP technique with six fail pasrteat can recover up to six
fails, and uses 61 bits for the meta-data; IdealECCS8 represi@mideal eight bit Hamming
Code correction technique, which requires a minimum of 58; l@hd the SAFER32 can

correct up to 32 fails with an additional 55 bits.
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Figure 19:Hardware overhead for recovery schemes.
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4.3.1 Experimental Setup

We use Monte Carlo simulations to evaluate SAFER and compmiastidealECCand
ECP. Since PCM is the closest to mass production among resis&earies, our evalua-
tions are based on ITRS projections for PCM endurance. Wenedeltowing assumptions

for the Monte Carlo simulations:

1. We assume the lifetime of each memory cell to follow themardistribution with a
mean lifetime f) of 10° and without any correlation between neighboring cells [11]
Our experiments with diierent standard deviation) values (10, 2-107, and 3 10")

did not show significant variation in lifetime patterns. Henpwe use a standard

deviation ¢) of 10’ for our evaluations.

2. We assume a perfect wear-leveling scheme so as to focy®orhe impact of the
fail recovery scheme on the lifetime. The wear-levelingesok evenly wears out the
entire memory space at a block granularity equal to the ireeaf the last level cache
as in theRandomized Region-based Start-G8pand theSecurity RefresfiL8]. We
use 256 bytes for the last level cache line size, which insptheat all the 256 byte
memory blocks have the same number of writes because of tfecpeear-leveling

scheme. Based on this, we measure the lifetime of one 25alayaeblock.

3. A write request to memory is converted to a sequence ofd eearite, and a read
request. The first read eliminatsent writesto memory by comparing the memory
data read with the data to be written. We assume that 50% ok iites aresilent
writes The second read verifies that the data written to memorylmeatthe intended
write data, which allows us to recognize cell failures. SARHEEquires another write
with necessary bit inversions if cell failures are deteateing write verification.
However, a hit in the fail cache will avoid the second writecdnase the bits are
already suitably inverted to account for the cell failureséd on the information

stored in the fail cache.
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4. We assume that four x16 memory chips compose a x64 DIMM mgmodule so

that each chip can deliver 512 bits of data.

In the Monte Carlo simulation, each configuration is run 5000@s, and the average
result is reported. For each run, our simulator allocatesatinay equivalent to the number
of required cells including the 256 byte data block and itsa¥ydata corresponding to each
configuration. A random write endurance value accordingheaforementioned normal
distribution is assigned to each array element. For eactewia cell, we considered the
toggling rate of the value to determine the available Iifeti Simulation continues until a
given configuration cannot recover from a failure any longake take into consideration
that all the meta-data do not have the same toggling rateeXample, the fail pointer in
the ECP scheme and the patrtition fields in SAFER are updatgdoock when a new fail
occurs. On the other hand, the meta-data for Hamming Codkaiu@ing the bit indicating
the validity of the meta-data), the replacement cells inE# scheme, and the flip bits
in SAFER are written with the same toggling rate (i.e5)0as the data. For SAFER,
the simulation also accounts for an additional write thataeded if the write verification

detects a failure.

4.4 Results

In this section, we describe the simulation results foqusin the following figures of
merit: lifetime improvement resulting from fail recovemyumber of fails recovered for a
given size of data block, and the cost of meta-bits for theenkesl lifetime improvement.
Finally, we show the fectiveness of the fail cache in eliminating the additionates and

correspondingly improving the lifetime.

4.4.1 Lifetime Improvement
Our simulations assumed that the lifetime of memory cellodes a normal distribution
N(u, o), whereu is 10® writes ando is 10 writes. Furthermore, we assumed that each bit

toggles with a probabilit = 0.5. However, for reliable analysis, we present the lifetime
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improvement as a function of.

Figure 20 describes the method used to determine the eldggtime improvement. In
the example shown in Figure 20, the first fail showrfFasccurs at 131.1 million writes. If
SAFER were to increase the lifetime ltg then the relative lifetime improvement is calcu-
lated as L — F)T /o to account for the dependence of the observed lifetime irgmznt
on botho andT. If SAFER were to increase the lifetime to the mean lifetirtiesn the

relative lifetime improvement is ((21C° — 1.311- 1C°) - 0.5/107) = 3.44.

W = 100M writes
The fail cell among 256 Bytes o = 10M writes
= 131.1Mwrites toggle rate(T) =

68.9Mwrites = 3.440/T ~_—

Relative Improvement /
=(L-F)T/o >

T T T T T T T T 1
L
100 120 F 140 160 180 200 220 240 260 280

Lifetime (Million Writes)

Figure 20:The definition of lifetime improvement.

Figure 21 shows the relative lifetime improvement for eaghfiguration with diterent
data block sizes. For these results, SAFER does not useittta¢he thereby requiring
the additional overhead of a second write if the write vegificn detects a failed cell. We
observe that, even without the fail cache, SAFER improveslitetime more than ECP
for all the configurations. For a 512 bit data block size, SRBE increases lifetime by
21.6 million = 1.08- 107/0.5) writes, and ECP increases lifetime by only 21.1 million
(= 1.05- 107/0.5) writes while still using 10% more meta-data (Figure 1@nISAFER.

Also, each bar of the IdealEGQepresents the lifetime improvement at the time of
occurrence of then(+ 1) fail. For example, for a 512 bit data block, the lifetime irope-
ment by using IdealECC2 is 12.8 (0.64 - 107/0.5) million writes when the third failure

OcCcurs.
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Figure 21:The relative lifetime of a 256B memory block.

4.4.2 The Number of Fails Recovered
Figure 22 shows the average number of fails recovered peranebfock for each config-
uration. It appears that ECP and IdealECC show linear incrememils recovered with
increase in the maximum number of recoverable fails. Ontherdvand, SAFER shows an
exponential improvement. It is important to note that theximaim number of recoverable
fails for SAFER increases exponentially as the number ditpar fields increases linearly.
As shown in Figure 22, for a 512 bit data block, SAFER32 rec®¥®m 22.94 fails
whereas ECP6 recovers from only 17.08 fails. However, thaivel improvement in life-
time with SAFER is only 2% better than the improvement with ETfie key reason why
the 34% improvement in the fail recovery of SAFER is not ttates] to larger improve-
ment in lifetime (compared to ECP) is the additional writeuegd by SAFER if the write
verification phase identifies a failed cell when we do not ufsl@ache. We show in Sec-
tion 4.4.4 that using a fail cache with SAFER significantlynmves the additional writes

and shows gains in lifetime improvement even relative t@lHECS.

4.4.3 Meta-Bit Overhead vs. Lifetime Improvement
Another important figure of merit of a recovery techniquehe tost of meta-data for the
observed lifetime improvement. Figure 23 shows the coatitim of each meta-data bit to

the overall lifetime improvement for a memory block size &62ytes. From Figure 23,
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Figure 22:Fail recovery in a 256B memory block.

we observe that, for a data block of 512 bits, SAFER32 has 424 ®etter utilization of

the additional meta-data relative to ECP6.
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Figure 23:Meta-bit contribution for lifetime.

4.4.4 SAFER with Fail Cache

So far, we have evaluated lifetime improvement and metafldiency of SAFER without
fail cache. By using the fail cache, however, the lifetima ba extended even longer. Fall
cache enables SAFER to avoid the additional write by progiagnformation about the fail
bits so that the data to be written can be suitably inverted.ugé the miss rate of the falil
cache as a measure of it§extiveness in reducing the additional write to the memory.

To determine the fail cache miss rate to enatdéts of data to recover from a maximum
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of k fails, we randomly set the fail bits in a memory of size 1GBglsthat each bits of
memory had at modt failures. As soon as anybits of data block has more th&fails,
the fail insertion was terminated.

Using this set-up, we simulated 26 applications from SPE620ite using the PIN in-
strumentation tool [27]. The following memory hierarchysssmulated: 32KB 8-way set-
associative L1 data cache, 1MB 8-way set-associative driflecache, and 8MB 8-way
set-associative L3 DRAM cache, and finally a 1GB main memOut of 26 applications,
we only used ten applications that have more than one mi¥iotebacks to the memory

(Table 3). In this set of simulations, we simulated five bilinstructions.

Table 3:Applications with more than 1M writebacks to memory.

Application Number of Writebacks
410.bwaves 3.92M
429.mcf 8.17M
433.milc 7.72M
436.cactusADM 1.29M
437 .leslie3d 4.75M
450.soplex 3.87M
458.sjeng 1.13M
459.GemsFDTD 9.37M
462.libquantum 7.62M
473.astar 2.45M

The geometric mean miss rate of the above applications anersin Figure 24 for
different cache sizes forftierent maximum recoverable fails in a 512 bit data block. Note
that diferent bars represent fail caches witlfelient numbers of entries. From Figure 24,
we observe that cache miss rate not only increases as weadediee cache size, but also
increases substantially as we increase the number of maximecoverable fails. However,
as the number of recoverable fails increase, the contdhuit lifetime improvement by
each additional bit continues to decrease. For example Figure 21, we observe that,
for 512 bit data block, IdealECC2 achieves 54.6% of the reddifetime improvement of

IdealEECS8 by correcting up to only two errors. From Figure\24 observe that, to correct
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up to two errors, the fail cache miss rate is only 5%.
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Figure 24:Fail-cache miss rate.

Figure 25 depicts the relative lifetime improvement whenuse a fail cache. Based on

the above discussion, we observe that even a small fail cgithéd K entries has compara-

ble lifetime improvement as a 128K entries cache. Furtheemee observe that SAFER32

has better lifetime improvement relative to even ldealECQ8 yust a fail cache of 1K en-

tries.
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Figure 25:The relative lifetime improvement of SAFER with a fail cache.

53



4.5 Summary

Existing ECC mechanisms are geared towards correctingi¢mansrrors in DRAM mem-
ories and are not suitable to correct permanent stuck-disfaihs the cells continue to
age, permanent stuck-at faults increase because of weaHoe aging rate is particularly
severe for several emerging non-volatile memory technekd-urthermore, with process
technology scaling, the lifetime variation of the cellsrease, which leads to early multiple
cell failures. We proposed and evaluated SAFER, a stuchudtt érror recovery technique
for memories, which #iciently recovers from multiple stuck-at faults and whichriin
conjunction with existing wear-leveling techniques.

SAFER handles the growing stuck-at-fault errors by dynafhicpartitioning a data
block into multiple groups and by ensuring that each group dtamost one failed cell.
SAFER reduces hardware overhead by exploiting the propleatyfailed cells with a stuck-
at value are still readable and uses the failed cell to coatio store data. Our evaluation
based on phase-change memories shows that SAFER has 11n8l1P4.52% better hard-
ware dficiency relative to ECP and ideal hamming coding schemesecésply. Further-
more, SAFER achieves 14.75% and 3.07% better lifetime ingr@nt relative to ECP and

ideal hamming coding scheme, respectively.
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CHAPTER 5
WRITE-FREQUENCY REDUCTION METHODS

In this study, we concentrate on a hybrid-memory design ftariing out frequent writes
from resistive memories typically having limited write amence,e.g.,, phase-change
memory (PCM). We proposed a new hybrid-PCM architecture usivecost hardware for
effective wear-out management. The proposed architectuggrates a small, durability-
proof, static random-access memory (SRAM) to filter out tieg@iently written addresses.
To do so, we propose a multi-dimensional classificationgfesierived from the Bloom
filter technique, which is used to decide the frequently temitaddresses and to isolate
them into the SRAM. By combining this scheme with prior weareling methods, we can

achieve a synergistic result in the operational lifetiméhef hybrid-PCM main memory.

5.1 Multi-Dimensional Classification

Temporal locality can be indicated by the write frequencyafertain period. For typical
program phase behavior, one can record the write frequestcg fecent execution phase
to predict that of the future phases. A typical way to measuige frequency for each
memory block is to count the number of writes accessing th@aomg block during a period.
This scheme was employed fegment swappirlgd], where each segment uses a counter to
indicate its degree of wear-out and the information is usewkar leveling. The advantage
of this counter-per-block scheme is that it can preciselysnee the degree of wear-out
for each memory block, but at huge storage costs. For instagigen a 1GB memory
with 256B memory blocks, the counter-per-block schemeiregunore than four million
(22%) counters. This prohibitive overhead is the main reason thieysegment-swapping
scheme suggested using 1MB as the segment size but no sriafertunately, the 1MB
segments are too large to handle. First, when a 1MB segmeswtapped with another

selected segment, it simply takes a long time to transfeettiee data. During the time
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of swapping, the memory controller will stop dispatchingvnmemory requests, which
affects the performance. Furthermore, with the segment-wahters, it is impossible to
identify the write distribution at a finer granularity tharsagmentge.g.,, the cache-line
size. In other words, it is impossible to identify whetherites are highly concentrated
on a few addresses or they are evenly dispersed across thesegHence, we need an
efficient way to measure write frequency at a fine-grained level.

Although it may appear to befticult to measure the exact write frequency for all fine-
grained memory blocks without incurring large hardwarerbead, it would be very helpful
if we can estimate the outliers that show much higher wriegjfiency than the others.
Toward this, we propose a conceptratilti-dimensional classificatiothat can éiciently
estimate which memory blocks show aberrant behavior. & 4bheme, a memory-block
address is projected multiple times onto alffelient dimensions, each of which employs
its own hash function to project the memory-block address @me of its elements. In
this scheme, our dimension contains two, four or eight elgmecach element in a certain
dimension has its own counter that is updated on every PCMadtess. When a write
address is projected onto the element, the element’s coisnitecreased by a value equal
to the number of elements in the dimension minus one. If aevaddress is projected
onto another element, the counter is decremented by oneexaonple, if the number of
elements in each dimension is four, the counter of the eléthaba write address projected
onto will be increased by three and the three counters ofttier @lements are decremented
by one. Thus, if all elements have the same probability torbgepted onto, each counter
value will stay around zero. However, if an element is moegjfrently accessed than others
in a dimension, its counter value will stand out positivélynerefore, the most frequently
written address can be probabilistically estimated andtifled by picking out the most
frequently written element projected in each dimension.

In Figure 26, the counter-per-block scheme is comparechagaur multi-dimensional

classification. For simplicity, in this example, the entinemory space comprises eight
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memory blocks shown in Figure 26(a). For the most recent 26@sy the counter-per-
block scheme in Figure 26(b) counts the exact number of sifieeach block using eight
counters. As shown, the seventh counter of the memory bldas@he highest value of 70
writes, i.e., the most frequently written block.

Block Address: Memory Block Write Counter
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Figure 26:Examples of multi-dimensional classification.

Figure 26(c) depicts a three-dimensional classificatioohmaism for the same exam-
ple. First, the hash functions for the three dimensions em@lg defined adH,(x) = ay,
Hi(X) = &, andHg(X) = ag, respectively, where is a three-bit block addres&,a;a,).

In other words, each bit position in a memory block addressgimed to represent a di-
mension. Because all elements in one dimension should beseamed with one bit, each
dimension has the following two elementsy’‘and ‘e;’, accounting for one of the binary
value. Since each element requires its own counter, the-thraensional classification
contains six counters in total. For example, a write acoe$ise addres§l10} increments
three counters correspondingdpfor thea, dimensiong; for thea; dimension, an, for
theay dimension; and decrements the other three counters.

After the same 200 writes in Figure 26(b), the final countduea are shown in Fig-
ure 26(c). In thea, dimension, thes; counter has a bigger value than thgcounter. It
indicates that the number of writes to the block addre§Bed;, {101}, {110} and{111} are
higher than the number of writes to the other addressesl&lymithee, counter for thea,
dimension and they counter for theag dimension have higher values than the others in the

same dimension, respectively. Therefore, the dimensi@sailt indicates that the memory
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block {110} has the highest probability to be the most frequently writtéock.

Figure 26(d) shows another example for a two-dimensiorsasification scheme. Dif-
ferent from Figure 26(c), the left dimension in Figure 2@d}s four elements. Thus, in the
left dimension, the counter of an element that a write addiseprojected onto increases by
three on every write access while the other three countenedse by one. After the same
200 writes, the final counter values of the left dimensiondates that one of the two block
addresse$110} and{111} are the likely candidates of the most frequently writtenchklo
By combining the result with that of the right dimension, tis-dimensional classifier
obtains the same result with the previous three-dimenkmassifier.

As shown in these examples, with the multi-dimension clesgion we can ficiently
estimate (based on probability) the most frequently wmittdock. The total storage re-
qguirement for this scheme ishe number of dimensiohx (the number of elements for
each dimension For instance, when assuming a 1GB memory composed of 2&6Bany
blocks, instead of having more than four million counterghia prior segment-swapping
scheme, we only need 44 counters for 22 dimensions repegsbgteach bit of the 22-bit
block address. Even with the low hardware overhead, we ctattdihe outlier addresses,
i.e.,the memory blocks being repeatedly written within a givenqek If we can accurately
filter out these outliers, we can slow down the wear-out oftishwrite endurance memory
cells.

Note that in our real design we did not restrict ourselvesily @solate one single most
frequently written memory block for an entire applicatioRather, the outlier addresses
identified by a threshold mechanism are continuously isdlab a separate and durable
memory structure during the course of an execution. Theemphtation of our hybrid-

PCM architecture and the decision mechanism will be detail&kction 5.3.
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5.2 Interference and Its Implication to Design

Similar to other fast approximation methods, the multi-dimsional classification scheme
also stifers from inaccuracy because of the fact that more than oneonydoiock address
can be projected onto the same elemest,(counter), thereby leading to address aliasing
or interference. This interference is an outcome of usingshtHunction for each dimen-
sion and using a smaller number of counters for bookkeepling interference could be
mitigated by increasing the number of dimensions. (hash functions) or the number of
elements in each dimension.

The main issue of incrementing the number of dimensionse@ntimber of elements,
however, is that it incurs high storage overhead for cowntdfo address this issue and
implement an appropriate number of counters, we need to kviwat are the possible types
of interference present in our scheme. Figure 27 shows tmples of the interference that
is classified intdalse-positive interferencandfalse-negative interferencén the example
of false-positive interference, three memory block adskeef)00}, {011}, and{110} were
written 50 times and the other five were written 10 times. Haveaccording to the counter
results of our three-dimension classifier, the memory bl@dkd} is identified as the most
frequently written block, which is not even within the topdk frequently written ones.
The reason is that in each dimension, two of the three mogtiénetly written addresses

happen to map to the same element.
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Figure 27:Examples of interference.

59



To reduce false-positives, more dimensions should be im@ieéed to have more dis-
tinction of different addresses, and then the sum of the counter values attnesnsions
is used to obtain the decision by the majority. If the sumigdathan a certain threshold
value, then our scheme classifies the block address as abdfa example, the memory
block {000} is projected ontay, (20) for thea, dimension,gy (—20) for thea; dimension,
and ey (20) for theag dimension. Thus, its sum of the corresponding counter gaisie
20. Likewise, the sums for the other memory blocks fr{#¥@1} to {111} are—20, 60, 20,
-20, -60, 20, and-20. Even though this majority decision cannot avoid falesHpes,
at least it can detect all true-positives by adjusting tlieghold value. In this example, if
the threshold value is set to 10, then the memory blgoR§}, {010}, {011}, and{11C are
classified as aberrant. We will discuss our implementataatd this in Section 5.3.

Similarly, because of the address aliasing, the counteldteesan have another type
of interference caused by false-negatives. In this scepaquently written memory ad-
dresses could remain undetected by our estimation schemaeother example illusterated
in Figure 27(b), the memory addres4681} and{110}, are more frequently updated than
the others. However, all counters end up with the same adatetuvalues since the two
frequently accessed addres$@81 and{110 happen to be antipodal in the three dimen-
sions. These antipodes located in the exact opposite usittan conceal themselves
completely from our multi-dimensional classifier.

For normal applications, the probability of locating theaek antipodes diminishes
quickly as the number of dimensions increases, becauseatimeah applications do not
intentionally pair up addresses to generate false-negatterference. Given malicious at-
tacks threatening PCM reliability, nevertheless, thisdalgegative interference is a severe
weakness. If the dimension projection mechanisms are fixddterministic, an adversary
can reverse-engineer the projection mechanisms with chdenels using latency ftker-
ences, and then the corresponding false-negative inteiderpatterns can be easily gen-

erated. For example, assume that it is revealed that eadndion has two elements and
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the addresses detected by the multi-dimensional clasareisolated to an SRAM cache,
which has much shorter latency to access than that of a PCM myetdsing this latency

difference, an adversary can search for a false-negativedrgare pair. To prevent adver-
saries from using the side-channels, therefore, we neemléothe projection mechanisms
or to keep changing them. From these considerations abtarference, we propose a

secure multi-dimensional classification scheme to be de=tin the next section.

5.3 The Implementation of Our Hybrid-PCM Architecture

Thus far, we have described the basics of our proposed whiaiignsional classification
technique. In this section, we propose a novel affidient implementation to realize our

technique for a hybrid-PCM architecture.

5.3.1 Overall Control Flow and Isolation Cache

The essential idea of improving the write endurance for a PCAthrmemory is to filter
out the frequent memory writes from being written back to”t&M main memory. Based
on the decision made by our multi-dimensional classificasocheme, when an incoming
write address is classified as the most frequent writtenkb{atthis point of time), it will
be transferred to a small SRAM cache, caligolation cache The isolation cache is fully-
associative and uses the least-recently-used (LRU) pfuiays line replacement.

Figure 28 depicts the overall block diagram of our hybrid-P@idhitecture. When a
new writeback address arrives, our proposed mechanisnkshetether the address is a
hit in the isolation cache. At the same timajecision makealso evaluates and determines
if it is worthwhile to transfer the block to the isolation ¢eecbased on the counter values in
our multi-dimensional classifier. Upon a cache hit, theegponding cache line is updated
accordingly while the PCM memory block has stale data. If tiiér@ss results in a miss
and the decision maker indicates that the address shoutditsferred, then the writeback
address and its data will be inserted to the isolation cadhMaen an insertion occurs,

the LRU cache line in the isolation cache will be written bé&ekhe PCM main memory.
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Otherwise, the address and its data will bypass the isolagdghe and go to the PCM main
memory directly. Note that a read request also requires @& lgp the isolation cache.

In case of a hit, the isolation cache returns the read datausecthe corresponding PCM
memory block is out of date. However, regardless of the cdable-up result, the read

request neither looks up the decision maker nor changeddted the decision maker.

Write Data Write Address

) 1 ! I} !

0 1/4
Il i
SRAM Decision

Isolation Maker «*
Cache H i

(b-entries) | |
S Update|

i Wear-Leveling Controller I

______ R S

Resistive Memory Cell Array

Figure 28:The overall block diagram of our hybrid-PCM architecture.

The decision maker is updated whenever a write addresstisosttre PCM main mem-
ory, i.e., either during an eviction from the isolation cache or durangirect writeback
that bypasses the isolation cache. The update primarilg@ses or decreases the counter
values in each dimension. The flow control of the address &ndata for updating the
decision maker is managed by a small finite state machine JESMhown in Figure 28.

The design of decision maker is detailed in Section 5.3.2.

5.3.2 Decision Maker
The decision maker is responsible for isolating frequewtligten memory blocks and rep-
resents the most critical part of our proposed design. Ei@9 depicts the block diagram

of the decision maker consisting dfdimensions. Each dimension employs its own hash

62



function to project am-bit block address onto one of it§ 2lementsi(e., counters):

m-bit Address Counter Update Signal ! Init signal
Decision Maker (dD2"E) i
i Dimension #0 | l Dimension #1 1 i | ' Dimension #(d-1)
Hash Function . Hash Function . i i Hash Function .
#0 &= m-bit Key, <--r--4 #1 &= m-bit Key, <----E-°i #(d-1) &= m-bit Key,_j¢--r--4
n-bit Index n-bit Index E : n-bit Index
Counter Manager (- Counter Manager el | ooc Counter Manager (e
feh-- leb--- feb--
2" Counters 2" Counters 2" Counters
s-bit Integer s-bit Integer s-bit Integer
Score J Score _,. Score J
Sum of Scores > 0

Decision

Figure 29:The block diagram of a decision maker.

As illustrated in Figure 30(a), each hash function genesrate-bit counter index from
an m-bit block address and am-bit randomized key. Thus, using afidrent randomized
key for each dimension canftirentiate it from the other dimensions. Even in the same
dimension, changing the key can project a block addressaditerent element. As men-
tioned in Section 5.2, a static, unaltered key may rendesolieme vulnerable. By chang-
ing the key values dynamically, therefore, our scheme caprbtected from malicious
side-channel attacks. Note that our scheme employs a stmagle function with low-cost
hardware, which enables to implement our scheme inside a At €or instance, the
hash function described in Figure 30(a) performs a bitwisdAoperation between an in-
put address and a key, and then chops the result into méitypieces. Lastly, to generate
ann-bit index, it performs a bitwise XOR operation among thembedn-bit pieces.

To keep track of the information of write recurrence behgwach dimension updates

its 2" counters whenever a write data is transferred to the PCM mamany. To measure

1The indexing method is similar to a counting Bloom filter ppspd for web caching [37]. However, the
way each counter is updated is quité&elient, which will be discussed in Section 5.6.
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int n; /* the size of a counter index */

int hash(int addr, intkey) {
intindex = 0;
int mask= (1 <<n) —1;
int temp = addr & key;

while temp !'=0) {

index = index O (temp & mask);
temp =temp >>n;

returnindex;

}
(&) A hash function.
“Counter #0 h “Counter #(2n-1)
-1 2n-1 -1 201

Indexed?

Indexed?

Update
" Signal

L

(s+k)bit Register ¢« ------- --1--(s+k)bit Register <«

ls-bit Integer Score

(b) A counter manager.

Figure 30:The details of a hash function and a counter manager.

the degree of write frequency with the counters, we choseward the counter indexed
by the output of the hash function while the other counterthn same dimension are
penalized In other words, the indexed counter is increased by a vl e 1 and the
other (2 — 1) counters in the dimension are decremented by one. Fanost if each
dimension has four counters (where= 2), then the indexed counter is increased by three
and the other three counters are decremented by one. Therefdess the writes to the
PCM main memory are evenly projected onto all elements, gwuiently indexed counters
keep increasing their values. Figure 30(b) depicts thekdiimgram of the counter manager
in each dimension. Each counter has anr- K)-bit register to store the current counting
value. The uppes bits will be used as a score in the decision-making proceste e

least significank bits are used as a fluctuation margin. By tuning the valuk, @fe can

64



determine how much deviation is required téeat the score.

When receiving a new writeback block address, the decisiokemshould decide
whether to isolate the memory block or not. To do so, the dmtimaker forwards the
block address to all dimensions, and then each dimensigutsuans-bit score value rep-
resenting how frequently the memory block is updated. Toaerthle final decision, the
decision maker employs the process of a binary classifighelsum of all the dimension
scores is larger than a threshold value, the decision ma@des that the current address
is an outlier and will isolate it to the isolation cache. QOthise, the writeback is sent to the
PCM main memory. For our experiments in Section 5.5, we sdhtteshold value to zero,
because a positive value of the summed up score of all dimessndicates the current
writeback address shows certain deviation above the fltiotumargin.

After migrating an outlier block to the isolation cache, @lé counter values will be
reset back to zeros. Although it is required to go throughtla@olearning phase even for
the addresses that have already reached close to the bguwfdae fluctuation margin,
the reset and re-initialization can reduce the probabdityalse-positive interference by
eliminating the current counter values biased to the jselaied address. Since a new
insertion to the isolation cache evicts one cache line,etluesinters, after reset, will be
updated with the address of the evicted cache line. At theegame, the random keys for

hash functions will be re-generated.

5.3.3 Implementation Overhead

Since we advocate a tightly integrated design embeddingcheme within a PCM chip,
we should consider the hardware costs for the integraticexplained in Section 5.3.2,
we employs a lightweight hash function composed of seve@iRXand AND gates. Thus,
the isolation cache and the counters of the decision mal@rmgycmost of the hardware
overhead. However, given a PCial in-line memory moduléDIMM) consisting of 8
chips, the data array of the isolation cache can separaieBichips. Thus, assuming a

256B 32-entry isolation cache and a 64-counter decisiorem#he total area overhead per
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chip is about 1KB, which isféordable for the uncompromising reliability of the PCM main

memory.

5.4 Impact to Wear Leveling under Malicious Attacks

Our isolation cache and multi-dimensional estimation solean, in fact, leverage wear
leveling more @icient. ldeally, ab-entry isolation cache can completely filter dumali-
cious addresses, even though interference may genersggpfaditives. Thus, when a mali-
cious process tries to subvert our system, it should tamgtastack more thah addresses.
Assume that an adversary attacks-(1) address targets. Filtering out ortdyaddresses and
letting one address bypass will strike the weakness of vesatihg. In this case, it appears
as if only one single target address is being attacked temdyi representing the worst-
case attackd.g.,, birthday paradox attack [24]) to a wear-leveling systerstaged in prior
literature [8, 18, 24]. To mitigate this scenario, tihe{1) addresses should be equally sent
to and observed by the wear-leveling controller and the PCmm&mory? For example,
assume that an isolation cache is composed of four cactedima malicious process at-
tacks five target addresses by writing to each address 1@3 tiFor the niae filtering that
isolatesb fixed addresses out but lets the last address slip throughwydiar leveling will
observe this address 100 times, fulfilling the worst-cateckithat keeps hitting the same
address block 100 times. Our proposed scheme, nonetheididse able to cache four of
the five targeted addresses by taking turns. As a result, da-lgveling controller will
observe each of the five addresses 20 times each, represantideal situation for wear
leveling that the 100 writes are evenly distributed to the faddresses. Our scheme can
operate close to the ideal write distribution because iagswdetects and inserts the most
frequently written address based on the current write feagy to the PCM main memory.
Figure 31 shows how the distribution of attack writeBeats a PCM lifetime under

a wear-leveling scheme. To remap the entire memory spacep@sed of 4M memory

2As shown in Figure 28, our wear-leveling controller sitsbietween our proposed architecture and the
underlying PCM main memory.
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blocks in this evaluation), secure wear-leveling schenaset on randomization, such as
security refresh18] andstart-gap[9], typically require a certain amount of writes called a
remap period. The mapping from an address to a physical mebtock does not change
during the remap period and thus a malicious process cackadtaingle target memory
block during that period. For example, the left-most bamshelative lifetimed under a
single-target-address attack (1 TAddr in the legend) wreging the remap period from
4M writes to 512M writes. As shown, although a shorter remeypqal is critical to extend
the lifetime, it also increases the write overhtagecified in the parentheses. To both
shorten the remap period and avoid high write overhead,iquewvear-leveling schemes
divide the entire memory space into multiple regions anégper intra-region wear leveling
and inter-region wear leveling, simultaneously. Howevee, multi-region wear leveling
also increases hardware costs for maintaining the weathgystatus of all regions. On the
other hand, our scheme prevents all malicious writes frogetang a single address. Thus,
the malicious writes are dispersed to multiple target asklrs. As shown in Figure 31,
doubling the number of target addresses has a simiffacteof reducing the remapping
period by half with the same write overhead. In other words, scheme can help the
wear-leveling schemes increase the lifetime with low hanecosts by forcing a malicious

attack to disperse their writes to multiple target addresse
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20% -
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Required Writes to Remap Entire Memory Space (Write Overhead)

Figure 31:The efect of write distribution on wear leveling.

3The relative value is normalized to the theoretical maximummber of writes calculated as the number
of memory blocks (4M) write endurance cycles (80

4Write overhead is defined as the number of additional writeaddress remapping over the total number
of writes to memory arrays including the additional writes.
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Another merit of our scheme is that the insertion signal k& isolation cache can be
used to control the rate of address remapping in wear laye@ontrolling the rate is ben-
eficial to improve the overall lifetime [8]. In our schemegduent insertions indicate that
an attack is present and the wear-leveling controller néedpeed up the rate of address
remapping. On the contrary, a low insertion rate into théaigon cache can be interpreted
as current write patterns are uneventful, and thus no neethéwear-leveling control
to shufie the addresses fast. Note that even though attacks arenpriésbe frequently
written addresses fit into the isolation cache, then we dmeetl to accelerate the address
remapping rate. Furthermore, the hit rate of the isolatiache can be used as a threshold
for warning the current attack situation to a system operatée will quantify the benefit

of our scheme for wear leveling in Section 5.5.4.

5.5 Experimental Evaluation and Analysis

To achieve the high reliability of a hybrid PCM main memorytgys, our scheme should
effectively filter out the high-deviation write addresses. Taleate that, we devise an
attack model where a loop body consistd tdrget addresses (TAddrs) andandom ad-
dresses (RAddrs). The TAddrs are changed only when a weelilg scheme, if any,
finishes remapping the entire memory space. It is notewdhaywhent = 1 andr = 0,
the attack model is equivalent to thethday paradox attackBPA) that is the best known
attack method to wear leveling employing randomizationZ8]. The size of a memory
block is 256B in our experiments and there afé@emory blocks in each memory chip.

Note that our management scheme is embedded within the chip.

5.5.1 Sensitivity Study for Interference

To attain high accuracy for our decision maker, it is critimaminimize interference. Fig-
ure 32 shows the occurrence rate of false-negative inearter for the dterent number of
TAddrs from two to 64. Each configuration was simulated 4588 with diterent TAd-

drs. The number of dimension®), the number of elements in one dimensi@) and
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the total number of counterg#)) are varied for each configuration. As shown in Fig-
ure 32, more TAddrs lead to higher false-negative interfeeewhile using more counters
can decrease it. By using more than 128 counters for theideaizaker, the false-negative
interference is completely gone. Note that we performedevatuation up to 64 target ad-
dresses because given a wear-leveling technique, inngetsd number of target addresses
makes the malicious attack lesSigent. In case of the 64 TAddrs, even the right-most
wear-leveling scheme in Figure 31, incurring 0.78% addaiowrites for shiiling the en-
tire address space, can achieve 13.25% of the theorefietiie, which is around twelve

months. Thus, it is pointless to attack more than 64 targatesdes.
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Figure 32:The rate of false-negative interference.

Distinct from the false-negative interference that makaeisscheme to fail to capture
target write addresses in the isolation cache, falseipesitterference deceives our scheme
into capturing the wrong addresses and evicting true-pesines from the isolation cache.
To measure how often false-positives happen, we use a I$4eptation cache and an
attack model with 16 TAddr followed by one RAddr for each aton. Figure 33 shows
the ratio of the number of RAddr inserted to the 16-entryatioh cache to the total number
of RAddr when using a (8k) counter scheme.e., the upper 3 bits for scoring and the other
k bits for the fluctuation margin. Obviously, increasing ctara reduces the rate of false-
positive interference. However, with the same number ofettisions, increasing counters
for each dimension has an advergsieet. For example, whek = 6, the false-positive
rate of8D8BE(64) is twice higher than that 8D4E(32). It is due to employing the reward

and penalty mechanism of the counter manager. Since inogetee number of elements
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in one dimension also increases the reward for an indexedtegithe big reward raises
the chance for the counter value to pass the threshold-(84in this example). Thus, to
reduce the false-positive interference, it is desirablmtoease thd value or the number

of dimensions as shown in Figure 33.
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Figure 33:The rate of false-positive interference.

5.5.2 Wear-Out Evaluation

From the experiment of false-negative interference, wenkesl that 128 or more counters
can almost eliminate the false-negative interferencd.i¢fmot possible to concoct a mali-
cious code to create false-negative interference, thetinandficient attack method against
our scheme is to force capacity misses in the isolation calihdo so, an adversary should
attack more memory blocks than the number of entries of thlation cache. If the number
of isolation cache entries isand the number of target addressess ideally the total writes
reaching the PCM main memory will be (the total number of vsri»te%)). Therefore,
the ideal wear-out of each target memory block is (the tatahber of writes< ?)/t, as
mentioned in Section 5.4.

Figure 34 shows the ratio of the worst-case wear-out in gaukition against the ideal
wear-out for total 2° writes. During all the writes, no wear leveling is performed/e
varied the isolation cache size from four to 32 entries. Asitio@ed earlier, the minimum
number of write addresses that an adversary can use to attacystem islf + 1), where
b is the number of entries in the isolation cache. From Figdret3ds observed that as in-

creasing the number of target addresses, the worst-cageowealso increases because of
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the initial learning phase before any of the target addeessisolated. For example, when
33 target addresses begin to be written, the last bagthe 33rd address) must go through
33 learning phases to be isolated into the isolation caches [dng learning period of the
last target address results in the worst-case wear-oueiRP@M main memory. However,
the long initial learning phase is not significant to thetlifee of the PCM main memory
since it happens only once. Lastly, during our wear-out grpents, the configuration
32D2E(64) using a 32-entry isolation cachefered from one false-negative interference.
Thus, the two target addresses were not detected and the mnéiooks show 33 times

higher wear-out than the ideal case.
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Figure 34:The maximum wear-out of attack addresses in 300 simulations.

5.5.3 Evaluation for Normal Applications

So far, we have shown our scheme successfully detects aomaliattack. Even though our
scheme pursues a highly-reliable resistive memory systgimst the worst-case scenario,
our scheme is helpful for normal application as well. Now wié evaluate our scheme
for normal applications running on a tri-level cache systeie used PIN tool [27] and
simulated selected SPEC2006 benchmark applications. Theorgehierarchy includes
a 32KB L1 data cache, a 1MB L2 unified cache and an 8MB L3 unifeethe, all eight
ways. The cache line size is 64B for L1 and L2 and 256B for LuUrFRPEC2006 appli-
cations that show the highest writeback rate from an 8MB Lcheavere chosen including
429.mcf, 471.omnetpp, 482.sphinx and483.Xalan. We simulated a decision maker of 16

dimensions and each dimension has four counters.
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Figure 35 shows the number of hits in isolation cache for amckpmf 100,000 L3
writebacks by varying the isolation cache size from 4 to 32ies and thek value of
the decision maker from 6 to 10. Note that, the number of lEgesents the number of
resistive memory writes saved. Also shown is the scenaribout the decision maker, in
which the isolation cache acts like a tiny L4 cache wherehalwrites pass through. As
shown, the number of hits are much increased by applying cherse. It indicates that
even after filtering of the L3, there is still temporal lo¢gland our scheme can detect it
to reduce the write frequency to the resistive memory. Aeriesgting observation is that
using a small isolation cache requires a lakgealue to get a higher hit rate, whereas a
large isolation cache can obtain a high hit rate with a skgélue. That is, using a small
isolation cache requires a more precise decision. In owgrseh thek value is important
to detect the recurrence of writebacks. For example, a largdue will take a long time
to train and detect a frequently recurred address, leadingst opportunities for write
reduction in the resistive memory. In all cases of our simaites, using a smak (= 6)

shows much higher hits than using the isolation cache withalecision maker.

IS O4-entry Iso-$ @ 8-entry Iso-$ m 16-entry Iso-$ m 32-entry Iso-$

429.mcf 471.omnetpp 482.sphinx 483.Xalan

Figure 35:The saved PCM writes of SPEC2006 for 100K writebacks.

5.5.4 Impactto Wear Leveling

To study the impact of our scheme to wear leveling, we modeletth the secure wear-
leveling schemesecurity refresij18]. The security-refresh scheme remaps (or refreshes)
two addresses in a randomized fashion upon every refreshvait A two-level security-

refresh scheme shows a more than five year lifetime undertancous write attack. In the
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two-level security refresh, an outer security refresh wewsels a 1GB memory bank with
512 sub-regions inside the memory, while each sub-regismeslitaneously wear-leveled
by an inner security refresh.

Although the two-level security refresh extends the lifedi of a single-level security
refresh by more than four times, its major setback is the lma&d. Even though each
security-refresh controller uses only four registers, tthe-level security refresh with 512
sub-regions will require around 12KB of hardware overhdacbur scheme, the isolation
cache occupies most of hardware requirements while ousideainaker consists of at most
tens of counters. Given a 256B cache-line writeback from L& B32-entry isolation cache
requires 8KB for data storage. Thus, we evaluate the apigicaf our scheme to a single-
level security refresh. Nonetheless, we found we can aelegen higher endurance with
lower hardware overhead than the two-level security réfrédfe will discuss the results
in Figure 36 subsequently.

Moreover, to combine our scheme with a single-level seguafresh, we propose a
rate control mechanism for the refresh rate of the singletlsecurity refresh. The refresh
rate is measured as the reciprocal of the refresh intervathé original security refresh,
the refresh rate is controlled by a counter based on the nuofherites to the memory.
The counter is incremented by one for each write to the PCM ma@mory. Then, an
address remapping takes place whenever the counter is tbowerflow. In our scheme,
we increase the counter by a value larger than one upon eaefedine eviction from
the isolation cache. In other words, the evictions expediie address-remapping process.
We call this stride value aexpediting factar The rationale is that a line eviction from
the isolation cache results from the insertion of anothircaed linej.e., a capacity miss.
This indicates that the the number of attack addresses @x¢le capacity of the isolation
cache, which poses a threat to PCM reliability. In our schemméhermore, as the attack
writes show high deviation, the counter values for thegéhaaddresses cross the fluctuation

margin boundary fast. Thus, their short learning phasagase the frequency of evictions
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from the isolation cache. Therefore, by using the evictiate rwe can expedite the wear
leveling to protect our PCM system from the intensive attacks

Figure 36 shows the lifetime of each configuration when caonigi our scheme with
a single-level security refresh using a 7-bit countes,, remapping two memory blocks
upon every 128 writes. Note that without our scheme this gondition of the single-level
security refresh endures only a few minutes under a makonatite attack. In the graph, all
the lifetimes of configurations are depicted as a relativaeréo the theoretical maximum
lifetime of 97.1 months under a perfect wear-leveling sceein each bar, the lower part
depicts the lifetime spent for demand writes and the upperipdor write overhead. We
used al6D4E(64) configuration for the decision maker wikh= 8. As the expediting fac-
tor is increased from one to 2048, the lifetime for each caméigon keeps increasing even
though its write overhead also increases. Thus, even thegcoation using a 4-entry isola-
tion cache (1KB) endures 60.8 months including 25.7 mordhadditional writes. Given

the refresh rateR) of a single-level security refresh, the rate of write oveati is calculated

the number of evictions \ |
the number of writes to PCR/I

the graph, the eviction rate of each configuration is spetifiggarentheses below the con-

by the expediting factorK) and the eviction ratef =

. . . 1-R +RxF
figuration name. Then, the rate of write overhead can be lzatxiby R .
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Figure 36:Lifetime improvement using single-level security refresh.

However, the high write overhead under a malicious writacktis @ordable to pro-
tect the PCM main memory, while it must be mitigated in nornpglleation behavior. To
evaluate the write overhead for normal applications, weutated SPEC2006 benchmark

applications. In the simulations, the memory hierarchyudes a 32KB L1 data cache, a
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1MB L2 unified cache and an 8MB L3 unified cache, which are glhtways. The cache
line size is 64B for L1 and L2 and 256B for L3. Our 32-entry ettdn cache and the
16D4E(64) decision maker are located after the L3. Among the appboati483.Xalan
shows the highest eviction rate o@%. Thus, by using an expediting factor of 128, we
can restrict the write overhead for normal applications ddw 10%. With the expedit-
ing factor of 128, the configuration using a 32-entry (8KRB)lagion cache can endure 39
months under a malicious attack. Note that when restriatingg overhead at around%

in the two-level SR scheme with 512 sub-regions (12KB) jfédime is 26.0 months.

5.6 Related Work

The front-end of our decision maker is a variation form of trginal Bloom filter[38],
which also employs multiple hash functions to map the outoof an input set to a bit-
vector to create a signature for the given setcdunting Bloom filte{37] replaced each
bit of the bitvector with a counter to enable the deletion ofexicted element. Unlike
our multi-dimensional counters, the counting Bloom filtedeéxed all hashed results into a
unified counter array. Ghogt al. described aegmented counting Bloom filtg39] that
has both the bitvector and the counters with duplicated émghone Bloom filter for re-
ducing energy and expediting lookup for a match in the bitwed\ote that the use model
and update mechanism of the counters in our scheme arecdithstifferent from those
of prior Bloom filters. The prior use of counters was to enghke insertion and deletion
of elements without rehashing given no saturation occuteercounters. In contrast, our
counters are used to train the decision maker for scoringvtite frequency of observed
addresses. Then the sum of the counters above thresholt dfmansions is used as a
binary classifier, in some sense, similar to a single-layperceptron neural networgtud-
ied in branch predictors. Basi al. proposed akewed Bloom filteto count the L2 cache
misses [40]. Even though the skewed Bloom filter used meltidmensions, its counter

management and decision are verffetient from ours. With the counter scheme, it is hard
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to differentiate aberrant write patterns from normal ones bectugsscheme used the ab-
solute counter values rather than the degree of deviatidrariapurikaret al. proposed
parallel Bloom filters(PBF) for deep packet inspection [41]. Each of the PBF costai
a signature of a particular string length to identify sugpis network tréfic. Recently,
Xiao and Hua [42] proposed a generalized PBF based on cguiBtoom filters that keeps
multiple attributes of a given element in the PBF. The PBRgiess somewhat similar to
the design principle of our multi-dimensional Bloom filteksowever, the organization and
use model of our counters are veryfdrent from prior art.

The previously proposed PCM architectures [1, 4, 6, 43] adteatPCM to be used as
a main memory or a last-level cache with little or no consadien of write-endurance is-
sues. These proposals leave PCM vulnerable and unusabkcticerunder the worst-case
scenarios or malicious write attacks. Patlal. [16] studied a vertical hybrid-DRAMPCM
architecture from power management perspective but ighB@M’s reliability. Qureshi
et al. [2] suggested a vertical hybrid hierarchy using a DRAMtbuas a filter with wear
leveling. Their scheme will incur large overhead becausthefsheer size of the DRAM
buffer and the hardware storage (4MB) for the wear-leveling tengn Zhang and Li pro-
posed a horizontal hybrid-PCGRRAM using OS to migrate hot pages [17] to a parallel
DRAM based on page-worn information. This scheme will notkvim tandem with a
PCM employing wear leveling, which OS has no control over. Asuaissed in Section 2.3,
a filter-based DRAM cache scheme proposed by Jetng. [44] and a multiple-bffer
scheme proposed by Lext al. [1] are vulnerable to malicious attacks because of their
deterministic behavior.

A delayed write queuéDWQ) scheme was proposed by Qureshal. [9], where a
PCM write queue delays the writes to PCM until the number of pendrites exceeds
a cetain threshold called a delayed write factor. If the @vgueue supports a function to
merge write requests to the same address, then the DWQ hashtleetiect with our hybrid

architecture in terms of the capability of helping weardivg by forcing adversaries to
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attack multiple targets. A main flierence is that the DWQ fails to reduce the number of
writes to PCM. For instance, when using-&ntry DWQ, an adversary can easily shift out

the writes in the DWQ to PCM by sequentially attackimgH1) target addresses. In other

words, aftek iterations of attacking then(+ 1) targets, the total number of writes to PCM

will be k- (n+ 1). On the other hand, ourentry isolation cache can reduce it to near
k+l) as described in Section 5.5.2.

Also, Qureshiet al. proposed gractical attack detectiofPAD) scheme which can
estimate the degree of attack severity, named attack g¢B8%ifThe PAD scheme makes it
possible to achieve arfiecient wear-leveling scheme that can control wear-levetingr-
head depending on the attack density. Moreover, since adrexy-based PAD (F-PAD)
composed of 16 entries has 16 frequency counters for eacy) #re frequency informa-
tion can be used for isolating frequently written addresgest as the degree of deviation
in our detection scheme. However, thé&elience is that the F-PAD estimates the degree of
deviation only for the addresses stored in the 16 entrietevauir multi-dimensional clas-

sification scheme contains the information of all addressesently written. This limited

information of the F-PAD may cause iffieient isolation.

5.7 Summary

To address the reliability requirement for making phasertfe memory a reality in the
main memory hierarchy, we proposed a hybrid-memory arctute that integrates a small
SRAM called isolation cache with a detection mechanisndmgie PCM main memory to
identify and isolate the frequent writes into the durapiliroof isolation cache. We argue
that the reliability of phase-change memory should be quesl by memory vendors,
and therefore the entire wear-out management hardware lmeusmbedded within each
memory chip. We proposed the design of a multi-dimensiorlabB filter along with

a binary classifier to detect suspicious memory writes antige their future writes to

the SRAM. Our technique, when combining with wear levelingl| create a synergistic

77



improvement for the operational lifetime. As our experintainesults showed, lifetime can
be extended to 81.5 months out of a theoretical limit of 97ahths under the worst-case

scenario or malicious write attack with small hardware oead.
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CHAPTER 6

TRI-LEVEL-CELL PHASE CHANGE MEMORY:
TOWARD AN EFFICIENT AND RELIABLE MEMORY SYSTEM

A multi-level PCM cell can store more than one bit by defining thtermediate states
between set and reset states [30]. The resistance of a PCI4 eslllow as 1®ohms in
the set state and $@hms in the reset state. By further exploiting the resistatigerence,

a PCM cell can have two or even more intermediate states irtianldo set and reset to
increase data density per-cell. For example, four-leedll{@LC) PCM stores two bits
per cell by exploiting two additional intermediate statehjle eight-level-cell (8LC) PCM
stores three bits per cell with six more intermediate statsch multi-level-cell (MLC)
PCM requires the following operations to function correcthirstly, an MLC PCM cell
needs iterative write-and-verify steps to verify its weittvalue. When the resistance fails
to fall into a predefined range, a PCM chip needs to repeat the-amd-verify step. This
iterative writing process takes up to eight times longenthdypical write in single-level-
cell (SLC) PCM [45]. Secondly, when the resistance of an MLC P@Mis drifted and
crosses the storage level boundary, a soft eiirer, pit flipping) occurs and needs to be
recovered by error correcting mechanism, which can be ygodifinfortunately, the soft
error rate (SER) due to resistance drift in MLC PCM is fairlgihi With a detailed model
of resistance drift [21], we calculate the probability oétSER of an MLC PCM cell. As
we show in Section 6.3, the SER increases over time becaasesistance of the MLC
PCM cell increases over time. In other words, the chance sing the storage level
boundary increases over time along with the resistance. eNtaportantly, Section 6.2
shows that the SER of MLC PCM is significantly higher than tHadDBRAM. To address
such shortcomings, Xat al. [21] proposed a time-aware error correction scheme, which
employs extra cells for storing predefined reference rasts values. The reference cells

are adjusted to the predefined values whenever the otherinellls corresponding data
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block are written. When reading the data block, the resigtariche reference cells are
used to compensate the drifted resistance in other cellsisBy such a technique, the SER
(called raw bit error rate in [21]) could be reduced fronT48 101to 7x10™* ~ 1072, On
the other hand, Awastlt al. proposed anfécient scrub mechanism for MLC PCM [46].
The mechanismfectively reduced 99.6% of uncorrectable errors; howeves, lbwest
possible SER for long-term writésof 4LC PCM was 674 x 1075.

DRAM also experiences soft errors caused by particle €rike SER is known to be an
average of 23000~ 75,000 FIT (failures in time per billion hours of operation) pdbit,
i.e.,25x 10712 ~ 75x 10712 per bit-hour [47]. For example, 16GB of DRAM is expected to
have 3.43 to 10.31 soft errors every an hour. In contrast, BO® with SER of 674x 10°°
(the lowest SER for long-term writes in [46]) is expectedrour 926 x 10° errors, near
1P times more errors than DRAM. Moreover, in this comparisamgayht-bit correction
BCH ECC is assumed [46] whereas no ECC was assumed in DRAM. EydhGdPCM
shows several orders of magnitude higher SER than DRAM evemsephisticated ECC
support.

The downside of 4LC PCM is more than its high SER and the reoérg for ECC
support. If we adopt redundant PCM cells for storing refeesvelues and compensate the
increase in resistance, a block of PCM cells must share thendaoht cells for reducing
the capacity overhead [21]. As such, any small change mast aad rewrite the entire
block. This strategy triggers more writes to the cells, @=utheir lifespan, consumes
more power, and degrades performance. On the other hahe, strub mechanism is used
for reducing soft errors [46], the memory controller willepd more time in scrubbing than
DRAM, which degrades the overall performance of the mematsgstem. However, in
both cases, the performance impact of those overheads weddscussed. In summary,
4L.C PCM not only has higher SER than DRAM even with ECC supparalso requires

extra overheads that have not been quantitatively evaludtee motivation of this research

1The original paper [46] defined a long-term write as follovBome PCM cells experiencefBuaiently
high timing gap between writes. These types of writes adeddbng-term writes.
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stems from these observations. As we will show in later sestiif we reduce the number
of storage levels from four to three, a PCM cell shows fewesrsrthan DRAM, and thus
eliminates the need of ECC, reference cells, and scrubbingcdivare our proposed tri-
level-cell (3LC) PCM over 4LC PCM to demonstrate that 3LC PCM is dimly feasible

solution for putting multi-level cells into practical use.

6.1 Tri-Level-Cell (3LC) PCM

For 3LC PCM design, the most straightforward approach isnwone the most error-prone
state from 4LC PCM. We first discuss the physical parametets 6GfPCM. By measuring
the resistance drift of reset and set states from iteratipe@ments, lelminet al. [48, 49]
showed that the drift can be represented by a power-law nsbasin below:

Rerie(®) = Rx {%}“ )

whereR andt, are normalization constants ands a drift exponent. Because the main
cause of the drift is the structural relaxation of the amorghstate, the drift exponent of
the reset state is much larger than that of the set state iexjheriments. In other words,

the drift exponent will increase as the portion of the amorhstate in a cell increases.

As mentioned eatrlier, the resistance drift causes soft®imthe MLC PCM. To es-
timate the reliability impact of resistance drift, we make tfollowing assumptions for
the normalization constants and the drift exponent for estorage level. According to
the experiments of Nirschdt al. [30], the iterative write-and-verify sequence adjusts the
programmed resistande®to be located within a desired resistance range for a given st
age level, where logR follows a normal (Gaussian) distribution. Thus, we assunae t
the logarithm of a normalization resistance, o8, will follows a normal distribution of
N(ug, 03). In addition, a desired programmed resistance range foremgtate is set to the
range within 16=*27>“r () and the upper and lower sensing boundaries for the statefre s
to 10=*>“r Q). The value of a drift exponent is also assumed to follow a @bwmistribu-

tion of N(u,,c2). The parameters we use in our drift analysis are based opréwous
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works [46, 21] and described in Table 4.

Table 4:Configuration Variables of Four-Level-Cell (4LC) PCM When tp = 1s.

Storage Level| Data 10g3oR @
MR ‘ OR Mo ‘ T
0 01 | 3.0 0.001
1 11 | 40| , | 0.02
2 10 |5.0| & | 0.06 | 24X He
3 00 | 6.0 0.10

A soft error occurs when the resistance of a MLC PCM cell istedfabove the upper
boundary of its programmed state. From the state-boundsdtyngs described above, the

condition of a soft error can be represented as follows.
Rarife(t) > 103w (2)

In other words, when considering the values in Table 4, thgetaresistance values for
the four storage levels are 3,010%, 1, and 16Q, respectively, and the three sensing
boundaries between two adjacent levels aré®100*°, and 16°Q. For instance, when
the resistance of a cell programmed for storage level 2sdafger than 1% Q, the cell is
sensed as the next storage level, generating a soft error.

By using the assumption that IgdR anda follow normal distributions as shown in Ta-
ble 4, we can calculate the probability of such soft erroetyphe detailed development of
formula is presented in Section 6.2. As we show in later eastithe most error-prone state
in 4LC PCM is the third storage level for the following reasoRgstly, the fourth storage
level (amorphous state) in the highest resistance range maegenerate errors. Secondly,
becauser is proportional toR, the third storage level experiences the rapidest regsistan
drift among all levels. If we remove the third storage lexkls will not only remove the
errors generated by itself but also reduce most of the egemgrated by the second storage
level. For instance, the majority of errors generated byseneond storage level occurs on
the boundary between the second and the third storage |ewlsh can be avoided by not

using the third storage level. Table 5 shows our design pdort3LC PCM.
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Table 5:Configuration Variables of Tri-Level-Cell (3LC) PCM When to = 1s.

Storage Leve 10g3(R) @
pr | or| pe | 0
0 3.0 0.001
1 40| 1| 002 |04xy,
2 6.0 0.10

Given the physical parameters in Table 5, we calculate tHe &LC PCM and 3LC
PCM. Note that we use the analytical model discussed in Se6tiband present the results
in Tables 6 and 7. Table 6 shows the SER of two intermediatagtdevels of 4LC PCM
based on time intervals since they were written while Tabsin@ws the SER of the first
two storage levels of 3LC PCM. For example, if a 3LC PCM cell igten to the second
storage level at = 0, the SER of the cell is.93x 10714 att = 2*°. Note that we mark “too
small” in the tables when Mathematica 8.0 outputs zero disctoof precision. As Table 7
shows, there is no error in 3LC PCM up té&fZeconds or more than 500 years. Because of
such low SER, scrubbing will be unnecessary for 3LC PCM in ifme range of interest.
For the same reason, ECC or other similar techniques can bedvdn summary, the SER
of 3LC PCM is even lower than that of DRAM. It does not requireubbing nor ECC to
achieve the satisfactory level of reliability. To furthestify the use of 3LC PCM over 4LC
PCM, we quantitatively compare and evaluate these two degigans in the subsequent

sections.

Table 6:Probability of Soft Error of Four-Level-Cell (4LC) PCM by Equation (4) in Section 6.2

| Time (s)| Storage Level ] Storage Level 2

2 (too small) 5.85E-06%
22 1.59E-12% 0.02%
23 5.85E-06% 0.12%
24 7.45E-04% 0.28%

83



Table 7:Probability of Soft Error of Tri-Level-Cell (3LC) PCM by Equation (4 ) in Section 6.2

| Time (s)| Crystalline State Intermediate Staté

2~ 2% (too small) (too small)
2% 2.28E-16% (too small)
240 1.59E-14% (too small)
245 5.71E-10% 5.93E-14%

6.2 Analytical Error Model and Validation

In building an analytical error model for both 4LC PCM and 3LCMN®, we continue dis-
cussion on top of Table 4 and Table 5. First, we define two manablesm = log,, Rand

n = log,,t. By substituting Equation (1) witmandn, we obtain the following.

109, o(Rarift (t)) = log,, R+ alog,,t = m+ ne

Thus, the condition of a soft error can be rewritten as folow

m+na >ur+ E
N >ur+ E—-m,
0.5 for storage level 0, 1, and 2 of 4LC PCM

whereE = 1 0.5 for storage level 0 of 3LC PCM
1.5 for storage level 1 of 3LC PCM

As a follows N(u,,, 2), na follows N(nu,,, (no,)?). The probability foma to be more than
ur + E — mcan be calculated as follows.

:uR+E_m_n,ua

Probability of soft error for a givem =1 — ®( ),
no,
1 X 2/2 (3)
where®(x) = — f e /“dx
Vorn

—00

Here, we also take thefect of the iterative writing into account. As mentioned syl
cell programming iterates a write-and-verify sequencd log,, R s less thamug + 2.750

or larger tharug — 2.750r. It means the probability density function of a random \Valea
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m, f(m) is as follows.

f(m) _ %¢(m;—:R) MR — 2.750r <M< MR+ 2.750R

0 otherwise

HR2T50R e 1 .
where K = f dm and ¢(x) = ——e */?
¢( - ) #(X) N

UR+2.750R R

Therefore, we can obtain the probability of soft error as racfion of time ¢ = 10") by

integrating Equation (3) with a random varialgfor ug — 2.750r < m < ug + 2.750R.

UR—2.7T50R _ _
Probability of soft erroe= f (1- ot rEM= Mey e nim (@)
HR+2.750R @

We evaluate Equation (4) for 4LC PCM and also run Monte Carlakitions to verify
these equations. In the simulation, we randomly pidRexhda from their corresponding
normal distributions in Table 4 and calculate the drift séemnce Ryi(t), to determine if
it generates any soft error. For each storage level, thelatomexecutes one billion trials.
Figure 37 shows the results side by side. We omit the soft eates for set and reset states,
i.e.,the storage level 0 and 3, because (i) resistance drift el{&\states does not lead to
a soft error, and (ii) the error rates of level-0 states acesmall to be evaluated and can
be ignored. For example, Mathematica 8.0 shows the firstzaoo-error rate for level-0
states whern = 2% or 1090 years, and the error rate i8S 1078, Similarly, note that
three data points for storage level 1 and 2 are missing beaaitiser (i) Mathematica 8.0
returns zero for Equation (4) or (ii) Monte Carlo simulatiayufid no error in one billion
trials. By comparing results from two independent soureesyalidate the accuracy of our

theoretically derived Equation (4) by simulation.

6.3 Reuvisiting Four-Level-Cell (4LC) PCM

Given the soft error rates in Table 6, it is clear that withaaoy mechanism for reducing
the soft error rates, 4LC PCM is unusable as main memory. Ressa have proposed
several drift-tolerant approaches such as error cornecithemes [46, 50, 19, 21], data en-

coding schemes using relative resistandgedence [19, 50], a reference cell scheme [20],
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a time-aware drift estimation mechanism [21], and mostmdgean dficient scrubbing
scheme [46]. Among them, we focus on the most recent work bgstwet al. [46]
who described an architectural mechanism combining a mgswubbing scheme with a
strong error-correction method to lower soft error ratesiag to use PCM as main mem-
ory. However, as we will show, even with the mofii@ent scrubbing mechanism, the soft

error rate of 4LC PCM is still much higher than that of DRAM.

6.3.1 Estimating Scrubbing Overhead

In this section, we compare the SER of 4LC PCM to that of contsary DRAM and
argue that 4LC PCM is impractical for main memory due to religbconcern. First, we
assume a 16GB PCM main memory with eight banles,2GB per bank) using a 256B
data block as a basic access unit as assumed in prior literature [51, A2¢ording to
recent work by Choet al. [53], the read and write latencies in SLC PCM are igand

150ns respectively. Considering iterative write-and-verifgps are required for MLC

2A large last-level DRAM cache is typically used to compeadat the relatively slower PCM access
latencies. Its cacheline size is assumed to be 256B
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PCM, we assume that scrubbing one cacheline takes at 14&ats1 Also, we assume that
each storage level has the same probability of occurrences.
The first column in Table 8 shows the scrubbing overhead dseseas the scrubbing

period increases. Here, the scrubbing overhead is definggnzase%lﬁjggi%r Sg:i%%bm-g

2GB PCM bank has 8M cachelines. Thus, aba66%econdsy 8 x 220 x 1.15us) are
required for scrubbing the entire physical PCM even if thenelCM banks are scrubbed
in parallel. As shown in Table 6, even when the memory coleirgerforms nothing but
scrubbing (100% overheaide., the memory controller will not have time to respond to any
memory request), the SER of storage level 2 in 4LC PCM is 0.12fi6lwis significantly
higher than that of DRAM. Moreover, if we use the scrubbingge of 45 minutes as in
the DRAM memory system for real servers [47], the SER of a PCMpregrammed to
storage level 2 will escalate to 5%, which is intolerable.adkg 4LC PCM with scrubbing
mechanisms cannot guarantee the most basic reliabilitynipystandard. To reach a very
low SER and reduce the scrubbing overhead simultaneobhsiynaximum PCM capacity
per bank must be limited. Our next section will show the latgmapacity of 4LC PCM the
scrubbing mechanism can support foffelient combinations of target SER and scrubbing

overhead.

6.3.2 Reducing Capacity to Achieve Low Soft Error Rates
Another way of lowering SER of 4LC PCM is to limit the maximunpe&ity. We assume
the capacity of 4LC PCM as 2GB per bank in Section 6.3.1 whemashg the scrubbing
overhead. Because the scrubbing overhead proportiomadhgases with the capacity, as-
suming 1GB per bank of capacity results in halving the ovadhéf we further reduce the
capacity, 4LC PCM can achieve lower SER. Table 9 shows thdtsesu

In Table 9, we calculate the maximum capacity of 4LC PCM fdiiedent combinations
of SER and scrubbing overhead. The leftmost column repteslea scrubbing period for
each 256B memory block. The next column represents the cwdIBBER, which is an

average of SER of all four states in 4LC PCM. However, becalsdhird storage level
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Table 8:Probability of Uncorrectable Errors by ECC and S ERombinedfor 2GB per Bank 4LC
PCM

Probability of Uncorrectable Errors for 512 bits
= Perror(5123)
Scrubbing Period BCH-8
(Overheads) | > ERomonea|  NOECC | (7264) | 5150, a0p)
2% seconds (106%) | 0.030% 7.4% 0.05% (too small)
2% seconds (60.29%) 0.070% 16.4% 0.24% 1.44E-10%
2° seconds (30.15%) 0.133% 28.9% 0.86% 3.80E-8%
2% seconds (15.07%) 0.218% 42.8% 2.26% 2.64E-6%
2" seconds (7.54%) 0.325% 56.5% 4.84% 7.45E-5%
28 seconds (3.77%) 0.475% 70.4% 9.76% 1.54E-3%
2° seconds (1.88%) 0.668% 82.0% 17.8% 0.02%
29 seconds (0.94%) 0.91% 90.4% 29.4% 0.18%
21 seconds (0.47%) 1.21% 95.6% 44.2% 1.08%
2'2seconds (0.24%) 1.57% 98.3% 60.6% 4.61%
Probability of Uncorrectable Errors for 512 bits
= I:)error(5123)
Scrubbing Period SERym, BCH-16 BCH-24 BCH-32
(Overheads) ombined || (51 2-160b) | (512b+240b) | (512b+320b)
2% seconds (106%) | 0.030% (too small) | (too small) (too small)
2% seconds (60.29%) 0.070% (toosmall) | (too small) (too small)
2° seconds (30.15%) 0.133% (toosmall) | (too small) (too small)
2% seconds (15.07%) 0.218% (toosmall) | (too small) (too small)
2" seconds (7.54%) 0.325% (toosmall) | (too small) (too small)
28 seconds (3.77%) 0.475% 1.27E-10% | (too small) (too small)
2% seconds (1.88%) 0.668% 2.32E-8% | 4.11E-13% (too small)
29 seconds (0.94%) 0.91% 2.15E-6% | 2.81E-12% | (too small)
21 seconds (0.47%) 1.21% 1.10E-4% | 1.34E-9% (too small)
2'2seconds (0.24%) 1.57% 3.14E-3% 2.66E-7% 8.69E-12%

shows significantly larger SER than the other levels, thimlwned SER is close to one
fourth of the third storage level's SER. In addition, we shive maximum capacity by
each given scrubbing overhead. When the overhead is 100%ahmory controller cannot
service any request from the upper memory hierarchy. Sif@&4dlscrubbing overhead is
impractical, the third column of Table 9 can be viewed as greupound.

Table 9 also shows the maximum capacity when the scrubbieghead are set to

12.5% and 1.0%, respectively. For example, if we design 4CB1Rvith the scrubbing
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Table 9: Maximum Capacity Per Bank of Four-Level-Cell (4LC) PCM by Soft Error Rates
and Scrubbing Overhead

Scrubbing Overhead
szrr?(?;"(’:‘;’ S ERombined | 100.0%| 12.5% | 1.0%
2 1.46E-06%| 488MB | 61.0MB | 4.88MB
22 0.005% 977MB | 122MB | 9.77MB
23 0.030% 1.95GB| 244MB | 19.5MB
2t 0.071% | 3.91GB| 488MB | 39.1MB
2° 0.132% || 7.81GB| 977/MB | 78.1MB

overhead of 1.0%, leaving 99% of the time for servicing mgmenuests, the maximum
PCM capacity will be merely 4.88MB for achieving an averageldi6 x 10°%% SER.

Note that when 4LC PCM comprises multiple ranks or banks aing can be performed
in parallel. Thus, when one bank is being scrubbed, the dibeks can respond to re-
guests from the CPU. However, even with eight banks, the maximapacity amounts to
39.1MB, which is still substantially below the main memospacity required in modern
computing systems. In sum, although a lower SER can be amthigy reducing the total

capacity of 4LC PCM, the memory capacity becomes too smak todeful.

6.3.3 Using Error-Correcting Codes

Error-correcting codes (ECC) can be applied to compensatSie of 4LC PCM. For
example, the industry standard (72,64) Hamming code [3B]amarect single bit errors
by adding 8 redundant bits on top of 64 bits datahis scheme is commonly found in
main memory of server systems because of the simplicity coéimg and decoding [54].
Moreover, stronger ECC can also be used to protect data frothipheubit errors. For
example, BCH codes [55, 56] correct 8, 16, 24, or 40 bits erfiany 256, 512, 1024
bytes of data depending on the size of the redundant bitsaulBecdecoding BCH codes
require more computing power and time than (72,64) Hammodgcthese codes are not

frequently used for latency-sensitive devices such as maimory but commonly found in

3The capacity overhead is 12.5%.
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slower devices such as NAND-based storage. With the cordi8&dR for each cell of 4LC
PCM developed in previous sections, we calculate the ertes rafter applying (72,64)
Hamming code and various BCH codes. Note that for every ECQated in this section,
we fix the data size at 512 bits as in [46].

(72,64) Hamming code corrects one bit error, and thus, fgaviare than two bit errors
among 72 bits is uncorrectable. In addition, since storiBdifs requires 36 4LC PCM
cells, the probability of having more than two bit errors 0tiB6 cells can be calculated as
follows. Note that by using Gray codes as described in Tapted step change in storage
levels is limited to &ect only one bit in two-bit data. Thus, two bit errors can happnly

when two 4LC PCM cells are changed due to resistance drift.

Probability of having at least two bit errors in 72 bits

=1 — P(no errors)- P(one bit error)

1 _ _ )36 _ 36 _ 1135 ) (5)
=1 (1 SEFéombme() 1 (1 SEF%ombme() (SEF%ombme()

:Perror(723)

Now we calculate the probability of uncorrectable error&i? bits. 512 bits comprises
eight of 64 bits data, therefore, to reconstruct the entli2l&its, all eight blocks should not
generate any uncorrectable error. If we define the resultjofion (5) a0 (72b), then

the probability of uncorrectable error for 512 bits is defirees follows.
I:)error(s:l-zz’) =1- (1 - F)error(7Z:)))8

The fourth column in Table 8 shows the results. In Table 8, alewate the probability
of uncorrectable errors by scrubbing period, scrubbingloeads, an® ERompinea If We
compare the error rates of 4LC PCM to that without ECC, (72,64hkiang code reduces
the error rates, but those rates are still too high for pcattuse. The results indicate that
4L.C PCM must use stronger ECC that requires more redundanarithigher computa-

tional overheads.
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Now we calculate the probability of uncorrectable errorwgtronger ECC. On top of
512 bits of data, BCH-8 corrects up to 8 bits errors by addinge8@ndant bits, and BCH-
16 corrects up to 16 bits errors by adding 160 redundant'bite. generalize Equation (5)

for calculating the probability of having at leasbit errors out ofm bits as follows.

Probability of having at least bit errors out ofm bits

n-1

=1- Z (I:)(l -S ERombineam_k(S ERombinet)k

k=0

(6)

Table 8 also shows the results from Equation (6). When théobang period is 2 seconds,
the scrubbing overhead is 3.77%, aPgho(512b) is 1.54 x 103% for BCH-8. The error
rate is significantly smaller than that of 4LC PCM with (72,648mming code; however,
still 10° ~ 10’ times higher than the SER of DRAM without ECC support.

Table 8 shows that if we limit the maximum scrubbing overh&ad %, 4LC PCM
is only usable with BCH-32. However, such requirement pressdhC PCM from being
used as main memory of commodity systems because of thevioijoreasons. Firstly,
a memory controller with a complex error-correcting medeanrequires extra chip area
and design #ort, which increase the chip cost. Since memory controleestypically
integrated in the same die with processor cores, vendord teedesign and fabricate a
customized CPU for supporting 4LC PCM. Secondly, the highenmaational overhead
in decoding increases the memory latency and degradestioerpance. For these reasons,
the majority of commodity systems typically implement no E€&emes or at most the
(72,64) Hamming code.

Moreover, the most critical downside of BCH-32 is a capacitgrbead. To correct up
to 32 errors from 512 bits of data, we must add 320 parity bitsake a total of 832 bits of
data. In storing 832 bits, 416 4LC PCM cells are needed. Onttiex band, 416 3LC PCM
cells can store 659 bits=(|10g»(3**9)]). Note that because 3LC PCM has no soft errors in

the time range of interest, all 659 bits can be used to sta@iLimformation without parity

4The capacity overheads are 15.6% and 31.3%, respectively.
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bits. In summary, 3LC PCM theoretically achieves higher infation density than 4LC

PCM. The next sections explains practical implementatio3f&C PCM.

6.4 Tri-Level-Cell (3LC) PCM in Practice

So far, we have discussed that by using 3LC PCM, we can achieoafadent level of
reliability that 4LC PCM cannot provide. In this section, wiladdress 3LC PCM imple-

mentation issues.

6.4.1 Binary-to-Ternary Conversion

Since tri-level cells do not match any conventional binaigitdl system, we need an ef-
ficient way to convert binary information into the ternarymoer system and vice versa.
The dficiency of number conversion methods can be evaluated withutkzation and
implementation feasibility. In other words, it is desiralil a number conversion method
can fully utilize the cell capacity with low-cost hardware.

First, we need a way to evaluate the cell utilization of a neamionversion method
considering extra overhead. For example, if a conversiothateuses; four-level cells to
storen-bit data, then the four-level cells can be regarded as fuilized. On the contrary,
if a conversion method needsfour-level cells to stora-bit data, then its cell utilization
will be halved. This concept can be generalized as follows.elVla number conversion

method usem k-level cells to storan-bit data, its cell utilization is
log, 2
Cell Utilization= ——— = — log, 2. 7
m m Ok (7)

In this equation, 2is the number of dferent states representedppit data and log2" is
the theoretically minimum number &flevel cells to store-bit data. For instance, ifa 4LC
PCM requires a BCH-32 error correction scheme to prevent-ishafticed soft errors, the
cell utilization of the binary to quaternary conversion &aulated asj—iélogﬂ ~ 0.615
where the BCH-8 requires 320 more parity bits to recover 51 8dia from eight errors.

As mentioned in Section 6.1, the 3LC PCM does not require amyptioated error
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correction scheme. However, some capacity loss of 3LC PCMasaidable due to binary-
to-ternary conversion. In other words, when usimigjts as a basic store unit, the minimum
number of 3LC PCM cells to store thebits is [nlog; 2](= m). For example, storing
three-bit data requires at least two 3LC PCM cells. The two BIGCM cells are used for
differentiating 2 states even though they can represent maximérst&es. Thus, one
of the states represented by two 3LC PCM cells is remainedaghufigure 38 shows
achievable cell utilization fofn, m) binary-to-ternary conversion methods when varying the
size of a basic store unih, from one to 32. Among those conversion methods{118e12)
conversion storing 19 bits to 12 3LC PCM cells can achieve igkdst cell utilization

of 0.999, while the cell utilization of 48, 6) conversion method is at most831. For
reference, in thé€l, 1) and(2, 2) conversion methods, a 3LC PCM cell acts like a SLC-

PCM cell and the cell utilization is.631.

Cell Utilization

(n,m): n-bit data, m tri-level cells

P S e N N e T A e e Y R N N A

RS S S s
T T T T T L LT T T T

Figure 38:Tri-Level-Cell Utilization

Another factor that should be considered for a conversiothatkis how feasible the
conversion method is to implement. Thagsem) conversion methods for 3LC PCM can
be implemented with several ways such as using a look-up {@&tJT), calculating with
arithmetic units, and implementing with basic logic gafEisose implementation methods
have their respective pros and cons. Using a look-up talrieeduce conversion latency,
while the number of table entries is exponentially increlas®en increasing the size of a
basic store unitpn. On the other hand, calculating ternary numbers with argtienunits

consumes less hardware costs than LUT but its latency igased due to complicated
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arithmetic operations. Thus, increasing a basic store onib achieve higher cell utiliza-
tion results in high hardware cost or long access latencyrelheer, since a conversion
method should be embedded inside a memory chip, its hardvesteand access latency
are critical for its implementation feasibility.

Therefore, we propose to use a simple number mapping metraddas(1, 1), (2, 2),
and (3,2) conversion methods that are implementable with simpleclggites. With a
combination of the three conversion methods, we can buidcanversion method whose
cell utilization is less than or equal to the cell utilizatiof (3, 2), 0.946. For example, a
(8, 6) conversion can be composed of ty&)2) conversions and ong, 2) conversionj.e.,
2(3,2)+(2,2) = (8,6), and &16, 11) conversion can be composed of fi& 2) conversions
and ong1, 1) conversionj.e.,5(3,2) + (1,1) = (16, 11).

Table 10 shows an example of tk& 2) number mapping method. In this example,
eight ternary states except the 11 state are used to reptbsee-bit binary data. This
simple number mapping method can be implemented with sdoegia gates. Assume that
three-bit datap,b,by, is stored to two tri-level cellsi;tg and each cell uses two control
signals,p.; and pg, to select a programming current corresponding to its stateerec
indicates a corresponding cell number. If the relationdfg@tween the cell states and their
control signals is shown in Table 10, the control signals lsamepresented with the three

binary bits as follows.
P11 = bp-by+Dby- by
Pio = b+ by - by
Por = by-by+by by
Poo = by + Dby by

Similarly, when reading a 3LC PCM cell, its programmed resisk is represented with the

outputs of two sense-amplifiens; andry as described in Table 10. From the four outputs
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of two cells, the three-bit data can be decoded with simgelgates as follows.
D2 = ri1+r10-To1-Too
by = rop+Tr11-roo

bo = ri11-Tor+T11-T10- Fo1+T11-T10- foo

Table 10:An example of the(3, 2) number mapping method.

L - control signals
3-digit binary | 2-digit ternary cell, for t, celly for tg
(b2b1bo) (tato) su | Sw S1 | Seo
000 00 0 0 0 0
001 01 0 0 0 1
010 12 0 1 1 X
011 02 0 0 1 X
100 10 0 1 0 0
101 20 1 X 0 0
110 22 1 X 1 X
111 21 1 X 0 1
Relationship between ternary levels and control signals:
( Programming ( Reading)
tc ‘ Pc1 Pco tc ‘ le1 lco
2 1 X 2 1 X
1 0 1 1 0 1
0 0 0 0 0 0

where “x” means redundant condition

In this section, we showed that by usingt®&2) number mapping method we can
achieve the cell utilization of up to.@46 with low cost hardware. Thus, when using an
(8, 6) conversion composed of tw@®, 2) and one(2, 2) conversion methods, 512-bit data
can be stored in 384 tri-level cells. Here, it is noteworthgttin the case of 4LC PCM,
416 cells are required to store 512-bit data when using a BCEr&# correcting scheme

to achieve a confident level of reliability.

6.4.2 Bandwidth Enhancement
So far, we achieved the desired reliability with 3LC PCM byrehiating the most error-

prone state from the four-level cell PCM as shown in FigureaR9(o program a cell to the
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intermediate state, “L1”, 3LC PCM use the same write-andfwéerations of 4LC PCM.
Since a prime concern in 4LC PCM is to maximize its reliahjlitys desirable to precisely
tune the resistance of intermediate levels to render daiftgims between adjacent levels as
large as possible. However, this precise programming lemddong write latency, which
is the root cause of low write bandwidth in MLC PCM. The quesi®whether the tight
resistance ranges for the intermediate levels achievedibg-and-verify iterations are still

necessary for 3LC PCM.

Programming Current
i i i Reset Current

L XL

(a) 3LC PCM Programming

]

Cell Distribution

Programming Current
i i i Reset Current

' H or‘\ """" H"'S'é't'tfu'r'rént

> >

\ Tt = t _ t

4 & 1 |

log,, Q

>

Cell Distribution

(b) Bandwidth-Enhanced (BE) 3LC PCM Programming

Figure 39:Cell Distribution vs. Programming Sequence

According to our analytical model, the 3LC PCM using the sae®stance ranges

with 4LC PCM is virtually free from drift-induced soft errar&s described in Table 7, its
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SER is extremely small even comparing with that of DRAM, cading that the resistance
range for the intermediate level is unnecessarily tightnc8ithe tight resistance range
is obtained by sacrificing the write latency, we can redueewhite latency by relaxing
the resistance range and eventually improve the overatevimandwidth. Therefore, we
propose bandwidth-enhanced 3LC (BE-3LC) PCM using a relaesidtance range for the
intermediate level.

Figure 39(b) shows two examples to program a relaxed intéiaelevel in 3LC PCM.
The relaxed intermediate level can be programmed with lasser of write iterations be-
cause of its widened resistance range. Another choice gramothe relaxed intermediate
level is to use the moderate-quenched (MQ) programminghtantrols the falling slope
of a reset current pulse [57]. By using the MQ programminghoéf the write latency of
an intermediate level in 3LC PCM cell can be reduced below ¢héasencyij.e., the write
latency of SLC PCM.

As mentioned, relaxing the acceptable resistance rangadantermediate level helps
to reduce the write latency and enhance write bandwidth. évew it reduces the drift
margin between resistance levels and the narrow margiresahe drift-induced SER to
be somewhat increased. In Section 6.4.3, we will introdune to use conventional ECC
schemes for the slightly increased SER of BE-3LC PCM. Alsoywilleevaluate the SERs
of both 3LC PCM and BE-3LC PCM in Section 6.5.1.

6.4.3 Hiicient (3, 2) Conversion for Error Correction

Using error correcting codes can improve the 3LC PCM religbds in other memory
systems. The problem is howfieiently 3LC PCM uses the conventional ECC schemes.
In the case of 4LC PCM, four states of a cell is encoded with Ivtdsray code. By
doing so, one state transition in a four-level cédteats only one bit in binary data, which
enables to use a binary error-correcting code for corrgctirte state transition of four-
level cells. Similarly, if one drift-induced error in a tievel cell &ects only one bit in the

corresponding binary code, a binary error correcting caale lme used for recovering the
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data from the drift-induced error.

In this section, we propose a state mapping methd@8,& conversion for using binary
error correcting codes. Figure 40(a) shows possible statsitions caused by drift-induced
errors in two 3LC PCM cells. Because the resistance drifieases the resistance level of
a PCM cell,i.e., from level O to level 1 or from level 1 to level 2, the state sdions are
uni-directional. The main idea is to map the state transigjcaph of two 3LC PCM cells

into the transition graph of the three-bit Gray code depiateFigure 40(b).

(a) Error transition of (b) Error transition of (c) State mapping of
two-digit ternary states three-bit Gray code <3,2> conversion

Figure 40:State mapping of(3, 2) conversion for dficient error correction in 3LC PCM

First, we exclude “11” state from the state mapping of (8)2) conversion. Note that
the state “11” was excluded because it has four transitigegdwvhich cannot be mapped
into the Gray code, and also two tri-level cells can represae more state than a three-bit
binary code. Then, the rest of states and edges are mapmethenGray code graph as
shown in Figure 40(c),which means that all one-hop error transitions of the twodgy-
cell states except ones frgtm the “11” state are represented with one-hop error treomst
of the three-bit binary code. Note that we need a specialga®tor the “11” state because
removing the “11” state from the state mapping cannot presgor transitions to the “11”
state. When the “11” state is read from two 3LC-PCM cells, it cadles that the state
results from one or more drift-induced errors. Also, coesidg the monotonic increase

property of resistance drift, only “00”, “01”, and “10” stz can be shifted to the “11” state.

SThis state mapping is the same as one in Table 10.
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Thus, when the “11” state is read from the two tri-level cell® can limit the maximum
number of transition-error hops to one by substituting ithwa “00” state. By doing so,
one state transition error caused by resistance diites only one data bit. For example,
let's assume that (72,64) Hamming code is used for singte earrection and double error
detection (SECDED). The 72-bit code can be stored in 48 3LC Pélléwhen using3, 2)
conversion. With the state mapping & 2) conversion, the (72,64) Hamming code can
detect two drift-induced errors in the 48 tri-level cellsdacan correct one drift-induced
error.

Furthermore, considering a 72-bit PCM DIMM composed of 8 PChpgheach PCM
chip has a 9-bit datapath which are matched to th&#2) conversion units. Note that if
eight 8-bit PCM chips are used to compose a 64-bit PCM DIMM fons\etry, each chip
becomes to uséB, 6) conversion. As a result, the 64-bit data is stored to 48 3LC PCM
cells which is the same amount of 3LC PCM cells to store a 72due. Therefore, given
a real PCM DIMM organization, ou#, 2) state mapping method allows to use the (72,64)

Hamming code without additional storage overhead.

6.5 Evaluation
6.5.1 Soft Error Rate of BE-3LC PCM

As discussed in Section 6.4.2, 3LC PCM can reduce writingntatdy using fewer writ-
ing iterations. As such, the distribution of the resistaisceompromised, and which will
increase the SER of the PCM cell. In this section, we formutlagerelationship between
writing latency and the SER of 3LC PCM and argue that 3LC PCM chieae the writing
latency close to SLC-PCM without compromising the SER.

Kanget al. [57] shows the distribution of the resistance of a PCM cellvby tlifferent
writing strategies; (i) iterative writing (write and veyif and (ii) writing without iterations.
As 3LC PCM does not use the third storage level, we focus onigiielalition of the second
storage level. More specifically, we read the distributidrih@ resistance of the second

storage level from Figure 1 based on [57] and calculate thennaad the variance of the
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resistance when a cell is written without iterations. As Wewg in Table 11¢pr andyu, are
worsened from 4.0 to 4.255 and from 0.167 to 0.188, respalgtiin addition, we assume
linear increment i, ando, by o for estimating the distribution af. For example, we

use the physical parameters in Table 4 and apply 0.04 increimg,, for every 10x inR.

Table 11:Physical Parameters for the Second Storage Level of 3SLC PCM Wdntg = 1s.

. log,o(R) a
Writing Strate 10
’ Y | or | e | o
Iterative 40 |0.167| 0.02 0.4 x
Non-iterative | 4.255| 0.188/| 0.02157| ~ " Ha

After obtaining the physical parameters of the second gwtavel of 3LC PCM, we
calculate the SER of 3LC PCM by using analytical models disedsn Section 6.2. The
summary of results is as follows. Firstly, the majority oétlrrors happen in between the
set state and the second storage level. Such errors are @db dine resistance drift, but
because of the initial writing failure. For example, the nogyncontroller writes 01 to a
3LC PCM cell, and the cell reads 00 immediately after the wgitiThe error rate for this
case is D4x 10-3%. Secondly, if we exclude such initial writing failuresetBER of 3LC
PCM caused by resistance drift is negligible unhtil 22° seconds. Table 12 shows the error
rate for this case.

When a PCM chip reads PCM cells immediately after writing thdra,ahip can detect
and rewrite the cells to fix the initial writing failures. Mespecifically, we assume that the
PCM chips rewrite the cells by sensing the written values idiately after writing. Even
though such strategy is similar to the iterative writing coanly used in 4LC-PCM, this
strategy is dterent in terms of the expected numbers of iterations. Fo(1668— 3.04 x
10-3)% of the time, writing to our proposed BE-3LC-PCM finishes atfinst attempt. The
second attempt is required for only0& x 10-3% of the time, and the expected numbers
of writing iterations in this case is close to one. Moreoveg, also show the SER of 3LC-

PCM with industry standard (72,64) ECC support in the rightinsoimn of Table 12. This
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column is calculated based on the fact that 48 3LC-PCM celle $t2 bits, and (72,64)
ECC corrects one bit error. Again, the proposed PCM with (72682C shows a negligible
SER untilt = 2?5 seconds. In summary, writing to 3LC PCM cells must be follovegd
reading and verifying. Such small overhead will remove migjmf the errors, and 3LC

PCM experiences no errors in the time range of our interest.

Table 12: Soft Error Rates of Intermediate Storage Level of BE-Three-level-Cell (BE-3LC)

PCM

Scrubbing| Iterative . BE Writing

Period (s)| Writing | o WMN9 | L 70 64y ECC
2° (too small) | (too small)
210 (toosmall) | (too small)
215 (too small)| (too small)| (too small)
220 3.60E-16%| (too small)
2%5 1.28E-10%| 2.66E-15%

6.5.2 Performance

4LC PCM requires a scrubbing mechanism and a multiple-emorection scheme for
a confident level of reliability. However, to use the 4LC PCM have to consider other
aspects such as performance and hardware overhead. lfithieaya its high density needs
other considerable cost, the 4LC PCM will be regarded as &t First, to evaluate the
performance impact of using MLC PCM, we simulated 26 apphbecet from SPEC2006
benchmark using SESC [28]. The read and write latencies & BICM are assumed
to be 150ns including a row activation latency (tRC) of 12Grgj 200ns considering an
internal write verification delay, respectively [53]. Fdt@and 4LC PCMs, its read latency
is the same with the SLC’s, while its write latency is assunetd 1000ns because of
its iterative write-and-verify iterations [46]. Similao tother studies [2, 9], an 8MB L3
DRAM cache composed of 256B cache-lines is employed to hiel®CM access latency.
Also, we assumed a PCM main memory composed of eight 2GB bawk&@ modeled a
memory controller that canfigciently schedule memory requests by exploiting bank-level

parallelism and PCM row Mlter hits. Note that in the request scheduling, read requests
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have higher priority than write requests because write sg&® are typically not on the
critical path in terms of performance.

Figure 41 shows the relative instruction-per-cycle (IPQuga normalized to the IPC
of SLC PCM. As in the recent paper [46], the two 4LC PCM configorat are assumed
to use a BCH code capable of eight error corrections for a 5tl@alta block® According
to our analysis, the 4LC PCM with the BCH code has to scrub thieeememory space
every eight seconds to achieve a DRAM-level soft error r&tewever, the eight-second
scrubbing is impossible because the minimum latency tdxsar2GB PCM bank is about
9.6 seconds. Thus, we chose a 16 second scrubbing for 4LC P@iktiiet al. pro-
posed a scrubbing overhead reduction scheme chifgd Array Read for Drift Detection
(LARDD) [46]. However, since LARDD reduces scrubbing ovesild by sacrificing reli-
ability, we assume an 8-second period for the LARDD schem&skown in Figure 41,
the 4LC PCM scrubbed every 16 seconds experienced 72.2% parfice degradation on
average. Especially}29.mcf that shows the highest write frequency (2.81 per 1000 in-
structions) incurred 95.2% performance degradataion.s Tbecause of the five times
longer write latency of 4LC PCM and its scrubbing overheadupging 60.0% of total
execution time. This tremendous performance degradatorbe reduced by employing
the LARDD scheme. However, the LARDD still experienced 26 ferformance degrada-
tion. This means that although LARDD reduces the write feztpy to PCM, there are still
too many read-and-check operations performed inside a ldaging to substantial perfor-
mance degradation. On the other hand, the 3LC PCM experiemtgd0.4% performance
degradation on average, although its write latency is al¥®hs as in 4LC PCM.

Furthermore, the performance of 3LC PCM can be improved hyguie bandwidth-
enhanced (BE) 3LC. Figure 42 shows the relative IPC of BE-3IGMPwhich is nor-

malized to the IPC value of SLC PCM. The write latency of BE-3RCM is obviously

6We assumed the encoding and decoding latencies of the aigitteorrection BCH code take one mem-
ory clock cycle because the encoding and decoding logic edully parallelized by accepting its exponen-
tially increased area overhead.
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Figure 41:Performance comparison with 4LC and 3LC

decreased close to SLC PCM'’s latency, however, estimat@@dtiourate write latency is
beyond this research scope. Thus, we performed a sensgiuidly varying its write latency
from 350ns down to 200ns monotonically decremented by a B@es/al. In addition, the
SER of BE-3LC is confined to less thar63 107 when the BE-3LC is scrubbed every
220 seconds, as mentioned in Section 6.5.1. Thus, all the BERBC® configurations are
assumed to use &2second scrubbing scheme. The relative IPC of the four corafiguns
are 0.982, 0.988, 0.994, and 1.000, respectively. As atrd3lEt3LC PCM makes it feasi-
ble to achieve the increment of memory capacity with neglegperformance degradation,

compared with SLC PCM.
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Figure 42:Sensitivity study of bandwidth-enhanced 3LC

6.5.3 Information Density

Another way to reinforce 4LC PCM reliability is to increase thumber of correctable er-

rors in a data block. However, if the number of additionalcetquired for a multiple error
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correction code is equal to or larger than the number of dalia,dhen it is meaningless
to use 4LC PCM. For example, since the BCH code correcting mioesen a 64-bit data

block requires additional 64 bits, a total of 64 4LC PCM celisdd be used to store the
128 bits. Then, the 4LC PCM using a nine-bit correction (128BCH code is no better
than using SLC PCM.

Here, we definenformation densityas the number of data bits stored in one cell to
measure the cellféciency. For instance, information density of SLC PCM i8Qlbecause
every SLC PCM cell stores one data bit, and SLC PCM does notreegapacity over-
heads from ECC. In the case of 3LC PCM, it uses&®) conversion scheme and thus its
information density i% ~ 1.33. In the proposed BE-3LC PCM, a (72,64) hamming code
is stored to 48 cells. Thus, its information density is %II: 1.33.

In Figure 43, we compare the information density of 4LC PCMw#.C PCM and
our proposed 3LC PCM. For example, the eight-bit correctE®?2(512) BCH code uses
%2 cells to store a 512-bit data block and its information dignsil73. However, the 4LC
PCM using a (592,512) BCH code requires an eight-second sagikbheme to achieve
confident reliability, which seriously degrades perforrmams discussed in Section 6.5.2.
If we use a strong error correction code recovering a datakbfoom more errors, we
can reduce the scrubbing frequency and diminish its peiioce degradation caused by
scrubbing operations. Thus, we evaluate the SER of eachgcwafion when a scrubbing
period is 2° seconds. Because it spends 9.65 seconds to scrub all 256Brgnknes in
a 2GB PCM bank, the maximum performance degradation causscrblgbing operations
can be limited to less than 1.00% (92~—16§’). According to our analytical model, when the
size of a data block is 512 bits, a 26 or more error correctetreme is required to achieve
the same level of SER with the proposed BE-3LC in Table 12. Wisamg a 256-bit data
block, an error correcting scheme has to be able to correctr 20ore errors. As shown
in Figure 43, those configurations marked in rectangles tawer information density

than that of 3LC PCM, B3. In other words, 3LC PCM is mordfient than 4LC PCM to
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store data bits at the same level of reliability.
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Figure 43:Information density of 4LC PCM
6.6 Summary

In this chapter, we asked the question about how reliablenidely studied four-level-
cell (4LC) PCM can be by exploiting the schemes aimed at overgpmesistance drift
problems. We modeled the resistance drift in MLC PCM and shiothiat conventional
ECC schemes and scrubbing mechanisms are not usable in 4LC BCMirfimizing
drift-induced soft errors to a tolerable level for reliatyildue to their unduly overheads
and certain physical limit. We then evaluated architedtapproaches addressing drift is-
sues in 4LC PCM includingf&cient scrubbing mechanisms and multiple error correction
schemes. To achieve a confident level of reliability, howethe latest scrubbing mecha-
nism still incurs significant performance degradation af726 compared to 2LC PCM. On
the other hand, when using a stronger error correction codedrrecting multiple errors,
the performance impact of the scrubbing mechanism could®édated but the increase of
codeword length compromis@sformation densityi.e., the number of data bits stored in
each cell, to lower than.33.

Considering these shortcomings, it is premature to use tl@RCM for an dicient
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and reliable memory system. Therefore, we propose triHegt (3LC) PCM by remov-
ing the most drift-error-prone level from 4LC PCM. This nevehi@ology can eliminate
the reliability concerns due to drift-induced errors. Mermore, by relaxing an accept-
able resistance range of the intermediate level, the pnogriag latency of 3LC PCM can
be reduced close to that of 2LC PCM, making the performancedatnpegligible. Also,
we propose a state-mappir8, 2) conversion to ficiently store binary data to tri-level
(ternary) cells. The state-mappik8 2) conversion scheme can be implemented with sim-
ple logic gates. Another merit of the state-mapping schestigit it enables a conventional
binary ECC scheme such as a (82) Hamming code to be used for correcting a ternary
cell error while maintaining its information density to agist 133. In sum, by using 3LC
PCM, we can obtain benefits from the increasing memory capadihout any concerns

about memory reliability as well as without performance raeigtion.
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CHAPTER 7
CONCLUSIONS

In this dissertation, we addressed reliability issues atgghchange memory, such as the
limited write endurance and the resistance drift. Thosedssare the most critical to use
PCM as a main memory. To overcome those issues, we proposesarchitectural solu-
tions and compare them with prior schemes in various asgects as reliability, security,
performance, feasibility, etc. This dissertation inclsitiee following contributions.

e A secure wear-leveling scheme dynamically changing addregpping.

e A multiple stuck-at-fault error correction scheme.

e A hybrid memory architecture using multi-dimensional sifisation to detect and

isolate malicious writes.

e Tri-level-cell phase-change memory as a practical use diitewel cell PCM.

The first approach used to overcome the limited write endigds a wear-leveling
scheme which evenly wears out the entire memory space tocREM lifetime. How-
ever, we found that if the memory mapping used by a weardleyeicheme is leaked to
an adversary, malicious code can be easily designed toesateePCM cell aging and fail
the PCM main memory. Ironically, PCM'’s relatively fast accésse can be used to re-
duce the attack time to fail the memory. Thus, we propose @reelow-cost wear-leveling
schemesecurity refreshwhich can dynamically change memory address mapping.d-or a
dress mapping, security refresh uses an algebraic funatioich uses much less hardware
overhead than other table-based wear-leveling schemese 8ie algebraic function peri-
odically changes random keys, security refresh déecévely obfuscate address mapping
information. Another finding is that the recursive use ofiséyg refresh can extend PCM
lifetime further under malicious attacks even with lessapming overhead. The evaluation
shows that two-level security refresh endures more thary®aes under malicious attacks

with less than 2.0% remapping overhead.
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Secondly, we focused on the fact that PCM cell wear-outs aedigtincur stuck-at
faults. Thus, without any error recovery schemes, the watadedurance cell dictates the
PCM lifetime. Moreover, multiple error recovery schemesdesirable considering PCM
cell endurance variation that may increase as technologgscTo provide a stable PCM
lifetime, we proposed a multiple error correction schen®f-ER, specialized for treating
stuck-at-fault errors. Dierent from other ECC schemes originally devised for cornecti
transient errors, SAFERf&ciently recovers data from multiple stuck-at faults by gsihe
properties of stuck-at faults such as permanency and rdagaBAFER dynamically par-
titions a data block into multiple groups ensuring that eguup has at most one stuck-at
fault, and then applies a data-inversion scheme to eaclpgsa single-error-correction
scheme. By doing so, SAFER32 which can correct at least @sestoows better lifetime
improvement than an eight-error correction Hamming codenewith less storage over-
head.

The third approach to address the limited write endurante efficiently detect mali-
cious writes and isolate them. To do so, we proposed a hybeichony architecture that
integrates a small SRAM called isolation cache with a deieehechanism. For the detec-
tion mechanism, we also proposed a multi-dimensional fleason. In the mechanism,
the overall operation of each dimension is similar to a cmgBloom filter but its counters
indicate not write frequency itself but the degree of degiabf the write frequency. Thus,
temporarily concentrated write addresses are detectedsaladed to the isolation cache.
Another merit of this scheme is to make wear-leveling mdiieient by detecting abnormal
write behavior and forcing malicious code to use more attacgets than the number of
isolation cache entries.

The last contribution of this dissertation is to evaluat thliability of multi-level-cell
(MLC) PCM exploiting prior schemes to overcome resistanck idgues. According to the
evaluation, the bit error rate of four-level-cell (4LC) PCVnaeved by the prior schemes are

still much higher than that of DRAM. To achieve a DRAM-levdldrror rate in 4LC PCM,
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the benefit from the capacity increase of multi-level cell$lve offset due to its storage and
performance overhead. Thus, we proposed to use tri-lele(3L.C) PCM and showed that
3LC PCM is a more feasible option than 4LC PCM when consideritit@nal overhead
and information density as well as the reliability. Alsor the practical use of 3LC PCM,
we proposed a state-mapping conversion schemgitiemtly store binary data to tri-level
cells. The(3, 2) state-mapping conversion using two tri-level cells to stihree bits can
achieve at least.33 of information density. In addition, we showed that wheing the
(3, 2) state-mapping, a (72,64) Hamming code can further incréaseeliability of 3LC

PCM without any storage overhead.
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