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SUMMARY

The main objective of this research is to provide an efficient and reliable method for

using multi-level cell (MLC) phase-change memory (PCM) as a main memory. As DRAM

scaling approaches the physical limit, alternative memorytechnologies are being explored

for future computing systems. Among them, PCM is the most mature with announced

commercial products for NOR flash replacement. Its fast access latency and scalability

have led researchers to investigate PCM as a feasible candidate for DRAM replacement.

Moreover, the multi-level potential of PCM cells can enhancethe scalability by increasing

the number of bits stored in a cell.

However, the two major challenges for adopting MLC PCM are thelimited write en-

durance cycle and the resistance drift issue. To alleviate the negative impact of the limited

write endurance cycle, this thesis first introduces a securewear-leveling scheme called

Security Refresh. In the study, this thesis argues that a PCM design not only has to con-

sider normal wear-out under normal application behavior, most importantly, it must take

the worst-case scenario into account with the presence of malicious exploits and a com-

promised OS to address the durability and security issues simultaneously. Security Refresh

can avoid information leak by constantly migrating their physical locations inside the PCM,

obfuscating the actual data placement from users and systemsoftware.

In addition to the secure wear-leveling scheme, this thesisalso proposes SAFER, a

hardware-efficient multi-bit stuck-at-fault error recovery scheme which can function in

conjunction with existing wear-leveling techniques. The limited write endurance leads

to wear-out related permanent failures, and furthermore, technology scaling increases the

variation in cell lifetime resulting in early failures of many cells. SAFER exploits the key

attribute that a failed cell with a stuck-at value is still readable, making it possible to con-

tinue to use the failed cell to store data; thereby reducing the hardware overhead for error

recovery.

xi



Another approach that this thesis proposes to address the lower write endurance is a

hybrid phase-change memory architecture that can dynamically classify, detect, and iso-

late frequent writes from accessing the phase-change memory. This proposed architecture

employs a small SRAM-based Isolation Cache with a detection mechanism based on a

multi-dimensional Bloom filter and a binary classifier. The techniques are orthogonal to

and can be combined with other wear-out management schemes to obtain a synergistic

result.

Lastly, this thesis quantitatively studies the current artfor MLC PCM in dealing with

the resistance drift problem and shows that the previous techniques such as scrubbing or

error correction schemes are incapable of providing sufficient level of reliability. Then, this

thesis proposes tri-level-cell (3LC) PCM and demonstrates that 3LC PCM can be a viable

solution to achieve the soft error rate of DRAM and the performance of single-level-cell

PCM.
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CHAPTER 1

INTRODUCTION

Given the grim prospect of technology scaling in DRAM, researchers recently have a grow-

ing interest of seeking for alternative memory technologies and integrating them into the

main memory hierarchy of a computing system. The common and salient features of

these new classes of memory include non-volatility, high density, fast access time, solid-

state without slow, power-consuming mechanical operations, etc. Most importantly, these

memories demonstrate better scalability with shrunk feature size than currently deployed

memory technologies. Out of several emerging memory candidates, phase-change memory

(PCM), which stores data based on the resistivity of materialphases, is the most mature.

Commercial PCM products from Samsung and Micron-Numonyx havebeen announced to

replace NOR flash for mobile devices, and the processor research community is taking a

step further to study the feasibility and the correspondingchallenges to move PCM closer

to the processor cores in the memory hierarchy [1, 2, 3, 4].

A PCM cell typically uses chalcogenide alloy that consists ofGe, Sb, andTe. The

material has two distinct states, namely, a low resistive crystalline state (SET) and a high

resistive amorphous state (RESET). The crystalline state can be reached by heating the

material above the crystallization temperature while it can be switched into the amorphous

state by melting and quickly quenching it. Furthermore, using fine-grained partitioning of

the resistance range between the two states, it is possible to store multiple bits per PCM

cell. Although PCM is slower than DRAM to read and much slower to write, architecture-

level solutions have been explored to mitigate these high latencies and to effectively use

PCM as a DRAM replacement for a main memory. However, PCM confronts a few ma-

jor challenges for the universal adoption,i.e., its low write endurance and resistance drift

causing permanent faults and transient faults, respectively.
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According to ITRS report, the current write endurance of a PCMcell is around 108,

which is a few magnitudes lower than today’s DRAM. Without considerable enhancement,

thus, the weak endurance may bring about lots of reliabilityissues. To address these relia-

bility challenges, effective and efficient wear-out management schemes must be designed to

extend the cell’s lifetime or to maintain faultless operations at the presence of dysfunctional

cells.

We broadly classify these wear-out management techniques into four types. The first

group of techniques simply minimizes the number of memory writes to eliminate silent

stores [1, 2, 5, 4] and/or perform writes with an inverted coding method based on Hamming

distance [6, 7]. Even though such techniques could extend the endurance to some certain

degree, they are of no use in the face of the worst-case write scenarios or deliberately

designed malicious write sequences.

The second type is to perform wear-leveling. Similar to those employed in commodity

flash memory, wear-leveling techniques aim to evenly distribute the writes across the given

memory address space by periodically shuffling the physical locations of memory blocks to

mitigate the likelihood of write hot-spots. Given that these new memories can be updated

much faster (thus failed quicker) than floating-gate flash memories, malicious wear-out

attack, which is a novel security concern, must be taken intoaccount when designing wear-

leveling schemes [8, 9].

The third category is to maintain correct memory operationseven in the event of per-

manent faults resulting from aging. Such techniques have the memory operated as if it

has self-healing capability. Conventional error correcting mechanisms, commonly found

in on-die SRAM and off-chip DRAM, can be classified into this category. Recent proposed

architectural techniques such as ECP [10], DRM [11], and FREE-p [12] are also such a

type dealing with aged faulty cells.
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The final group integrates durable memory (e.g., , DRAM or SRAM) into the less

reliable yet bulkier resistive memories to meet the requirement of desirable lifetime. We

call such designhybrid resistive memory. The design principle is to filter out frequent same-

address writes from accessing the resistive main memory. Note that, these four solution

classes are completely orthogonal. One can mix and implement them together for resistive

memories to achieve synergistic results for reliability and robustness.

Another reliability issue in PCM is incurred from the phenomenon that the resistance

of the cell increases over time, which is called resistance drift. Since its major cause is

the structural relaxation of the amorphous phase [13], the drift barely affects both of the

SET state composed of the crystalline phase and the RESET state that is already high resis-

tive. However, multi-level cell (MLC) PCM uses partial crystalline states,i.e., intermediate

states between the two distinct states. Although the MLC PCM can increase the amount

of information stored in a cell, the drift can shift the resistance level of a intermediate state

to the next adjacent state. Thus, to reliably retrieve the stored states we must place an ad-

equate margin between any two adjacent states to guard each state from the drift. If the

margin fails to guard, it produces transient errors threatening PCM reliability.

Recently, four-level (two-bit) cell PCM has been designed and evaluated [14, 15]. How-

ever, different from the evolution of NAND flash from two-level to four-level to eight-level,

it is too challenging to increase the number of levels in MLC PCM. As the number of levels

in a cell increases, the distance between any two adjacent levels becomes too close to se-

cure a reliable margin against resistance drift, which leads to undesirable errors due to the

state changes. This new type of soft errors caused by resistance drift, if left unaddressed,

will make MLC PCM completely useless.

Therefore, this dissertation focuses on those two reliability issues in PCM such as the

limited write endurance and the resistance drift. The first contribution of this research is

the finding that the limited write endurance incurs both the durability and security issues

simultaneously, and thus, a secure wear-leveling scheme isrequired to prevent malicious

3



writes to PCM. In this study, we propose an efficient wear-leveling scheme called Security

Refresh which can dynamically change physical address mapping with random keys.

The next observation is that as technology scales, the endurance variation of cells in-

creases and the lifetime of the PCM memory is dictated by the weakest cells. We mitigate

the growing variation impact on the PCM lifetime with a multiple stuck-at-fault error recov-

ery scheme. The scheme called SAFER exploits two propertiesof stuck-at-faults caused

by cell aging,i.e., readability and permanency.

Another contribution for protecting PCM from malicious writes is to propose a new

hybrid PCM architecture using low-cost hardware for effective wear-out management. In

this architecture, a detection mechanism based on a multi-dimensional Bloom filter and

a binary classifier isolates malicious writes to a small SRAMcache. This mechanism not

only reduces write frequency to PCM main memory but also makesa wear-leveling efficient

by conservatively sensing the existence of malicious attacks.

The last contribution of this study is to address the negative impact of resistance drift

on the MLC PCM reliability. We mathematically formulate the drift-induced soft-error

rates of MLC PCM. With this analytical model, we evaluate the previously proposed ideas

for reducing errors and show that four-level PCM is infeasible as main memory without

any device-level progress. Then, we propose tri-level-cell (3LC) PCM and shows that 3LC

PCM can achieve the soft error rate of DRAM and the performanceof single-level-cell

(SLC) PCM.

The remainder of this document is organized as follows. Chapter 2 presents the details

of prior works related with this research and demonstrates their weaknesses. In Chapter 3,

Chapter 4, and Chapter 5, we introduce our proposals to overcome the weaknesses caused

by the limited write endurance of PCM. Chapter 3 describes a secure low-cost wear-leveling

scheme to protect a limited-write-endurance memory from malicious write attacks. Chap-

ter 4 describes a new stuck-at fault recovery scheme exploiting the properties of stuck-at

4



faults to reduce hardware costs. Chapter 5 describes a hybridmemory architecture effi-

ciently isolating frequently written memory blocks to an SRAM cache. Chapter 6 proposes

a reliable tri-level-cell (3LC) PCM as a main memory and describes efficient ways to use

the 3LC PCM in the conventional binary computing systems. Lastly, Chapter 7 concludes

this dissertation.
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CHAPTER 2

PRIOR WORK FOR PCM RELIABILITY AND THE
WEAKNESSES

2.1 Vulnerability of Prior Wear-Out Management Schemes

While phase change memory is often considered as a potential replacement of DRAM,

the primary roadblock for using PCM as part of the main memory is its much lower write

endurance compared to DRAM. Several recent studies have attempted to address this is-

sue by either reducing PCM’s write frequency or using wear-leveling techniques to evenly

distribute PCM writes. Although these techniques can extendthe lifetime of PCM under

normal operations of typical applications, we found that most of them fail to prevent an

adversary from writing malicious code deliberately designed to wear out and fail PCM.

For instance, the schemes to reduce write frequency, such asdata comparison write[5]

andFlip-N-Write [6] do not prevent an adversary from intentionally wearing out the target

memory bits, because of their deterministic patterns that can be easily detoured.

In wear-leveling schemes [4, 9], on the other hand, a rush of writes to the same loca-

tion can be dispersed to different locations by changing physical memory mappings with

another address translation layer. However, the prior wear-leveling schemes have the in-

herent weaknesses caused by regular shuffling pattern, coarse-grained shuffling, and static

randomization. From their weaknesses, an adversary can extract mapping information of

the additional translation layer and focus on attacking target bits.

Furthermore, all the prior art did not consider the circumstances when the underlying

OS is compromised and its security implication to PCM design.A compromised OS will

allow adversaries to manipulate all processes and exploit side channels easily, which de-

duces useful mapping information and accelerates the wear-out of targeted PCM blocks.
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2.2 Prior Error-Correction Schemes

Repeating writes to a PCM cell causes the cell to be expanded and contracted repeatedly,

which leads to mechanical stress and eventually incurs a permanent stuck-at-fault failure.

Furthermore, as technology scales down, the endurance variation of cells increases, which

causes the early failure of many cells. In the absence of error recovery techniques, the

lifetime of the PCM memory is dictated by the weakest cell. Thus, we need an error

recovery scheme capable of correcting multiple stuck-at faults.

The existing error correcting code (ECC) schemes, such as the (72,64) Hamming Cod-

ing scheme, can be applied to recover from permanent stuck-at faults even though they are

primarily devised for recovering from transient faults. However, unlike transient errors, the

number of stuck-at faults gradually grows with time (with repeated write cycles), making

it necessary to provide efficient multi-bit error correction capability.

Another important requirement for a stuck-at fault recovery technique is that the tech-

nique must operate in the presence of existing wear-leveling algorithms. Otherwise, it

makes the memory system vulnerable to malicious attacks, especially when the OS is com-

promised. To do so, it should be lightweight enough to be embedded inside a chip, since the

existing wear-leveling schemes typically have their own address translation layer in either

the memory controller or the chip itself.

Recently, architectural techniques have been proposed to overcome multiple stuck-at

faults in PCM [11, 10]. Ipeket al. proposed Dynamic Pairing scheme to reuse faulty

pages [11]. In the Dynamic Pairing scheme, each byte has its own fail indication bit. If

a new fail occurs, the indication bit of the corresponding byte is set and the OS adds the

corresponding page to a waiting list of faulty pages. On a page allocation, the OS selects

a pair of faulty pages such that their fail bits are not at the same offset within the page.

One of the pages of the pair is maintained as the primary copy,and the other as a backup

copy. Dynamic Pairing provides the ability to reuse faulty pages with more than one fail

bit per data block. However, since the OS manages faulty pages, this scheme makes the
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memory system vulnerable to malicious attacks, especiallywhen the OS is compromised

as mentioned in Section 2.1.

Error-Correcting Pointer (ECP) scheme [10] stores six fail pointers for each 512 bits

of data block and replaces the fail cells with extra/spare cells. This ECP scheme is more

efficient than the (72,64) code from the standpoint of both hardware overhead and fail

recovery because it can recover six fails per 512 bits with 61-bit overhead. Furthermore,

this technique operates in the presence of existing wear-leveling algorithms.

2.3 Prior Hybrid-Memory Architecture

To extend the lifetime of PCM, the first priority is to reduce the absolute number of writes

to the physical memory cells. Toward this effort, processor architects have suggested to en-

large the size of the last-level cache (LLC) [2] or employ a deeper delayed write queue [9].

Given the presence of data temporal locality, the larger LLCcan help to collapse multiple

writes to the same location, reducing the total number of writes to the PCM main memory.

Essentially, the large LLC is used as a write shield to filter out write accesses with high

temporal locality.

However, this simplistic solution has several drawbacks. First, the expected data re-

currence in the write buffers or LLC may take a long time to be observed and captured.

Worse yet, this design will not defend the worst-case scenarios or malicious attacks where

an adversary can intentionally concoct a process with specific cache miss patterns to bypass

the LLC and directly write to the off-chip PCM as described in Section 2.1. Therefore, we

need a more effective, robust protection mechanism to guarantee usable lifetime under the

circumstances of worst-case write patterns and/or malicious wear-out attacks.

As briefly mentioned in Chapter 1, one way to extending the lifetime of limited-endurance

memory is to have a hybrid memory architecture by integrating durability-proof memory

to harden the less durable PCM. Here we classify them into two types: serial (vertical)

and parallel (horizontal). The serial approach simply inserts a DRAM cache backed up

8



serially by a PCM main memory in the memory hierarchy [16, 2]. The DRAM serves

as a filter cache to capture high-locality writes. The parallel scheme [17] consists of a

DRAM memory alongside with its PCM counterpart. In this scheme, the OS maintaining

page-worn information is responsible for managing page migration between two types of

memories.Although these previous works related to the two approaches would work well

for normal applications, however, a reliable memory systemmust consider the worst-case

scenario under malicious attacks. For the serial approach,the large DRAM cache schemes

have deterministic patterns that attackers could exploit to bypass the cache [18]. Also, the

approach relying on the OS becomes vulnerable as soon as the OS is compromised by an

attacker.

2.4 Prior Resistance-Drift Resilient Schemes

The primary approach to alleviate the negative impact of resistance drift is to use a wide

drift margin between any two adjacent levels. However, there is a trade-off for deciding

the width of margins. Since the controllable range of PCM resistance is bounded by the

SET and RESET states, using wider margins demands to make thevalid range of each level

narrower. As a result, more write-and-verify steps are required to finely tune the resistance

level for the narrower valid range, which incurs the write endurance issue.

Therefore, recent works have proposed drift-tolerant techniques such as encoding in-

formation in the relative order of resistance levels in a codeword [19], using reference cells

to indicate level boundaries with extra cells [20], and estimating the resistance drift based

upon resistance statistical model [21].

Although these prior studies can be leveraged by error correction schemes, increasing

the number of levels in a cell induces fast level shifts caused by the drift, which negatively

affects PCM reliability after all. This explains that the chip design of three-bit (eight-level)

cell PCM is immature while only experimental results from prototype two-bit (four-level)

PCM chips have been reported in recent papers [14, 15, 19].
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CHAPTER 3

SECURITY REFRESH: PROTECT PHASE-CHANGE
MEMORY AGAINST MALICIOUS WEAR-OUT

As mentioned in Section 2.1, prior studies mainly focused onextending the lifetime of

a PCM-based system that runs conventional applications but failed to protect the system

against deliberately-crafted malicious attacks. A malicious application can exploit the

properties of a durability solution to destruct a PCM portioneasily. Although durability

and security seem to be two separate issues in PCM design, theyshare a common goal

and should be addressed at the same time. In this research, weargue that a correct, us-

able PCM design should consider the worst-case wear-out under malicious attacks such as

side channel exploits to make PCM practical and commerciallyviable. In general, if PCM

can sustain malicious attacks, they should simultaneouslyaddress the durability issue. To

circumvent these intentional exploits, we must keep adversaries from inferring an actual

physical PCM location. Furthermore, the address space must be shuffleddynamicallyover

time to avoid useful information leaked through side-channels.

To achieve this goal, we proposedSecurity Refresh.1 Similar to the concept of pro-

tecting charge leak from DRAM, Security Refresh, a low-costhardware embedded inside

PCM, prevents information leak by constantly migrating physical locations of PCM data

(thus refresh) and obfuscating the actual data placement from users and system software.

3.1 Security Refresh
3.1.1 Security-Refresh Controller

First, we define one more address space, theRefreshed or Remapped Memory Address

(RMA), inside a PCM bank to dissociate a memory address (MA) from theactual data

location. After receiving an access command (in MA) from thememory controller, each

1The original paper was published in the 37th International Symposium on Computer Architecture, Saint-
Malo, France, 2010.
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PCM bank re-calculates its own internal row and column address (in RMA). To allow

such mapping, in this work, we proposeSecurity Refresh. Similar to DRAM refresh that

prevents charge leaking from a DRAM cell, our Security Refresh prevents address informa-

tion leaked from PCM accesses by dynamically randomizing mapping between MAs and

RMAs. On the other hands, rather than refreshing based on time in DRAM cell, our Secu-

rity Refresh scheme refreshes a PCM region based on use,i.e., the number of writes. Our

Security Refresh is controlled bySecurity Refresh Controller(SRC), which is embedded

inside the PCM bank. The SRC not only remaps an MA into an RMA butalso periodically

changes the mapping between these two address domains with extremely low-overhead

hardware. The rationale and advantages of employing an SRC inside a PCM bank are as

follows:

• To obfuscate the address information regarding the actual physical data placement

from applications, the (compromised) OS, and the memory controller.

• To obfuscate potential side-channel leakage, if any.

• To prohibit any physical tampering,e.g., memory bus probing.

• To allow a memory controller to exploit bank-level parallelism for better scheduling.

• To provide high efficiency without disturbing the off-chip bus during data shuffling

and swapping.

• To enable a high-bandwidth data swapping mechanism withoutbeing constrained by

limited, off-chip pin bandwidth.

• To allow PCM vendors to protect their product without relyingon a third-party such

as the OS or the memory controller.

3.1.2 The Basics of Distributed Security Refresh

Since our proposed SRC will be implemented inside each PCM bank that will likely be

manufactured with a process optimized for PCM cell density, the hardware overhead for

the SRC should be kept low to make it practical. Furthermore,as demonstrated previously,
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information can leak through side channels. A sufficient amount of such information al-

lows an adversary to assemble useful knowledge and devise a side-channel attack for target

PCM locations. Simply hiding internal memory addresses alone will not address this is-

sue properly. Thus, we need to constantly update the addressmapping to obfuscate any

relationship among information leaked from side channels.

Before explaining our algorithm, we first introduce our nomenclature in Figure 1. First

of all, we treat one PCM bank as one region. As shown in Figure 1(a), one region is

composed of many memory blocks (To simplify, we show only four in the figure). A

memory block should be no smaller than a cache line to keep address lookup simple. For

everyr writes (r = 2 in Figure 1(b)), the SRC will “refresh” a memory block by potentially

remapping it to a new PCM location using a randomly generated key. We will detail our

algorithm in Section 3.1.3.2 We call this number of writes,r, which denotes thesecurity

refresh intervalanalogous to DRAM’s refresh rate. The refresh operations continue for all

memory blocks in each region. A complete iteration of refreshing every single memory

block in a region is called asecurity refresh round, similar to DRAM’s refresh period. To

begin another security refresh round, the SRC will generatea new random key and use it

together with the key from its previous refresh round.

3.1.3 Security-Refresh Algorithm

Now we use an example to walk through our algorithm followed by its formal definition

and description. Figure 2 depicts an example of one securityrefresh round. From Fig-

ure 2(a) to (e), we start from an initial state with eight successive security refreshes for

eight memory blocks in one PCM region. In each sub-figure, the left column shows MAs

(memory addresses) of these blocks with their data in capital letters while the right column

shows the RMAs (refreshed memory addresses) and the actual data placement in PCM. We

explain each sub-figure in Figure 2.

2We differentiate these two terms: refresh and remapping. A refreshwill be evaluated upon the due of a
security refresh interval, however, as we will show later, it may or may not lead to an address remapping in
PCM space.
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Figure 1:Security-refresh terminology.

1. Figure 2(a) shows the initial state in which all eight RMAswere generated by XOR-

ing their corresponding MAs with a keyk0 wherek0 = 4. For example, the memory

address MA0 (000) XORk0 (100) is mapped to RMA4 (100) in the physical PCM.

Also note that, Figure 2(a) has reached the end of a security refresh round as all the

MAs have been refreshed withk0. Upon each security refresh, the candidate MA to

be refreshed is pointed by a register calledCurrent Refresh Pointer (CRP)shown as

a shaded box in the figure. The CRP is incremented after each security refresh.

2. Upon the next security refresh (Figure 2(b)), a new security refresh round will be

initiated because CRP has reached the first MA of a region. Consequently, a new

key (k1 = 6) will be generated by a hardware random number generator inthe SRC

for refreshing all MAs in the current round. At this point, MA0 is refreshed and

remapped from RMA4 to RMA6. Since the data (A) of MA0 is now moved to RMA6

where the data (C) of MA2 used to be. Hence,C should be evicted from RMA4

and stored somewhere else. Interestingly, because of the nature of XOR, MA2 will

actually be mapped to RMA4 using the new key (2⊕ k1 = 4), i.e., the RMA of MA0
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k0 (=4)

k1 (=6)

CRP

Figure 2:An example of one complete security-refresh round.

from the previous round (0⊕ k0 = 4). This security refresh, essentially, swaps data

between MA0 and MA2 in their PCM locations. We call this interesting property

the pairwise remapping property, which will be defined and proved formally later.

Note that the SRC will be responsible for reading and writingtwo memory blocks to

physically swap the data between them.

3. Similarly, in the next security refresh (Figure 2(c)), data for MA1 and MA3 (a victim

evicted by MA1) in PCM are swapped between RMA5 and RMA7.

4. In Figure 2(d), MA2 pointed by CRP is supposed to be remappedafter its security

refresh. However, it has been swapped previously (Figure 2(b)) in the current security

refresh round. Thus, we will not swap again but simply increment the CRP pointer.

To test whether an MA has already been swapped in the current round can easily be

done by exploiting the pairwise remapping property. All we need to do is to XOR the

current candidate MA with the key used in the prior refresh round and the key used
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in the current round. If the outcome is smaller than CRP, it indicates the memory

block has been swapped in the current round. For instance in Figure 2(d), we XOR

MA2 with 4 (k0) and 6 (k1) giving a result of 0 (2⊕ 4 ⊕ 6 = 0). Since it is smaller

than CRP (=2), it indicates that MA2 has been swapped in the current refresh round.

We will show the formal proof later in this section.

5. The next five memory blocks are refreshed in the same manner. After the eighth

security refresh in the current round, CRP will wrap around and reach MA0 again,

completing the current security refresh round (Figure 2(e)). Upon the next refresh,

a new key,k2, will be generated and a new round starts usingk1 andk2. k0 will no

longer be needed. Note that, for each refresh round, only themost recent two keys

are needed.

Now, we formally explain the pairwise remapping property, which allows us to ex-

change a pair of memory blocks only with two keys. For our address remapping, assume

that we use a binary operation,⊕, closed on a setS, which satisfies the following properties

for all x, y, andz, the elements ofS whereS is a set of possible addresses in a PCM region.

• Associative Property: (x⊕ y) ⊕ z= x⊕ (y⊕ z).

• Commutative Property:x⊕ y = y⊕ x.

• Self-Inverse Property:x⊕ x = e, wheree is an identity element so thatx⊕ e= x.

Basically, we find an RMA for a given MA by simply performing this binary operation

between MA and a randomly generated key (k) of the same lengthi.e., MA ⊕ k = RMA.

Here, we define several notations used in this proof as shown in Table 1.

According to associative and self-inverse properties, when Am newly occupiesArc, Bm

can be easily detected by performing⊕ operation betweenArc andkp becauseArc ⊕ kp =

(Bm⊕kp)⊕kp = Bm. More interestingly, the new location (Brc) thatBm should be mapped to

with kc is the old location (Arp) thatAm used to be mapped to withkp becauseBrc = Bm⊕kc =

(Arc ⊕ kp) ⊕ kc = ((Am ⊕ kc) ⊕ kp) ⊕ kc = Am ⊕ kp = Arp. In short, we can simultaneously
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Table 1:Notations used in the proof.

kp A previous key generated in the previous security refresh round
kc A current key generated in the current security refresh round
Am An MA to be refreshed in the current refresh
Arp An RMA to which Am was mapped withkp (i.e., Arp = Am⊕ kp)
Arc An RMA to which Am will be mapped withkc (i.e., Arc = Am⊕ kc)
Bm An MA mapped toArc with kp, thus to be evicted byAm

Brp An RMA to which Bm was mapped withkp (i.e., Brp = Bm⊕ kp)
Brc An RMA to which Bm will be mapped withkc (i.e., Brc = Bm⊕ kc)

map a pair of MAs into their new RMA locations by simply swapping the physical data of

their old PCM blocks. Consequently, the actual swapping operations in a security refresh

round will be done by one half of all security refresh operations. The simplest function that

satisfies all three properties is an eXclusive-OR although we have proved that any function

satisfying the above three properties can be used as the refresh/remapping function. For the

rest of this chapter, we use XOR.

3.1.4 Key Selection for Address Translation

To correctly find the data location in PCM, we need to translatethe given MA to its current

RMA using the right key. It seems that the most straightforward way to find the right key

is to add one bit in SRC for each MA to indicate whether it needsto be translated using the

key in previous refresh round or the current key. Even though1-bit per block seems small,

for a 1GB PCM region with 16KB memory blocks, we will need 8KB (=216 bits) extra

space. In fact, hardware overhead for maintaining translation information of each block

is the main reason why the prior table-based approach [4] cannot support fine-granularity

segments.

Fortunately, in our scheme, the pairwise remapping property along with the use of the

linearly increasing CRP value property allows us to determine the right key without any

table. In particular, when a memory controller wants to readfrom or write to an MACm,

we need to use the current key (kc) in the following two cases, otherwise, the key in previous

refresh round (kp) should be used.
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• If Cm is less than the value of CRP, we should use the current key (kc) sinceCm has

already been refreshed in the current security refresh round.

• If Cm⊕ kp ⊕ kc is less than the value of CRP, we should use the current key, too. This is

not very intuitive, so we will describe it with a formal method. What we want to detect

in this condition is whetherCm was a victim that is evicted when another MA,Dm, is

remapped to the old RMA value ofCm, i.e., Cm⊕ kp. As explained in Section 3.1.3, we

can reconstructDm by simply performing an XOR operation between the RMA value

and the current key, which is (Cm ⊕ kp) ⊕ kc. If we compareDm against the value of

CRP, we can detect whetherCm was a victim that is already remapped whenDm was

remapped.

3.1.5 Implementing Security-Refresh Controller

The main additional hardware for supporting Security Refresh is the Security Refresh Con-

troller (SRC) (Figure 3(a)) per region. Each SRC consists of four registers, a random

key generator (RKG), address translation logic (ATL), remapping checker (RC), swapping

logic (SWL), and two swap buffers. The four registers required are: (1) KEY0 register

to store a prior key (log2 n bits wheren is the number of memory blocks in a region), (2)

KEY1 register to store a current key, (3) a global write counter (GWC) to count the to-

tal number of writes to a region for triggering security refresh, and (4) the current refresh

pointer (CRP) that points to the next MA to be refreshed. A new key is generated by RKG

in-between two security refresh rounds using thermal noisegenerated by undriven resistors

in the SRC [22]. These keys can never be accessed or leave outside the PCM chip.

The ATL (Figure 3(b)) performs address translation. It essentially maps an MA from

the memory controller to a corresponding RMA. As explained earlier, the translation pro-

cess needs to understand whether a given MA has been remappedin the current round.

This algorithm is implemented in the RC (Figure 3(c)), whichconsists of only two bitwise

XOR gates, two comparators, and one OR gate. Additionally, the RC is also responsible
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Figure 3:The block diagram of security-refresh controller (SRC).

for finding an address to be remapped. Upon every security refresh, the RC provides the

same output to the SWL (Figure 3(d)) so that SWL can decide whether the MA should be

remapped or not. And if needed, the SWL performs a swap operation with a pair of swap

buffers.

3.1.6 Memory-Controller Design Issues

In a conventional DRAM-based system, a memory controller understands whether a given

memory request will hit in a row buffer or not. Consequently, it can schedule its commands

so that the return data of those commands will not conflict in amemory bus. However,

in our proposed PCM system that obfuscates internal address information, the memory

controller cannot schedule the external PCM bus alone like a conventional DRAM memory

controller. To utilize the bus more efficiently, we envision that future PCM chips should be
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actively involved in bus arbitration. For example, a PCM chipcan send a data ready signal

to the memory controller once the requested data are broughtinto a row buffer. Based on

this ready signal, the memory controller can utilize the busmore intelligently.

3.1.7 Testability

As mentioned earlier, our Security Refresh scheme is embedded inside PCM to avoid leak-

ing useful information. However, it is also important to make the memory module testable

when our scheme is applied. To suppress randomized address remapping performed by

Security Refresh so the physical data locations can be determined, we can set both the key

registers KEY0 and KEY1 to zero in test mode. Also, to make theaccess latency determin-

istic, the refresh asserting signal from the GWC should be masked. By doing the above, we

can use existing test methods to test the memory cell array, the address decoding logic, and

the data path. Lastly, a scan chain along with an isolation ring can be used to test the SRC

itself. Note that this test mode must be disabled to forbid potential side-channel attacks.

3.2 Implementation Trade-Off of Security Refresh

So far, we have discussed how Security Refresh works and its advantage from the stand-

point of malicious wear-out. However, there are several trade-offs in the PCM design space.

For example, if the total number of writes required to start anew security refresh round is

larger than the PCM write endurance limit, an adversary couldwear a PCM block out be-

fore a new refresh round is triggered (robustness). On the other hand, extra PCM writes

are induced for swapping two blocks upon remapping. Frequent swaps may unnecessarily

increase the total number of PCM writes even for normal applications (write overhead),

leading to performance degradation (performance penalty). Thus, we must carefully ex-

amine these design trade-offs of Security Refresh to maximize its robustness while mini-

mizing the write overheads and its performance penalty. To quantify the trade-off, we used

simple analytical models to estimate robustness and write overhead. From our analysis, we

made the following observations:
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1. A larger region distributes localized writes across a larger memory space.

2. A large region requires a shorter refresh interval to increase the frequency of ran-

domized mapping changes. Otherwise, if one refresh round istoo long, it may in-

advertently leave a mapping unchanged for too long as well, making potential side

channel attacks possible.

3. A shorter refresh interval will, nonetheless, inflict higher write overheads because of

its more frequent swapping, which can lead to higher performance penalty.

Given the first observation, we first evaluated a region size as large as a PCM bank as

illustrated in Figure 4. Note that the reason why we did not evaluate multiple banks in

a PCM chip as a region is to allow a memory controller to exploitbank-level parallelism

for better scheduling. As explained in our second and third observations, we found that

the write overhead of a bank-sized region is undesirably high in this one-level scheme

of Figure 4, which motivates us to investigate other techniques to mitigate them.

Rank 0Rank 0Rank 0Rank 0

Chip0

Bank0Bank0Bank0Bank0
Bank0Bank0Bank0Bank0

Data
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Bank0Bank0Bank0Bank0
Bank0Bank0Bank0Bank0

Data

Chip7

Bank0Bank0Bank0Bank0
Bank0Bank0Bank0Bank0

DataMA

Region

SRC

RMA
MA

Figure 4:One-level security refresh (four ranks, four banks per rank).

3.3 Two-Level Security Refresh

To address the issues of write overheads and performance penalty while still taking advan-

tage of a large region size, we propose a hierarchical, two-level Security Refresh scheme

as illustrated in Figure 5. In lieu of using a very small refresh interval that increases write
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overheads, we break up a region into multiple, smaller sub-regions. Each sub-region con-

tains its ownSub-region SRCto perform address remapping itself based on an inner-level

refresh interval. In addition, an outer-levelRegion SRCis employed to distribute writes

across the entire region with its own refresh interval. The rationale behind our two-level

Security Refresh scheme is that, given a refresh interval, asmall sub-region effectively trig-

gers address remapping more frequently because of a smallernumber of memory blocks

within each sub-region. On the other hand, an outer-level SRC occasionally remaps an MA

of a given memory block across sub-regions. This additionallevel effectively enlarges a

region size as will be detailed later.

Rank 0Rank 0Rank 0Rank 0

Chip0

Bank0Bank0Bank0Bank0
Bank0Bank0Bank0Bank0

Data

Chip1

Bank0Bank0Bank0Bank0
Bank0Bank0Bank0Bank0

Data
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Bank0Bank0Bank0Bank0
Bank0Bank0Bank0Bank0

DataMA

Region

Sub-region

Sub-region 
SRC

Region
SRC

RMA
MA

IRMA

Figure 5:Two-level security refresh (four ranks, four banks per rank).

So far, we have laid out a logical basis for the two-level Security Refresh scheme. Now,

we will explain how a security refresh of each level is performed and how it maintains

the integrity of its own address remapping. Each individualSecurity Refresh level can be

regarded as an independent layer. In other words, each levelperforms the Security Refresh

algorithm with its own register values and settings, and theSecurity Refresh algorithm

guarantees the integrity of the address remapping as mentioned in Section 3.1.3. Even at the

same level, different regions can have different settings such as their memory block sizes

and refresh intervals, though they are preset in a manufacturing phase for the maximum

lifetime and the hardware feasibility.

Figure 5 depicts a block diagram of the two-level Security Refresh embedded in a PCM
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bank. Basically, the two-level Security Refresh works in a recursive fashion. An outer-level

Security Refresh controller (i.e.,, Region SRC) accepts a demand memory request from the

memory controller as its input. The Region SRC remaps a memory address (MA) of the

demand request to an intermediate remapped memory address (IRMA). Meanwhile, if the

demand request is a write that triggers a new refresh, the Region SRC performs the demand

write request and then generates a swap operation that consists of two read requests and two

write requests for two IRMAs. Note that the region size of theouter-level Security Refresh

is the size of a bank. Consequently, everyro writes to a given bank (wherero is the security

refresh interval of the outer-level Security Refresh) willtrigger one new refresh operation

in the bank. Furthermore, to keep the integrity of its address remapping, the outer SRC

should halt other requests until the swap is completed. The demand request or the swap

requests generated by the outer SRC are forwarded to their own corresponding sub-regions

according to a sub-region index field (Figure 6) in their IRMAs.

On the other hand, each sub-region operates the Security Refresh algorithm with its own

sub-region SRC. The sub-region SRC takes a request from the Region SRC, which can be

either a demand request or a swap request generated by the Region SRC. The sub-region

SRC will use the IRMA of those requests to find a correspondingRMA, which is the actual

physical cell location inside the sub-region. Meanwhile, if the request from the Region

SRC triggers an inner-level, sub-region refresh, the sub-region SRC atomically performs

a swap operation of two RMAs inside the sub-region. Consequently, every r i writes to

a given sub-region (wherer i is the security refresh interval of the inner-level sub-region

Security Refresh) will trigger one new refresh operation inthe sub-region. Also note that

when the first write request of a swap operation from the Region SRC triggers a sub-region

refresh, the second write request of the outer-level swap operation is performed after the

completion of the inner-level refresh to guarantee the integrity of the address remapping in

the sub-region.
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Figure 6 shows an example of address remapping from MA to IRMAthrough the outer-

level Security Refresh and that from IRMA to RMA through the inner-level Security Re-

fresh. In this example, each 1GB bank is divided into 512 sub-regions while the memory

block sizes for both region and sub-region are 256B. As shown, nine MSBs from a row

address is used as a sub-region index. In other words, a row inone PCM bank is virtually

partitioned into 512 sub-regions. Basically, in each sub-region, the inner-level SRC will

perform the operations of Security Refresh as explained Section 3.1. Similarly, the Region

SRC will perform the same operation across the entire bank. Note that the Region SRC

may swap two memory blocks that belong to different sub-regions because the sub-region

index is a part of output values of the XOR operation. Such swapping between distinct sub-

regions triggered by Region SRC allows us to distribute localized writes across the entire

bank without using a large region at the inner-level.

physical page number page offset(a) Physical addr.

(a) LL$ indexing

33 18 111416 0

tag index line offset

21 7

rank ID bank ID

column addrrow addr(a) Memory addr. (MA)

column addrrow addr
(b) Intermediate 
(b) Refreshed MA (IRMA)

column addrrow addr(c) Refreshed MA (RMA)
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Figure 6:Two-level security refresh within a bank.

3.4 Evaluation
3.4.1 Robustness and Write Overhead

To evaluate the robustness, we evaluated the average lifetime for both our single-level and

two-level Security Refresh mechanisms by exercising as many writes as the system can
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possibly take. Birthday paradox attacks (BPA) [23] based ona randomized function effi-

ciently fail wear-leveling schemes employing randomization with a high probability [24].

To evaluate the vulnerability of Security Refresh against BPA, we implemented our mech-

anisms, iteratively simulated each configuration, and calculated the average lifetime under

a pinpoint attack that writes to one single logical non-cacheable address by toggling its

data bits. Note that this attack method has the same effect with BPA because our Secu-

rity Refresh remaps all memory addresses with a new random key for every refresh round.

Throughout this subsection, we assume the same baseline architecture used in Section 2.1.

3.4.1.1 Single-Level Security Refresh

Figure 7 shows the average lifetime of the single-level Security Refresh. Here, we varied

the memory block size from 256B to 8KB and the refresh interval from 1 to 128. We keep

the same 1GB bank size for PCM with four banks and four ranks used in Section 2.1. The

read and write latencies are 150ns and 450ns, respectively.As shown, for a given memory

block size, as we refresh more frequently with a shorter refresh interval, our system is

more robust. Unfortunately, such benefit comes at the cost ofhigher write overhead, which

is calculated by the number of additional writes
the total number of writes to PCM. Note that, the extra write overheads

were all accounted for when calculating the average lifetime. For example, if our refresh

interval is one, the write overhead is 50%. Such additional writes can accelerate the wear-

out, but we found that the additional latency caused by theseadditional writes effectively

delays the attack as well, resulting in a longer lifetime.3

On the other hand, given a fixed region size, if a smaller memory block is used, we get

more blocks in a region. As a result, the probability of a randomly selected block mapped to

the same physical cell decreases, thus robustness is increased. However, a smaller memory

block often negatively affects robustness because, given a fixed refresh interval and afixed

region size, more blocks in a region increases the required number of writes to trigger a new

security refresh round. In other words, the frequency of generating a new random key is

3Note that our lifetime result here accounts for additional latency of performing those additional writes.
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Figure 7:Single-level robustness.

reduced. These trade-offs are manifested in Figure 7. As shown, the average lifetime tends

to increase as we reduce the memory block size down to 512B, then it decreases when we

further reduce it to 256B. Note that for blocks smaller than 256B (the cache line size of the

last-level cache) may require multiple PCM accesses to retrieve a single cache line, thus

we did not simulate such configurations.

Overall, we found that the longest lifetime, 422 days, is achieved when we use 512B

as the memory block size. This, however, may not satisfy the current average server’s

replacement cycle that is usually three to four years [25, 26].

3.4.1.2 Two-Level Security Refresh

Figure 8 shows the average lifetime of our two-level Security Refresh scheme when the

refresh interval of an outer-level Security Refresh is 128.In this evaluation, we use the

same memory block size, 256B, for both inner and outer levels. Since the last-level cache

line size is 256B, it is likely that the datapath of the baseline PCM, with respect to power

and performance, will be optimized for 256B as well. Furthermore, we found that the

PCM with a memory block size of 256B under two-level Security Refresh demonstrated

reasonably long lifetimes. Therefore, we only present results with 256B memory blocks.
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Figure 8:Two-level robustness vs. sub-regions.

To study the sensitivity, we varied the number of sub-regions and the inner-level re-

fresh interval. Note that we did not simulate extremely short inner-level refresh intervals

simply because they incur too much write overhead. As shown in the figure, we found that

the configuration with 512 sub-regions and refreshing memory blocks every eight writes

inside a sub-region can sustain around 78.8 months. This achieves 81.2% of the lifetime

of the perfect wear-leveling scheme, which is 97.1 months with the same block size. It is

noteworthy that this average lifetime is very pessimistic as we assume that an attacker can

monopolize the entire system resources to perform a pinpoint attack continuously for 78.8

months.

Figure 9 shows the average lifetime of the two-level Security Refresh scheme with

64 or higher outer-level refresh intervals. The results suggest that the average lifetime is

more sensitive to the inner-level refresh interval than theouter-level. This is explained by

the following. Since a sub-region (inner level) contains fewer memory blocks, a shorter

refresh interval will provide better wear-leveling.

3.4.2 Hardware Overhead

In this subsection, we describe the hardware cost of our Security Refresh. To calculate the

size of registers required to implement the single-level Security Refresh, we need a detailed
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Figure 9:Two-level robustness vs. refresh intervals.

configuration. First, assume that a 4GB PCM rank is composed ofeight PCM chips as in

a conventional SDRAM DIMM while each chip consists of four banks. Then, to build a

16GB PCM system, we need 32 PCM chips. If an SRC is in charge of a PCMbank, 128

SRCs exist in the 16GB PCM system. When a memory block size is 256Band SRC’s

refresh rate is 64, each SRC consists of three 22-bit registers for KEY0, KEY1, and CRP,

and a 6-bit register for GWC. Since eight chips are accessed in parallel to serve a 256B

request, each chip has a pair of 32B swap buffers per bank. In sum, the total register size

required for a chip is 292B (= 4banks× (3× 22bit + 6bit + 2× 32Byte)).

In case of the two-level Security Refresh, each sub-region also has a dedicated inner-

level SRC. To model the area overhead, we assume the followings: 1) an outer region is

divided inton sub-regions, 2) the outer region and each inner sub-region contains 2p and 2q

memory blocks, respectively, and 3) their refresh intervals are 2x and 2y, respectively, then

the total hardware cost per outer region without considering swap buffers can be calculated

like (x + 3 × p) + n × (y + 3 × q) bits. On the other hand, swap buffers can be shared in

the same level because a bank allows only one request to access its PCM cell array at a

time, which serializes all requests. This serialization property, along with the atomicity of

the inner refresh, allows all sub-regions to share physicalswap buffers. That is, each level
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needs one pair of swap buffers.

Figure 10 shows the hardware cost of those configurations used in Section 3.4.1.2.

The hardware cost grows exponentially as the number of sub-regions increases. Thus, if

more than 5 years of attack endurance is required, dividing abank into 512 sub-regions

can satisfy this requirement with around 12KB of the hardware cost. (Note that these

configurations can sustain for 64.5, 63.3, and 61.5 months asindicated in Figure 9.) It is

the trade-off between the cost and the high security requirement for worst-case or malicious

wear-out. Unlike the conventional DRAM process, PCM fabrication process is compatible

with CMOS, thus those hardware overhead will not be significant.
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Figure 10:Two-level hardware cost per 512MB PCM chip.

3.4.3 Wear Leveling

In this section, we study how well writes generated by an attack are distributed across the

memory space. To count the number of writes for each memory block, we use PIN [27]. In

this simulation, we use the two-level Security Refresh scheme with four 1GB PCM banks,

each divided into 512 subregions. Each PCM bank is one region.Furthermore, we use the

same memory block size (256B) for both the region and the subregion while the refresh

interval for Region SRC (outer level) is 128 writes. To studythe sensitivity of inner-level
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refresh intervals, we use three different inner-level refresh intervals — 32, 64, and 128

writes.

Figure 11 shows the accumulated number of writes (includingswap write overhead in

our scheme) for a given pinpointed physical address (134518272) for 108 times and 1011

times. The y-axis of this chart plots theaccumulatednumber of writes across the memory

addresses on the x-axis. To read the number of writes to a particular PCM addressA,

one has to obtain the values ofA and(A-1) on y-axis in this chart and take a subtraction.

As shown in Figure 11(a), without any wear-leveling scheme,all 108 writes hit the same

location. With our two-level Security Refresh, these writes are distributed across the entire

memory space. The more linear a curve is, the more evenly distributed the writes are.

Based on this, as shown in Figure 11(a), we found that a finer-grained swap interval tends

to lead to a more balanced wear-out distribution. Not surprisingly, as the number of writes

is increased to 1011, they are even better distributed as shown in Figure 11(b).

The figures also show how many writes are additionally generated by the swap opera-

tions during refreshes. For example, in Figure 11(a), the difference between the final accu-

mulated number (on the right) and 108 tick on y-axis represents the extra writes contributed

by swap operations. The percentage increase of writes for the three different inner-level

refresh intervals are 3.8%, 2.3% and 1.5%, respectively.

3.4.4 Performance Impact

Finally, we evaluate the performance impact of our SecurityRefresh scheme using SESC [28]

with 26 SPEC2006 benchmark programs. Similar to previous studies [2, 9], our system em-

ploys an 8MB L3 DRAM cache for hiding PCM’s relatively long read latency. Also, we

modeled a memory controller that exploits bank-level parallelism and arbitrates requests to

improve PCM row buffer hits. We used a two-level Security Refresh scheme with thesame

configuration in Section 3.4.3 to compare against a baselinewithout any wear-leveling

technique.

As shown in Figure 12, the performance of most of the benchmark programs is barely

29



0.0e+00

2.0e+07

4.0e+07

6.0e+07

8.0e+07

1.0e+08

1.2e+08

1.1e+098.1e+085.4e+082.7e+080.0e+00

A
cc

um
ul

at
ed

 n
um

be
r 

of
 w

rit
es

1GB address space

No Security Refresh
Inner Refresh Rate = 32
Inner Refresh Rate = 64

Inner Refresh Rate = 128

(a) 108 pinpoint attacks.

0.0e+00

2.0e+10

4.0e+10

6.0e+10

8.0e+10

1.0e+11

1.2e+11

1.1e+098.1e+085.4e+082.7e+080.0e+00

A
cc

um
ul

at
ed

 n
um

be
r 

of
 w

rit
es

1GB address space

No Security Refresh
Inner Refresh Rate = 32
Inner Refresh Rate = 64

Inner Refresh Rate = 128

(b) 1011 pinpoint attacks.

Figure 11:The accumulated number of writes over the memory space.

affected with our Security Refresh for the three inner-level refresh intervals experimented.

The two exceptional cases are433.milc and459.GemsFDTD, which contain not only many

PCM writes but also many PCM reads. As such, the swapping operations for Security Re-

fresh often increases the latency of the reads However, the geometric means of instruction-

per-cycle (IPC) variations are found to be−1.2%, −0.7%, and−0.5% when we use 32,

64, and 128 as our inner-level refresh interval, respectively. Not surprisingly, such trend is

analogous to our write overhead of those configurations, 3.8%, 2.3%, and 1.5%.

Furthermore, note that in our scheme, the nature of bitwise XOR operations allows the

memory controller to utilize data locality at a row buffer. In particular, as shown in Figure 6,
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Figure 12:Relative IPC.

our remapping method uses a bitwise operation without shuffling address bit positions. This

means that one MA row address is mapped to one RMA row address,which allows the

memory controller to utilize spatial locality inside a row for better scheduling. Furthermore,

the bitwise remapping allows us to send a row address of MA to aPCM chip separately

from a column address of the MA similar to conventional DRAM memory commands. As

a result, even though a refresh often closes a row opened by a previous demand request, our

simulation results show that the row hit rates decrease by only 0.4%, 0.3%, and 0.2%, for

the three inner-level refresh intervals we simulated, respectively. Overall, the performance

impact with our Security Refresh scheme is negligible.

3.5 Summary

In this study, we argue that a robust PCM design must take both security and durability

issues into account simultaneously. More importantly, it must be able to circumvent the

scenarios of intentional, malicious attacks with the presence of a compromised OS and

potential information leak from side channels. By analyzing prior durability techniques

at architectural level, we demonstrated practical attacking models to wear out and fail

PCM blocks. For example, prior redundant write reduction techniques do not obfuscate

addresses, making a victim memory block easy to target. Somewear-leveling technique

performs address randomization. However, the mapping was static at boot time, leaving

open side channels for adversaries to glean and assemble useful information.
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To address these shortcomings, we proposeSecurity Refresh, a novel, low-cost hardware-

based wear-leveling scheme that performs dynamic randomization for placing PCM data.

Security Refresh relies on an embedded controller inside each PCM to prevent adversaries

from tampering the bus interface or aggregating meaningfulinformation via side channels.

Furthermore, we evaluated the implementation trade-off of Security Refresh and quantified

the reliability for a two-level Security Refresh mechanism. Given a 1GB PCM bank with

512 sub-regions at the inner-level, our two-level securityrefresh can endure more than 5

years with a 256B memory block using 128 and 64 writes for the outer- and inner-level

refresh intervals. In addition, we also applied pinpoint attacks to understand the wear-out

distribution using Security Refresh. We found that as the number of pinpoint writes to the

same memory address is increased, our technique will distribute the data placement more

uniformly, improving durability. Finally, we analyzed theperformance impact of Security

Refresh with normal applications (SPEC2006) and showed the average IPC degradation is

below 1.2%.
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CHAPTER 4

SAFER: STUCK-AT-FAULT ERROR RECOVERY
FOR MEMORIES

As mentioned in Section 2.2, our objective for a new error correcting scheme is to efficiently

recover the original data from permanent stuck-at faults. One of the key attributes of stuck-

at faults, which prior works have overlooked, is that the cell with a stuck-at value is still

readable. We exploit this property to reuse the faulty cell with the stuck-at value to provide

hardware efficient multi-bit stuck-at fault error recovery. This becomes necessary because,

with technology scaling of resistive memories, the non-uniform distribution of lifetime

variations may be exacerbated leading to more frequent occurrences of multiple permanent

stuck-at faults per data block.

4.1 SAFER: Stuck-At-Fault Error Recovery

We now describe our stuck-at-fault error recovery (SAFER)1 technique, which enables a

hardware-efficient multi-bit error recovery by dynamically partitioning the data blocks to

ensure that each partition has at most one fail bit. We begin with a discussion of how to

partition a data block such that each partition has at most one fail bit, and then describe

how to recover from those fail bits.

4.1.1 Partition Technique for Double Error Correction

We first explain how we partition a data block for double errorcorrection (DEC). The key

idea of SAFER for DEC is to partition a data block into two groups ensuring that the two

fail bits belongs to different groups and to use single error correction (SEC) technique per

group.

If we assume ann bit data block, we have
Cn

n/2

2 possible ways to partition the block into

two n/2 bit groups. However, if the goal is to only ensure that the two fail bits are not in

1The original paper was published in proceedings of the 43th International Symposium on Microarchitec-
ture, December, 2010.
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the same group, the number of ways to partition them into two groups is reduced to only

⌈log2n⌉. We now describe the partition technique to handle DEC usingan example shown

in Figure 13.
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Figure 13:An example of partitioning two fails.

The partition technique of SAFER identifies the location of each data bit in a block

using a bit pointer. Each data bit is assigned a bit pointer using ⌈log2n⌉ bits. Figure 13(a)

shows an example of partitioning an eight bit data block intotwo groups. Three bits are

required to represent each bit position in this eight bit block. In this figure, each box

indicates one data bit cell and gray and white boxes are used to indicate two different

groups, say G and W. The data block can be partitioned into twogroups in three different

ways, namely, GWGWGWGW, GGWWGGWW, and GGGGWWWW, based on whether

the least significant bit (LSB), the second LSB, or the most significant bit (MSB) of the
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three-bit bit pointer is used, respectively. In other words, all possible 28 fail bit-pairs that

are selected in the eight-bit block can be separated into twogroups by using one of these

three patterns.

Thus a block with at most one fail bit can be partitioned by using any arbitrary bit of a

bit pointer. Figure 13(b) shows that if the first bit to fail isat bit position 3, any of the three

ways of partitioning discussed above can be used.

Now, if the second bit to fail is at bit position 0 as shown in Figure 13(c), the partition

should be fixed to separate the two fail bits into different groups. The partition technique

uses XOR operation to determine the difference vector of the two fail pointers (000⊕

011 = 011). The number of 1s in the difference vector indicates the possible choices for

partitioning the data. With two bits being 1 in the difference vector there are two ways to

partition the data block. If we choose the first LSB of the difference vector, the resulting

partition is shown in Figure 13(c)(1), and instead if we choose the second LSB of the

difference vector, the resulting partition is shown in Figure 13(c)(2).

The “partition field” identifies which bit of the difference vector was used to partition

the data block. For an bit data block, the “partition field” uses⌈log2(⌈log2n⌉)⌉ additional

bits to identify how a block is partitioned. For our example in Figure 13, with an eight bit

data block, the partition field is⌈log2(⌈log28⌉)⌉(= 2) bits with a value of either “00”,“01”, or

“10” depending on the bit position (the first, second or thirdLSB) of the difference vector

chosen for partitioning the data. Furthermore, the partition is not fixed unless there are two

fail bits. Hence, a “partition fix” bit is used to indicate whether the partition is fixed, or not.

In Figure 13(b) the “partition fix” bit is set to 0, and it is setto 1 only in Figure 13(c) as

soon as a second fail bit happens.

To summarize, the partition technique of SAFER identifies the two fail positions using

their ⌈log2n⌉ bit pointers. An XOR operation on the two fail pointers determines a bitwise

difference vector between the two fail pointers. Finally, the technique selects a bit position

with a value 1 from the difference vector, and resets all the other bits to 0. For example,
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if the selected bit position is thekth LSB in the difference vector, the partition technique

splits then bit data block into two groups according to thekth LSB of the pointer for each

bit inside the block. Thus,⌈log2n⌉ group patterns exist and only⌈log2(⌈log2n⌉)⌉ additional

bits are needed to identify how a block is partitioned.

Furthermore, for blocks with two fail bits, the partitions have to be fixed to ensure that

the fail bits are in different groups. Therefore, one additional bit is required to indicate

whether a partition is fixed, or not. Thus, the total storage overhead for an bit data block is

(1+ ⌈log2(⌈log2n⌉)⌉) bits.

As shown in the above example, the partition technique of SAFER for DEC is success-

fully able to partition the data block such that the two fail bits are not in the same group;

thereby, enabling the use of SEC per group.

4.1.2 Partition Technique for Multi-Bit Error Correction

To be able to handle more than two bit fails in a data block, thepartition technique is

extended to dynamically partition the data block into multiple (> 2) groups by selecting

multiple bits in the difference vector. We describe the extensions of the partition technique

to handle multi-bit errors using an example shown in Figure 14.

Figure 14 shows an example data block of 16 bits with four failbits to be partitioned

into four groups, which are depicted with four different gray-levels. The partition technique

associates a group index for each bit in the data block using two bits from the bit pointer.

When a data block is composed of 16 bits, the bit pointer is (log216= 4) bits, which implies

that there areC4
2 = 6 possible ways to choose two bits out of them. Based on the fail bit

locations, one of these six possible ways is chosen to determine the four groups.

In Figure 14(a), the initial partition arbitrarily uses thethird and the first LSBs. For each

data bit, the concatenation of these two bits in its bit pointer represents its group index. For

example, the 12th data bit has a bit pointer of “1100” and concatenating the third and the

first LSBs results in a group index of “10”(2).

The “partition field” is extended to record which bit positions are used for partitioning
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89101112131415

Data Block :

01234567

Bit Pointer :
1st LSB
2nd LSB
3rd LSB
4th LSB

0101010101010101
0011001100110011
0000111100001111
000000001111 1111

Group Index : 2323 0101 2323 0101
Partitioned Data Block :

1 01st Partition Field :

0 02nd Partition Field :

0 0Fixed Partition Counter :

Additional bits to describe partitions

(a) Initial state.

89101112131415 01234567Bit Pointer :

Group Index : 2323 0101 2323 0101
Partitioned Data Block :

1 01st Partition Field :

0 02nd Partition Field :

0 0Fixed Partition Counter :

F

Group Index : 2323 01012323 0101
Partitioned Data Block :

1 11st Partition Field :

0 02nd Partition Field :

0 1Fixed Partition Counter :

F F

Group Index :
Partitioned Data Block :

1 11st Partition Field :

0 12nd Partition Field :

1 0Fixed Partition Counter :

23 23 01 0123 23 01 01
FF F

(b) Dynamic partition.

Figure 14:An example of four-group partition.

the data. In this example, the two partition fields indicate that the third and the first LSBs

are used from the bit pointer. The “partition fix” field is extended to a counter, “fixed

partition counter”, to keep track of the number of partitions that are fixed. In Figure 14(a),

there are no fails, hence the value of the fixed partition counter is zero.

Figure 14(b) shows how a partition can be changed dynamically to account for a new

fail bit. If the first fail bit occurs at bit position 8, the initial partition is still valid because

none of groups has more than one fail bit. Now, if the second fail occurs at bit position 2,

there are two fail bits in group 0. Thus, a new partition should be derived so that the two

37



fail bits are in different groups. Using the partition technique described in Section 4.1.1, the

difference vector of the two fails is (1000⊕ 0010= 1010), which implies that the second

and the fourth LSBs are candidates for the first partition field. Correspondingly, the first

partition field is set to “11”. The fixed partition counter increases by one to account for

fixing the first partition field. After this partition, groups0 and 2 each have one fail bit.

Note that even if the second fail bit was not located in group 0, the fixed partition counter

would have to be incremented although the first partition field does not need to be changed.

At this point, if a third fail happens, the second partition field should be fixed with a

proper value. If the third bit fails in position 0, the current partition has two fail bits in

group 0. Applying the same partition technique as above, thedifference vector of the two

fails is (0010⊕ 0000= 0010), which implies that the second LSB position is the candidate

for the second partition field. After this re-partitioning,groups 0, 1, and 2 each have one

fail bit. Furthermore, the fixed partition counter is incremented and reaches its maximum

value of two, making it impossible to re-partition further.Thus, in this example, we can

recover from a fourth bit failure only if the failure occurs in bits belonging to group 3.

Based on the above discussion, it is clear that the hardware requirement is proportional

to the number of groups required to partition the data to ensure one fail bit per group.

For an bit data block and ak group partition, the number of additional bits required is

⌈log2k⌉ × ⌈log2⌈log2n⌉⌉ + ⌈log2(⌈log2k⌉ + 1)⌉, where,⌈log2k⌉ is the number of partition

fields, ⌈log2⌈log2n⌉⌉ is the size of each partition field, and⌈log2(⌈log2k⌉ + 1)⌉ is the size

of the fixed partition counter. For 512 bits of data block to bepartitioned into 32 groups,

additional 23 bits are required to represent the partition,which is still only 4.50% overhead

compared to the data size.

4.1.3 Using Data-Block Inversion

The partitioning technique described in the previous section exploited the fact that stuck-at

faults are permanent (not transient) to ensure that at most one stuck-at fault bit is present

in each partition. In this section, we propose a recovery scheme by exploiting the fact that
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if a resistive memory’s cell wears out resulting in a stuck-at fault, then it is still possible

to read the cell content as the permanent stuck-at value. By exploiting this readability of

failed cells, the recovery scheme reduces the number of additional bits required to recover

data written to a stuck-at cell.

If a data block has only one fail bit and the data being writtenat the fail bit position is the

opposite of the stuck-at value, then the data can be stored inan inverted form with a marked

flip-bit. When reading the data, the original data can be recovered by inverting the stored

data if the corresponding flip-bit is marked. The idea of inverting a data block is similar to

bus-inverting coding [29] and Flip-N-Write [6]. However, our objective in inverting a data

block is to recover a stuck-at fail while the bus-inverting coding [29] inverts a data block

to reduce I/O power and the Flip-N-Write [6] utilizes it for removing redundant writes to

PCM.

The proposed technique to invert the data can be used by SAFERonly after verifying

that the data write has failed to store the intended value. This write verification can be

performed by reading the data written and comparing it with the original data. When

the verification fails, the positions of fails and its stuck value can be revealed from the

comparison result. Note that iterative write techniques that require a write verification

phase are already needed for resistive memories using multi-level cells [30].

The proposed data inversion technique uses only one additional bit per partition to

indicate that the data value has to be inverted prior to a read. However, the drawback is

that the decision to invert and store the data can be made onlyafter a first write fails the

verification, resulting in two writes to store the data, thereby affecting the endurance of the

cell.

To alleviate this problem, we propose a relatively small direct-mapped cache called

“fail cache”, to keep track of data blocks with recent stuck-at fails. For these blocks re-

cent fail positions and their stuck-at values are maintained in the cache. Figure 15 shows
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the fail cache organization that is composed of 16 banks. Whenstoring new fail infor-

mation, its block address and fail pointer are used to calculate the corresponding cache

entry by separating into a cache tag, an index and a bank address. If new fail information

is detected during the write verification phase, the fail position and the stuck-at value are

known. Therefore, they can be stored with its tag portion in the corresponding cache entry.

The tag, the cache index, and the bank address can also be calculated from its block address

and the fail pointer. On every write request from the memory controller, all fail information

for the correspondingn-bit data block should be extracted from the fail cache. To doso,

the 16 banks are simultaneously accessed forn/16 iterations. For example, 32 iterations

are required for a 512-bit data block. As a result, twon-bit vectors are generated – a fail

indication vector and a stuck-at value vector. These two vectors for each write request can

be exploited to avoid the additional write. If a fail indication vector indicates errors, the

corresponding bits to be written are suitably inverted and stored according to their stuck-at

values and partition information. Note that a read request to the same data block precedes a

write request to eliminate redundant writes, and the partition information is collected dur-

ing the read. Thus, if all fail information for a write data block is found in fail cache, the

second write can be avoided. Also, since the preceding read can be used to gain enough

time to access fail cache forn/16 iterations, the performance impact of the fail cache will

be insignificant.

4.1.4 Putting It All Together

SAFER comprises two techniques, namely, the dynamic multi-group partition and the data

block inversion. The dynamic multi-group partition ensures that each group includes at

most one fail bit by partitioning the data into different groups. With each group now in-

cluding at most one failed cell, the data block inversion scheme can be applied to recover

from the stuck-at fault for that group. The total hardware bit budget of SAFER, to recover

from a maximum ofk failures, is⌈log2k⌉ × ⌈log2⌈log2n⌉⌉ + ⌈log2(⌈log2k⌉ + 1)⌉ + k, wheren

is the size of a data block andk is the number of partitioned groups.
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Figure 15:Fail-cache organization.

Another hardware overhead is bit manipulation logic for data block partition and data

inversion. As our partition technique is based on the knowledge of fail positions, detecting

a new fail position in a write verification phase is important. It can be implemented with

simple combinational logic, ann-to-⌈log2n⌉ priority encoder for each partition group. If a

priority encoder generates a valid fail pointer in the first verification phase, the correspond-

ing group will be re-written in an inverted form. If a priority encoder still generates a valid

fail pointer after the inversion write, it indicates the occurrence of a new fault in the corre-

sponding group. Then, the data block is re-partitioned withthe two fail pointers revealed

at the two verification phases. That is, re-partition can be performed with the priority en-

coders and a simple FSM described in Figure 16. For both read and write data inversion, a

partition decoder is required to select corresponding bitsto be inverted.

Figure 17 shows an example of SAFER for a 16 bit data block and afour group partition.

Additional six bits are required for the four-group partition and four flip bits are used to

indicate whether the data in the corresponding groups is stored in an inverted form or not.

Note that the six bits used to describe the partition are updated only when a new fail bit

occurs. On the other hand, the four flip bits will be updated onevery write that tries to store
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Figure 16:The sequence of a write request in SAFER.

to the fail bit a value that is the opposite of the stuck-at value. In this example, fail bits

are present in group 0, group 1, and group 2. Thus, the flip bitsfor those groups may be

changed on every write. However, the flip bit for group 3 will still be zero until a new fail

happens in group 3.

Group Index :
Partitioned Data Block :

1 11st Partition Field :

0 12nd Partition Field :

1 0Fixed Partition Counter :

23 23 01 0123 23 01 01
FF F

0/1

0/1

0/1

0

Flip Bits

Group 0
Group 1
Group 2
Group 3

Figure 17:An example of SAFER.

4.2 Efficient Implementation of SAFER

In this section, we address three key issues necessary for efficient implementation and

use of SAFER, namely, where to place SAFER logic, what is the ideal data block size to

maximize SAFER effectiveness, and how to limit the overhead of the “fail cache”.
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4.2.1 The Location of SAFER Logic

Fail recovery schemes are mainly used to prolong the lifetime of resistive memory espe-

cially after fails occur, but they are not geared towards decreasing the number of writes

to improve the lifetime. Hence, fail recovery schemes must be used in concert with other

schemes that delay the occurrences of failures, such as redundant write reduction schemes [1,

2, 5, 4, 6] and wear-leveling schemes [4, 9, 18]. These schemes are typically implemented

in the memory controller or in the memory chip itself. For example, the wear-leveling

schemes maintain their own address translation layer to evenly wear out the entire memory

space, and ourSecurity Refreshlogic described in Chapter 3 is located inside the memory

chip to protect against malicious attacks. To use fail recovery schemes in conjunction with

these other schemes, it is necessary that they be embedded inthe memory chips. Thus, we

propose to locate the SAFER logic inside the memory chip.

4.2.2 Ideal Data Size for SAFER Effectiveness

SAFER dynamically partitions a data block into multiple groups according to fail locations

and supports one bit correction for each group. Therefore, the larger the data block, the

more efficient the fail recovery. For example, a double error correction per 16 bytes is more

efficient than a single error correction per eight bytes. Similarly, four bit error correction

per 32 bytes is more efficient than the two bit error correction. However, the upper bound

of the size of a data block will be decided by the memory chip design, which is optimized

to increase the density of the memory cell.

Figure 18 shows an example of a typical 4Gb 8 bank DDR3 DRAM architecture that

is highly optimized for density. We expect the new resistivememory architecture to be

similar to that of the DRAM because of the density issue. In the example, each bank is

composed of 2048 sub-arrays whose size is 512× 512 bits [31, 32, 33].

Here, the column decoder generates column selection signals to sub-arrays, and pass-

transistors, which act as column multiplexers, are locatednear by each sub-array. This

is important so as to minimize area for long wires from the sense amplifiers to interface
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Figure 18:DRAM architecture.

peripherals by multiplexing them. Thus, the size of data bits that are transferred to interface

peripherals at any time is equal to the minimum burst length that the chip supports. For

instance, the DDR3 interface has a fixed burst length of eight. If the I/O data bus width is

16, 128 bits can reach to the peripherals.

To minimize the area overhead SAFER is best located in the peripherals, which implies

that the size of a data block can be at most 128 bits in this case. However, historically the

interface size continues on an upward trend from SDR to DDR, to DDR2, and to DDR3.

Thus, we can safely assume that the size of data reaching the peripherals may be 512 bits

in the near future. We evaluate the effectiveness of SAFER varying the block size from 64

to 512 bits in Section 4.3.

4.2.3 The Area Overhead of Fail Cache

Since we decided to embed SAFER logic inside the memory chip,the fail cache should

be located inside the memory chip with other peripherals. Fortunately, a PCM process is

CMOS compatible, and it poses no process technology hurdles to implementing an SRAM

cache. Hence, one of the major concerns is the area overhead of the “fail cache”. According
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to ITRS projection [34], the cell sizes of SRAM and PCM, in 2024will be 140F2 at 10 nm

and 6F2 at 8 nm, respectively, implying that 36.46 times cell area difference may exist

between SRAM and PCM. Table 2 shows the area overheads of a direct-mapped SRAM

“fail cache” considering the 36.46 times cell area difference. For example, if we assume an

8Gbit PCM chip with a fail cache with 128K entries, in which each entry is composed of

16 bits of tag, a valid bit and a stuck-at value, then the totalsize of the cache is 2.25M bits,

which is only about 1.00% area overhead relative to the 8GbitPCM. In Section 4.4, we

show the effectiveness of the “fail cache” varying the number of entriesfrom 1K to 128K.

Table 2:SRAM fail cache overhead for an 8Gb PCM chip.

Number of Tag Size Entry Size Cache Size Area
Entries (bits) (bits) (bits) Overhead

1K 23 25 25.6K 0.01%
2K 22 24 49.2K 0.02%
4K 21 23 94.2K 0.04%
8K 20 22 0.18M 0.08%
16K 19 21 0.33M 0.15%
32K 18 20 0.63M 0.28%
64K 17 19 1.19M 0.53%
128K 16 18 2.25M 1.00%

4.3 Methodology

In this section, we present the methodology for evaluating SAFER and for comparing it

against two existing techniques, namely the idealHamming Coding[35] and theECP[10]

technique. We compare againstHamming Codingbecause it represents a theoretical limit

of memory lifetime for existing ECC schemes designed to correct transient errors. The

number of bits required for the Hamming Coding implementation is provided by the Ham-

ming Bound:l ≤ n− ⌈log2Σ
t
k=0C

n
k⌉, wherel is the size of data,n is the size of the hamming

code including meta-data for correction, andt is the number of correctable bits [36]. For

example, a 512 bit data block needs 58 additional bits to be able to correct eight fails.

Again, these 58 bits may serve only as a lower bound and a practical implementation may
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require more bits. In addition, Hamming Coding has a high toggle rate for the meta-data.

Hence, an additional bit is needed to determine if the meta-data is valid. The indication bit

also helps avoid cells for meta-data from failing earlier than data cells. In our evaluation,

the Hamming Coding scheme is referred to asIdealECC.

Since our focus is to implement SAFER inside the memory chip,limiting the area

overhead is important. We define area overhead asthe size of meta-data
the size of data . For instance, the

area overhead of the (72,64) hamming code is 12.5% (= 72−64
64 ). For comparison, we use

the area overhead of the (72,64) hamming code as the upper bound for our evaluation and

exclude all configurations of SAFER,ECPandIdealECCthat exceed this area overhead.

Figure 19 shows the hardware overheads for the different configurations forIdealECC,

ECP, and SAFER. The configuration names for each of the techniques include the maxi-

mum number of fails that can be recovered. The number above each bar in the graph shows

the size of meta-data for the corresponding configuration. For example, for the 512 bit data

block, ECP6 represents the ECP technique with six fail pointers that can recover up to six

fails, and uses 61 bits for the meta-data; IdealECC8 represents the ideal eight bit Hamming

Code correction technique, which requires a minimum of 59 bits; and the SAFER32 can

correct up to 32 fails with an additional 55 bits.
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Figure 19:Hardware overhead for recovery schemes.
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4.3.1 Experimental Setup

We use Monte Carlo simulations to evaluate SAFER and compare againstIdealECCand

ECP. Since PCM is the closest to mass production among resistive memories, our evalua-

tions are based on ITRS projections for PCM endurance. We use the following assumptions

for the Monte Carlo simulations:

1. We assume the lifetime of each memory cell to follow the normal distribution with a

mean lifetime (µ) of 108 and without any correlation between neighboring cells [11].

Our experiments with different standard deviation (σ) values (107, 2·107, and 3·107)

did not show significant variation in lifetime patterns. Hence, we use a standard

deviation (σ) of 107 for our evaluations.

2. We assume a perfect wear-leveling scheme so as to focus only on the impact of the

fail recovery scheme on the lifetime. The wear-leveling scheme evenly wears out the

entire memory space at a block granularity equal to the line size of the last level cache

as in theRandomized Region-based Start-Gap[9] and theSecurity Refresh[18]. We

use 256 bytes for the last level cache line size, which implies that all the 256 byte

memory blocks have the same number of writes because of the perfect wear-leveling

scheme. Based on this, we measure the lifetime of one 256 bytedata block.

3. A write request to memory is converted to a sequence of a read, a write, and a read

request. The first read eliminatessilent writesto memory by comparing the memory

data read with the data to be written. We assume that 50% of thewrites aresilent

writes. The second read verifies that the data written to memory matches the intended

write data, which allows us to recognize cell failures. SAFER requires another write

with necessary bit inversions if cell failures are detectedduring write verification.

However, a hit in the fail cache will avoid the second write because the bits are

already suitably inverted to account for the cell failures based on the information

stored in the fail cache.
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4. We assume that four x16 memory chips compose a x64 DIMM memory module so

that each chip can deliver 512 bits of data.

In the Monte Carlo simulation, each configuration is run 50000times, and the average

result is reported. For each run, our simulator allocates the array equivalent to the number

of required cells including the 256 byte data block and its meta-data corresponding to each

configuration. A random write endurance value according to the aforementioned normal

distribution is assigned to each array element. For each write to a cell, we considered the

toggling rate of the value to determine the available lifetime. Simulation continues until a

given configuration cannot recover from a failure any longer. We take into consideration

that all the meta-data do not have the same toggling rate. Forexample, the fail pointer in

the ECP scheme and the partition fields in SAFER are updated only once when a new fail

occurs. On the other hand, the meta-data for Hamming Coding (excluding the bit indicating

the validity of the meta-data), the replacement cells in theECP scheme, and the flip bits

in SAFER are written with the same toggling rate (i.e., 0.5) as the data. For SAFER,

the simulation also accounts for an additional write that isneeded if the write verification

detects a failure.

4.4 Results

In this section, we describe the simulation results focusing on the following figures of

merit: lifetime improvement resulting from fail recovery,number of fails recovered for a

given size of data block, and the cost of meta-bits for the observed lifetime improvement.

Finally, we show the effectiveness of the fail cache in eliminating the additional writes and

correspondingly improving the lifetime.

4.4.1 Lifetime Improvement

Our simulations assumed that the lifetime of memory cells follows a normal distribution

N(µ, σ), whereµ is 108 writes andσ is 107 writes. Furthermore, we assumed that each bit

toggles with a probabilityT = 0.5. However, for reliable analysis, we present the lifetime
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improvement as a function ofσ.

Figure 20 describes the method used to determine the relative lifetime improvement. In

the example shown in Figure 20, the first fail shown asF occurs at 131.1 million writes. If

SAFER were to increase the lifetime toL, then the relative lifetime improvement is calcu-

lated as (L − F)T/σ to account for the dependence of the observed lifetime improvement

on bothσ andT. If SAFER were to increase the lifetime to the mean lifetime,then the

relative lifetime improvement is ((2· 108 − 1.311· 108) · 0.5/107) = 3.44.

100 120 140 160 180 200 220 240 260 280
Lifetime (Million Writes)

µ = 100M writes
σ = 10M writes
toggle rate(T) = 

68.9M writes = 3.44σ/T 

The fail cell among 256 Bytes
= 131.1M writes

F L

Relative Improvement
=(L-F)T/σ

Figure 20:The definition of lifetime improvement.

Figure 21 shows the relative lifetime improvement for each configuration with different

data block sizes. For these results, SAFER does not use the fail cache thereby requiring

the additional overhead of a second write if the write verification detects a failed cell. We

observe that, even without the fail cache, SAFER improves the lifetime more than ECP

for all the configurations. For a 512 bit data block size, SAFER32 increases lifetime by

21.6 million (= 1.08 · 107/0.5) writes, and ECP increases lifetime by only 21.1 million

(= 1.05 · 107/0.5) writes while still using 10% more meta-data (Figure 19) than SAFER.

Also, each bar of the IdealECCn represents the lifetime improvement at the time of

occurrence of the (n+ 1)th fail. For example, for a 512 bit data block, the lifetime improve-

ment by using IdealECC2 is 12.8 (= 0.64 · 107/0.5) million writes when the third failure

occurs.
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Figure 21:The relative lifetime of a 256B memory block.

4.4.2 The Number of Fails Recovered

Figure 22 shows the average number of fails recovered per memory block for each config-

uration. It appears that ECP and IdealECC show linear increment in fails recovered with

increase in the maximum number of recoverable fails. On the other hand, SAFER shows an

exponential improvement. It is important to note that the maximum number of recoverable

fails for SAFER increases exponentially as the number of partition fields increases linearly.

As shown in Figure 22, for a 512 bit data block, SAFER32 recovers from 22.94 fails

whereas ECP6 recovers from only 17.08 fails. However, the relative improvement in life-

time with SAFER is only 2% better than the improvement with ECP. The key reason why

the 34% improvement in the fail recovery of SAFER is not translated to larger improve-

ment in lifetime (compared to ECP) is the additional write required by SAFER if the write

verification phase identifies a failed cell when we do not use afail cache. We show in Sec-

tion 4.4.4 that using a fail cache with SAFER significantly removes the additional writes

and shows gains in lifetime improvement even relative to IdealECC8.

4.4.3 Meta-Bit Overhead vs. Lifetime Improvement

Another important figure of merit of a recovery technique is the cost of meta-data for the

observed lifetime improvement. Figure 23 shows the contribution of each meta-data bit to

the overall lifetime improvement for a memory block size of 256 bytes. From Figure 23,
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Figure 22:Fail recovery in a 256B memory block.

we observe that, for a data block of 512 bits, SAFER32 has a 13.4% better utilization of

the additional meta-data relative to ECP6.
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Figure 23:Meta-bit contribution for lifetime.

4.4.4 SAFER with Fail Cache

So far, we have evaluated lifetime improvement and meta-bitefficiency of SAFER without

fail cache. By using the fail cache, however, the lifetime can be extended even longer. Fail

cache enables SAFER to avoid the additional write by providing information about the fail

bits so that the data to be written can be suitably inverted. We use the miss rate of the fail

cache as a measure of its effectiveness in reducing the additional write to the memory.

To determine the fail cache miss rate to enablen bits of data to recover from a maximum
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of k fails, we randomly set the fail bits in a memory of size 1GB, such that eachn bits of

memory had at mostk failures. As soon as anyn bits of data block has more thank fails,

the fail insertion was terminated.

Using this set-up, we simulated 26 applications from SPEC2006 suite using the PIN in-

strumentation tool [27]. The following memory hierarchy was simulated: 32KB 8-way set-

associative L1 data cache, 1MB 8-way set-associative unified L2 cache, and 8MB 8-way

set-associative L3 DRAM cache, and finally a 1GB main memory.Out of 26 applications,

we only used ten applications that have more than one millionwritebacks to the memory

(Table 3). In this set of simulations, we simulated five billion instructions.

Table 3:Applications with more than 1M writebacks to memory.

Application Number of Writebacks
410.bwaves 3.92M

429.mcf 8.17M
433.milc 7.72M

436.cactusADM 1.29M
437.leslie3d 4.75M
450.soplex 3.87M
458.sjeng 1.13M

459.GemsFDTD 9.37M
462.libquantum 7.62M

473.astar 2.45M

The geometric mean miss rate of the above applications are shown in Figure 24 for

different cache sizes for different maximum recoverable fails in a 512 bit data block. Note

that different bars represent fail caches with different numbers of entries. From Figure 24,

we observe that cache miss rate not only increases as we decrease the cache size, but also

increases substantially as we increase the number of maximum recoverable fails. However,

as the number of recoverable fails increase, the contribution to lifetime improvement by

each additional bit continues to decrease. For example, from Figure 21, we observe that,

for 512 bit data block, IdealECC2 achieves 54.6% of the relative lifetime improvement of

IdealEEC8 by correcting up to only two errors. From Figure 24,we observe that, to correct
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up to two errors, the fail cache miss rate is only 5%.
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Figure 24:Fail-cache miss rate.

Figure 25 depicts the relative lifetime improvement when weuse a fail cache. Based on

the above discussion, we observe that even a small fail cachewith 1K entries has compara-

ble lifetime improvement as a 128K entries cache. Furthermore, we observe that SAFER32

has better lifetime improvement relative to even IdealECC8 with just a fail cache of 1K en-

tries.
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Figure 25:The relative lifetime improvement of SAFER with a fail cache.
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4.5 Summary

Existing ECC mechanisms are geared towards correcting transient errors in DRAM mem-

ories and are not suitable to correct permanent stuck-at faults. As the cells continue to

age, permanent stuck-at faults increase because of wear-out. The aging rate is particularly

severe for several emerging non-volatile memory technologies. Furthermore, with process

technology scaling, the lifetime variation of the cells increase, which leads to early multiple

cell failures. We proposed and evaluated SAFER, a stuck-at fault error recovery technique

for memories, which efficiently recovers from multiple stuck-at faults and which works in

conjunction with existing wear-leveling techniques.

SAFER handles the growing stuck-at-fault errors by dynamically partitioning a data

block into multiple groups and by ensuring that each group has at most one failed cell.

SAFER reduces hardware overhead by exploiting the propertythat failed cells with a stuck-

at value are still readable and uses the failed cell to continue to store data. Our evaluation

based on phase-change memories shows that SAFER has 11.91% and 11.52% better hard-

ware efficiency relative to ECP and ideal hamming coding schemes, respectively. Further-

more, SAFER achieves 14.75% and 3.07% better lifetime improvement relative to ECP and

ideal hamming coding scheme, respectively.
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CHAPTER 5

WRITE-FREQUENCY REDUCTION METHODS

In this study, we concentrate on a hybrid-memory design for filtering out frequent writes

from resistive memories typically having limited write endurance,e.g., , phase-change

memory (PCM). We proposed a new hybrid-PCM architecture usinglow-cost hardware for

effective wear-out management. The proposed architecture integrates a small, durability-

proof, static random-access memory (SRAM) to filter out the frequently written addresses.

To do so, we propose a multi-dimensional classification design derived from the Bloom

filter technique, which is used to decide the frequently written addresses and to isolate

them into the SRAM. By combining this scheme with prior wear-leveling methods, we can

achieve a synergistic result in the operational lifetime ofthe hybrid-PCM main memory.

5.1 Multi-Dimensional Classification

Temporal locality can be indicated by the write frequency ofa certain period. For typical

program phase behavior, one can record the write frequency for a recent execution phase

to predict that of the future phases. A typical way to measurewrite frequency for each

memory block is to count the number of writes accessing the memory block during a period.

This scheme was employed forsegment swapping[4], where each segment uses a counter to

indicate its degree of wear-out and the information is used for wear leveling. The advantage

of this counter-per-block scheme is that it can precisely measure the degree of wear-out

for each memory block, but at huge storage costs. For instance, given a 1GB memory

with 256B memory blocks, the counter-per-block scheme requires more than four million

(222) counters. This prohibitive overhead is the main reason whythe segment-swapping

scheme suggested using 1MB as the segment size but no smaller. Unfortunately, the 1MB

segments are too large to handle. First, when a 1MB segment isswapped with another

selected segment, it simply takes a long time to transfer theentire data. During the time
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of swapping, the memory controller will stop dispatching new memory requests, which

affects the performance. Furthermore, with the segment-levelcounters, it is impossible to

identify the write distribution at a finer granularity than asegment,e.g., , the cache-line

size. In other words, it is impossible to identify whether writes are highly concentrated

on a few addresses or they are evenly dispersed across the segment. Hence, we need an

efficient way to measure write frequency at a fine-grained level.

Although it may appear to be difficult to measure the exact write frequency for all fine-

grained memory blocks without incurring large hardware overhead, it would be very helpful

if we can estimate the outliers that show much higher write frequency than the others.

Toward this, we propose a concept ofmulti-dimensional classificationthat can efficiently

estimate which memory blocks show aberrant behavior. In this scheme, a memory-block

address is projected multiple times onto all different dimensions, each of which employs

its own hash function to project the memory-block address onto one of its elements. In

this scheme, our dimension contains two, four or eight elements. Each element in a certain

dimension has its own counter that is updated on every PCM write access. When a write

address is projected onto the element, the element’s counter is increased by a value equal

to the number of elements in the dimension minus one. If a write address is projected

onto another element, the counter is decremented by one. Forexample, if the number of

elements in each dimension is four, the counter of the element that a write address projected

onto will be increased by three and the three counters of the other elements are decremented

by one. Thus, if all elements have the same probability to be projected onto, each counter

value will stay around zero. However, if an element is more frequently accessed than others

in a dimension, its counter value will stand out positively.Therefore, the most frequently

written address can be probabilistically estimated and identified by picking out the most

frequently written element projected in each dimension.

In Figure 26, the counter-per-block scheme is compared against our multi-dimensional

classification. For simplicity, in this example, the entirememory space comprises eight
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memory blocks shown in Figure 26(a). For the most recent 200 writes, the counter-per-

block scheme in Figure 26(b) counts the exact number of writes for each block using eight

counters. As shown, the seventh counter of the memory block 6has the highest value of 70

writes,i.e., the most frequently written block.
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Figure 26:Examples of multi-dimensional classification.

Figure 26(c) depicts a three-dimensional classification mechanism for the same exam-

ple. First, the hash functions for the three dimensions are simply defined asH2(x) = a2,

H1(x) = a1, andH0(x) = a0, respectively, wherex is a three-bit block address,{a2a1a0}.

In other words, each bit position in a memory block address isassumed to represent a di-

mension. Because all elements in one dimension should be represented with one bit, each

dimension has the following two elements: ‘e0’ and ‘e1’, accounting for one of the binary

value. Since each element requires its own counter, the three-dimensional classification

contains six counters in total. For example, a write access to the address{110} increments

three counters corresponding toe1 for thea2 dimension,e1 for thea1 dimension, ande0 for

thea0 dimension; and decrements the other three counters.

After the same 200 writes in Figure 26(b), the final counter values are shown in Fig-

ure 26(c). In thea2 dimension, thee1 counter has a bigger value than thee0 counter. It

indicates that the number of writes to the block addresses{100}, {101}, {110} and{111} are

higher than the number of writes to the other addresses. Similarly, thee1 counter for thea1

dimension and thee0 counter for thea0 dimension have higher values than the others in the

same dimension, respectively. Therefore, the dimensionalresult indicates that the memory
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block {110} has the highest probability to be the most frequently written block.

Figure 26(d) shows another example for a two-dimensional classification scheme. Dif-

ferent from Figure 26(c), the left dimension in Figure 26(d)has four elements. Thus, in the

left dimension, the counter of an element that a write address is projected onto increases by

three on every write access while the other three counters decrease by one. After the same

200 writes, the final counter values of the left dimension indicates that one of the two block

addresses{110} and {111} are the likely candidates of the most frequently written block.

By combining the result with that of the right dimension, thetwo-dimensional classifier

obtains the same result with the previous three-dimensional classifier.

As shown in these examples, with the multi-dimension classification we can efficiently

estimate (based on probability) the most frequently written block. The total storage re-

quirement for this scheme is (the number of dimensions) × (the number of elements for

each dimension). For instance, when assuming a 1GB memory composed of 256B memory

blocks, instead of having more than four million counters inthe prior segment-swapping

scheme, we only need 44 counters for 22 dimensions represented by each bit of the 22-bit

block address. Even with the low hardware overhead, we can detect the outlier addresses,

i.e.,the memory blocks being repeatedly written within a given period. If we can accurately

filter out these outliers, we can slow down the wear-out of limited write endurance memory

cells.

Note that in our real design we did not restrict ourselves to only isolate one single most

frequently written memory block for an entire application.Rather, the outlier addresses

identified by a threshold mechanism are continuously isolated to a separate and durable

memory structure during the course of an execution. The implementation of our hybrid-

PCM architecture and the decision mechanism will be detailedin Section 5.3.
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5.2 Interference and Its Implication to Design

Similar to other fast approximation methods, the multi-dimensional classification scheme

also suffers from inaccuracy because of the fact that more than one memory block address

can be projected onto the same element (i.e., counter), thereby leading to address aliasing

or interference. This interference is an outcome of using a hash function for each dimen-

sion and using a smaller number of counters for bookkeeping.The interference could be

mitigated by increasing the number of dimensions (i.e., hash functions) or the number of

elements in each dimension.

The main issue of incrementing the number of dimensions or the number of elements,

however, is that it incurs high storage overhead for counters. To address this issue and

implement an appropriate number of counters, we need to knowwhat are the possible types

of interference present in our scheme. Figure 27 shows the examples of the interference that

is classified intofalse-positive interferenceandfalse-negative interference. In the example

of false-positive interference, three memory block addresses{000}, {011}, and{110} were

written 50 times and the other five were written 10 times. However, according to the counter

results of our three-dimension classifier, the memory block{010} is identified as the most

frequently written block, which is not even within the top three frequently written ones.

The reason is that in each dimension, two of the three most frequently written addresses

happen to map to the same element.
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Figure 27:Examples of interference.
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To reduce false-positives, more dimensions should be implemented to have more dis-

tinction of different addresses, and then the sum of the counter values across dimensions

is used to obtain the decision by the majority. If the sum is larger than a certain threshold

value, then our scheme classifies the block address as aberrant. For example, the memory

block {000} is projected ontoe0 (20) for thea2 dimension,e0 (−20) for thea1 dimension,

ande0 (20) for thea0 dimension. Thus, its sum of the corresponding counter values is

20. Likewise, the sums for the other memory blocks from{001} to {111} are−20, 60, 20,

−20,−60, 20, and−20. Even though this majority decision cannot avoid false-positives,

at least it can detect all true-positives by adjusting the threshold value. In this example, if

the threshold value is set to 10, then the memory blocks{000}, {010}, {011}, and{110} are

classified as aberrant. We will discuss our implementation toward this in Section 5.3.

Similarly, because of the address aliasing, the counter results can have another type

of interference caused by false-negatives. In this scenario, frequently written memory ad-

dresses could remain undetected by our estimation scheme. In another example illusterated

in Figure 27(b), the memory addresses{001} and{110}, are more frequently updated than

the others. However, all counters end up with the same accumulated values since the two

frequently accessed addresses{001} and{110} happen to be antipodal in the three dimen-

sions. These antipodes located in the exact opposite positions can conceal themselves

completely from our multi-dimensional classifier.

For normal applications, the probability of locating the exact antipodes diminishes

quickly as the number of dimensions increases, because the normal applications do not

intentionally pair up addresses to generate false-negative interference. Given malicious at-

tacks threatening PCM reliability, nevertheless, this false-negative interference is a severe

weakness. If the dimension projection mechanisms are fixed or deterministic, an adversary

can reverse-engineer the projection mechanisms with side-channels using latency differ-

ences, and then the corresponding false-negative interference patterns can be easily gen-

erated. For example, assume that it is revealed that each dimension has two elements and
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the addresses detected by the multi-dimensional classifierare isolated to an SRAM cache,

which has much shorter latency to access than that of a PCM memory. Using this latency

difference, an adversary can search for a false-negative interference pair. To prevent adver-

saries from using the side-channels, therefore, we need to hide the projection mechanisms

or to keep changing them. From these considerations about interference, we propose a

secure multi-dimensional classification scheme to be described in the next section.

5.3 The Implementation of Our Hybrid-PCM Architecture

Thus far, we have described the basics of our proposed multi-dimensional classification

technique. In this section, we propose a novel and efficient implementation to realize our

technique for a hybrid-PCM architecture.

5.3.1 Overall Control Flow and Isolation Cache

The essential idea of improving the write endurance for a PCM main memory is to filter

out the frequent memory writes from being written back to thePCM main memory. Based

on the decision made by our multi-dimensional classification scheme, when an incoming

write address is classified as the most frequent written block (at this point of time), it will

be transferred to a small SRAM cache, calledisolation cache. The isolation cache is fully-

associative and uses the least-recently-used (LRU) policyfor its line replacement.

Figure 28 depicts the overall block diagram of our hybrid-PCMarchitecture. When a

new writeback address arrives, our proposed mechanism checks whether the address is a

hit in the isolation cache. At the same time, adecision makeralso evaluates and determines

if it is worthwhile to transfer the block to the isolation cache based on the counter values in

our multi-dimensional classifier. Upon a cache hit, the corresponding cache line is updated

accordingly while the PCM memory block has stale data. If the address results in a miss

and the decision maker indicates that the address should be transferred, then the writeback

address and its data will be inserted to the isolation cache.When an insertion occurs,

the LRU cache line in the isolation cache will be written backto the PCM main memory.
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Otherwise, the address and its data will bypass the isolation cache and go to the PCM main

memory directly. Note that a read request also requires to look up the isolation cache.

In case of a hit, the isolation cache returns the read data because the corresponding PCM

memory block is out of date. However, regardless of the cachelook-up result, the read

request neither looks up the decision maker nor changes the state of the decision maker.
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Cache

(b-entries)

Write AddressWrite Data

Insert

1 010

Update
FSM

10

Resistive Memory Cell Array

Wear-Leveling Controller
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Maker

SRAM
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Cache

(b-entries)

Write AddressWrite Data

Insert

1 010

Update
FSM

10

Resistive Memory Cell Array

Wear-Leveling Controller

Figure 28:The overall block diagram of our hybrid-PCM architecture.

The decision maker is updated whenever a write address is sent to the PCM main mem-

ory, i.e., either during an eviction from the isolation cache or duringa direct writeback

that bypasses the isolation cache. The update primarily increases or decreases the counter

values in each dimension. The flow control of the address and its data for updating the

decision maker is managed by a small finite state machine (FSM) as shown in Figure 28.

The design of decision maker is detailed in Section 5.3.2.

5.3.2 Decision Maker

The decision maker is responsible for isolating frequentlywritten memory blocks and rep-

resents the most critical part of our proposed design. Figure 29 depicts the block diagram

of the decision maker consisting ofd dimensions. Each dimension employs its own hash
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function to project anm-bit block address onto one of its 2n elements (i.e.,counters).1

Decision Maker (dD2nE)

Dimension #(d-1)Dimension #1Dimension #0

Sum of Scores > 0

Hash Function
#0

n-bit Index

m-bit Key0

Counter Manager

2n Counters

s-bit Integer 
Score

Hash Function
#1

n-bit Index

m-bit Key1

Counter Manager

2n Counters

s-bit Integer 
Score

Hash Function
#(d-1)

n-bit Index

m-bit Keyd-1

Counter Manager

2n Counters

s-bit Integer 
Score

m-bit Address Counter Update Signal

Decision

Init signal

Figure 29:The block diagram of a decision maker.

As illustrated in Figure 30(a), each hash function generates ann-bit counter index from

anm-bit block address and anm-bit randomized key. Thus, using a different randomized

key for each dimension can differentiate it from the other dimensions. Even in the same

dimension, changing the key can project a block address ontoa different element. As men-

tioned in Section 5.2, a static, unaltered key may render ourscheme vulnerable. By chang-

ing the key values dynamically, therefore, our scheme can beprotected from malicious

side-channel attacks. Note that our scheme employs a simplehash function with low-cost

hardware, which enables to implement our scheme inside a PCM chip. For instance, the

hash function described in Figure 30(a) performs a bitwise AND operation between an in-

put address and a key, and then chops the result into manyn-bit pieces. Lastly, to generate

ann-bit index, it performs a bitwise XOR operation among the choppedn-bit pieces.

To keep track of the information of write recurrence behavior, each dimension updates

its 2n counters whenever a write data is transferred to the PCM main memory. To measure

1The indexing method is similar to a counting Bloom filter proposed for web caching [37]. However, the
way each counter is updated is quite different, which will be discussed in Section 5.6.
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int n; /* the size of a counter index */

int hash(int addr, int key) {
int index = 0;
int mask = (1 << n) – 1;
int temp = addr & key;

while (temp != 0) {
index = index ⊕ (temp & mask);
temp = temp >> n;

}

return index;
} 

(a) A hash function.

Counter #0

(s+k)bit Register

+

2n-1-1
Counter #(2n-1)

+

2n-1-1

s-bit Integer Score

10 10

(s+k)bit Register
Update
Signal

Indexed? Indexed?

(b) A counter manager.

Figure 30:The details of a hash function and a counter manager.

the degree of write frequency with the counters, we chose toreward the counter indexed

by the output of the hash function while the other counters inthe same dimension are

penalized. In other words, the indexed counter is increased by a value of 2n − 1 and the

other (2n − 1) counters in the dimension are decremented by one. For instance, if each

dimension has four counters (wheren = 2), then the indexed counter is increased by three

and the other three counters are decremented by one. Therefore, unless the writes to the

PCM main memory are evenly projected onto all elements, the frequently indexed counters

keep increasing their values. Figure 30(b) depicts the block diagram of the counter manager

in each dimension. Each counter has an (s+ k)-bit register to store the current counting

value. The uppers bits will be used as a score in the decision-making process while the

least significantk bits are used as a fluctuation margin. By tuning the value ofk, we can
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determine how much deviation is required to affect the score.

When receiving a new writeback block address, the decision maker should decide

whether to isolate the memory block or not. To do so, the decision maker forwards the

block address to all dimensions, and then each dimension outputs ans-bit score value rep-

resenting how frequently the memory block is updated. To make the final decision, the

decision maker employs the process of a binary classifier. Ifthe sum of all the dimension

scores is larger than a threshold value, the decision maker decides that the current address

is an outlier and will isolate it to the isolation cache. Otherwise, the writeback is sent to the

PCM main memory. For our experiments in Section 5.5, we set thethreshold value to zero,

because a positive value of the summed up score of all dimensions indicates the current

writeback address shows certain deviation above the fluctuation margin.

After migrating an outlier block to the isolation cache, allthe counter values will be

reset back to zeros. Although it is required to go through another learning phase even for

the addresses that have already reached close to the boundary of the fluctuation margin,

the reset and re-initialization can reduce the probabilityof false-positive interference by

eliminating the current counter values biased to the just-isolated address. Since a new

insertion to the isolation cache evicts one cache line, these counters, after reset, will be

updated with the address of the evicted cache line. At the same time, the random keys for

hash functions will be re-generated.

5.3.3 Implementation Overhead

Since we advocate a tightly integrated design embedding ourscheme within a PCM chip,

we should consider the hardware costs for the integration. As explained in Section 5.3.2,

we employs a lightweight hash function composed of several XOR and AND gates. Thus,

the isolation cache and the counters of the decision maker occupy most of the hardware

overhead. However, given a PCMdual in-line memory module(DIMM) consisting of 8

chips, the data array of the isolation cache can separate into 8 chips. Thus, assuming a

256B 32-entry isolation cache and a 64-counter decision maker, the total area overhead per
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chip is about 1KB, which is affordable for the uncompromising reliability of the PCM main

memory.

5.4 Impact to Wear Leveling under Malicious Attacks

Our isolation cache and multi-dimensional estimation scheme can, in fact, leverage wear

leveling more efficient. Ideally, ab-entry isolation cache can completely filter outb mali-

cious addresses, even though interference may generate false positives. Thus, when a mali-

cious process tries to subvert our system, it should target and attack more thanb addresses.

Assume that an adversary attacks (b+1) address targets. Filtering out onlyb addresses and

letting one address bypass will strike the weakness of wear leveling. In this case, it appears

as if only one single target address is being attacked repetitively, representing the worst-

case attack (e.g.,, birthday paradox attack [24]) to a wear-leveling system asstated in prior

literature [8, 18, 24]. To mitigate this scenario, the (b+ 1) addresses should be equally sent

to and observed by the wear-leveling controller and the PCM main memory.2 For example,

assume that an isolation cache is composed of four cache lines and a malicious process at-

tacks five target addresses by writing to each address 100 times. For the näıve filtering that

isolatesb fixed addresses out but lets the last address slip through, the wear leveling will

observe this address 100 times, fulfilling the worst-case attack that keeps hitting the same

address block 100 times. Our proposed scheme, nonetheless,will be able to cache four of

the five targeted addresses by taking turns. As a result, the wear-leveling controller will

observe each of the five addresses 20 times each, representing an ideal situation for wear

leveling that the 100 writes are evenly distributed to the five addresses. Our scheme can

operate close to the ideal write distribution because it always detects and inserts the most

frequently written address based on the current write frequency to the PCM main memory.

Figure 31 shows how the distribution of attack writes affects a PCM lifetime under

a wear-leveling scheme. To remap the entire memory space (composed of 4M memory

2As shown in Figure 28, our wear-leveling controller sits in-between our proposed architecture and the
underlying PCM main memory.
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blocks in this evaluation), secure wear-leveling schemes based on randomization, such as

security refresh[18] andstart-gap[9], typically require a certain amount of writes called a

remap period. The mapping from an address to a physical memory block does not change

during the remap period and thus a malicious process can attack a single target memory

block during that period. For example, the left-most bars show relative lifetimes3 under a

single-target-address attack (1 TAddr in the legend) when varying the remap period from

4M writes to 512M writes. As shown, although a shorter remap period is critical to extend

the lifetime, it also increases the write overhead4 specified in the parentheses. To both

shorten the remap period and avoid high write overhead, previous wear-leveling schemes

divide the entire memory space into multiple regions and perform intra-region wear leveling

and inter-region wear leveling, simultaneously. However,the multi-region wear leveling

also increases hardware costs for maintaining the wear-leveling status of all regions. On the

other hand, our scheme prevents all malicious writes from targeting a single address. Thus,

the malicious writes are dispersed to multiple target addresses. As shown in Figure 31,

doubling the number of target addresses has a similar effect of reducing the remapping

period by half with the same write overhead. In other words, our scheme can help the

wear-leveling schemes increase the lifetime with low hardware costs by forcing a malicious

attack to disperse their writes to multiple target addresses.
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Figure 31:The effect of write distribution on wear leveling.

3The relative value is normalized to the theoretical maximumnumber of writes calculated as the number
of memory blocks (4M)× write endurance cycles (108).

4Write overhead is defined as the number of additional writes for address remapping over the total number
of writes to memory arrays including the additional writes.
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Another merit of our scheme is that the insertion signal for the isolation cache can be

used to control the rate of address remapping in wear leveling. Controlling the rate is ben-

eficial to improve the overall lifetime [8]. In our scheme, frequent insertions indicate that

an attack is present and the wear-leveling controller needsto speed up the rate of address

remapping. On the contrary, a low insertion rate into the isolation cache can be interpreted

as current write patterns are uneventful, and thus no need for the wear-leveling control

to shuffle the addresses fast. Note that even though attacks are present, if the frequently

written addresses fit into the isolation cache, then we do notneed to accelerate the address

remapping rate. Furthermore, the hit rate of the isolation cache can be used as a threshold

for warning the current attack situation to a system operator. We will quantify the benefit

of our scheme for wear leveling in Section 5.5.4.

5.5 Experimental Evaluation and Analysis

To achieve the high reliability of a hybrid PCM main memory system, our scheme should

effectively filter out the high-deviation write addresses. To evaluate that, we devise an

attack model where a loop body consists oft target addresses (TAddrs) andr random ad-

dresses (RAddrs). The TAddrs are changed only when a wear-leveling scheme, if any,

finishes remapping the entire memory space. It is noteworthythat whent = 1 andr = 0,

the attack model is equivalent to thebirthday paradox attack(BPA) that is the best known

attack method to wear leveling employing randomization [8,24]. The size of a memory

block is 256B in our experiments and there are 222 memory blocks in each memory chip.

Note that our management scheme is embedded within the chip.

5.5.1 Sensitivity Study for Interference

To attain high accuracy for our decision maker, it is critical to minimize interference. Fig-

ure 32 shows the occurrence rate of false-negative interference for the different number of

TAddrs from two to 64. Each configuration was simulated 450 times with different TAd-

drs. The number of dimensions (D), the number of elements in one dimension (E) and
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the total number of counters ((#)) are varied for each configuration. As shown in Fig-

ure 32, more TAddrs lead to higher false-negative interference while using more counters

can decrease it. By using more than 128 counters for the decision maker, the false-negative

interference is completely gone. Note that we performed ourevaluation up to 64 target ad-

dresses because given a wear-leveling technique, increasing the number of target addresses

makes the malicious attack less efficient. In case of the 64 TAddrs, even the right-most

wear-leveling scheme in Figure 31, incurring 0.78% additional writes for shuffling the en-

tire address space, can achieve 13.25% of the theoretical lifetime, which is around twelve

months. Thus, it is pointless to attack more than 64 target addresses.
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Figure 32:The rate of false-negative interference.

Distinct from the false-negative interference that makes our scheme to fail to capture

target write addresses in the isolation cache, false-positive interference deceives our scheme

into capturing the wrong addresses and evicting true-positive ones from the isolation cache.

To measure how often false-positives happen, we use a 16-entry isolation cache and an

attack model with 16 TAddr followed by one RAddr for each iteration. Figure 33 shows

the ratio of the number of RAddr inserted to the 16-entry isolation cache to the total number

of RAddr when using a (3+k) counter scheme,i.e.,the upper 3 bits for scoring and the other

k bits for the fluctuation margin. Obviously, increasing counters reduces the rate of false-

positive interference. However, with the same number of dimensions, increasing counters

for each dimension has an adverse effect. For example, whenk = 6, the false-positive

rate of8D8E(64) is twice higher than that of8D4E(32). It is due to employing the reward

and penalty mechanism of the counter manager. Since increasing the number of elements
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in one dimension also increases the reward for an indexed counter, the big reward raises

the chance for the counter value to pass the threshold (64= 2k in this example). Thus, to

reduce the false-positive interference, it is desirable toincrease thek value or the number

of dimensions as shown in Figure 33.
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Figure 33:The rate of false-positive interference.

5.5.2 Wear-Out Evaluation

From the experiment of false-negative interference, we observed that 128 or more counters

can almost eliminate the false-negative interference. If it is not possible to concoct a mali-

cious code to create false-negative interference, then another efficient attack method against

our scheme is to force capacity misses in the isolation cache. To do so, an adversary should

attack more memory blocks than the number of entries of the isolation cache. If the number

of isolation cache entries isb and the number of target addresses ist, ideally the total writes

reaching the PCM main memory will be (the total number of writes× t − b
t

). Therefore,

the ideal wear-out of each target memory block is (the total number of writes× t − b
t

)/t, as

mentioned in Section 5.4.

Figure 34 shows the ratio of the worst-case wear-out in our simulation against the ideal

wear-out for total 222 writes. During all the writes, no wear leveling is performed. We

varied the isolation cache size from four to 32 entries. As mentioned earlier, the minimum

number of write addresses that an adversary can use to attackour system is (b+ 1), where

b is the number of entries in the isolation cache. From Figure 34, it is observed that as in-

creasing the number of target addresses, the worst-case wear-out also increases because of
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the initial learning phase before any of the target addresses is isolated. For example, when

33 target addresses begin to be written, the last one (i.e., the 33rd address) must go through

33 learning phases to be isolated into the isolation cache. This long learning period of the

last target address results in the worst-case wear-out in the PCM main memory. However,

the long initial learning phase is not significant to the lifetime of the PCM main memory

since it happens only once. Lastly, during our wear-out experiments, the configuration

32D2E(64) using a 32-entry isolation cache suffered from one false-negative interference.

Thus, the two target addresses were not detected and the memory blocks show 33 times

higher wear-out than the ideal case.
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Figure 34:The maximum wear-out of attack addresses in 300 simulations.

5.5.3 Evaluation for Normal Applications

So far, we have shown our scheme successfully detects a malicious attack. Even though our

scheme pursues a highly-reliable resistive memory system against the worst-case scenario,

our scheme is helpful for normal application as well. Now we will evaluate our scheme

for normal applications running on a tri-level cache system. We used PIN tool [27] and

simulated selected SPEC2006 benchmark applications. The memory hierarchy includes

a 32KB L1 data cache, a 1MB L2 unified cache and an 8MB L3 unified cache, all eight

ways. The cache line size is 64B for L1 and L2 and 256B for L3. Four SPEC2006 appli-

cations that show the highest writeback rate from an 8MB L3 cache were chosen including

429.mcf, 471.omnetpp, 482.sphinx and483.Xalan. We simulated a decision maker of 16

dimensions and each dimension has four counters.
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Figure 35 shows the number of hits in isolation cache for an epoch of 100,000 L3

writebacks by varying the isolation cache size from 4 to 32 entries and thek value of

the decision maker from 6 to 10. Note that, the number of hits represents the number of

resistive memory writes saved. Also shown is the scenario without the decision maker, in

which the isolation cache acts like a tiny L4 cache where all the writes pass through. As

shown, the number of hits are much increased by applying our scheme. It indicates that

even after filtering of the L3, there is still temporal locality and our scheme can detect it

to reduce the write frequency to the resistive memory. An interesting observation is that

using a small isolation cache requires a largek value to get a higher hit rate, whereas a

large isolation cache can obtain a high hit rate with a smallk value. That is, using a small

isolation cache requires a more precise decision. In our scheme, thek value is important

to detect the recurrence of writebacks. For example, a largek value will take a long time

to train and detect a frequently recurred address, leading to lost opportunities for write

reduction in the resistive memory. In all cases of our simulations, using a smallk (= 6)

shows much higher hits than using the isolation cache without a decision maker.
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Figure 35:The saved PCM writes of SPEC2006 for 100K writebacks.

5.5.4 Impact to Wear Leveling

To study the impact of our scheme to wear leveling, we modeledit with the secure wear-

leveling scheme,security refresh[18]. The security-refresh scheme remaps (or refreshes)

two addresses in a randomized fashion upon every refresh interval. A two-level security-

refresh scheme shows a more than five year lifetime under a continuous write attack. In the
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two-level security refresh, an outer security refresh wear-levels a 1GB memory bank with

512 sub-regions inside the memory, while each sub-region issimultaneously wear-leveled

by an inner security refresh.

Although the two-level security refresh extends the lifetime of a single-level security

refresh by more than four times, its major setback is the overhead. Even though each

security-refresh controller uses only four registers, thetwo-level security refresh with 512

sub-regions will require around 12KB of hardware overhead.In our scheme, the isolation

cache occupies most of hardware requirements while our decision maker consists of at most

tens of counters. Given a 256B cache-line writeback from LLC,a 32-entry isolation cache

requires 8KB for data storage. Thus, we evaluate the application of our scheme to a single-

level security refresh. Nonetheless, we found we can achieve even higher endurance with

lower hardware overhead than the two-level security refresh. We will discuss the results

in Figure 36 subsequently.

Moreover, to combine our scheme with a single-level security refresh, we propose a

rate control mechanism for the refresh rate of the single-level security refresh. The refresh

rate is measured as the reciprocal of the refresh interval. In the original security refresh,

the refresh rate is controlled by a counter based on the number of writes to the memory.

The counter is incremented by one for each write to the PCM mainmemory. Then, an

address remapping takes place whenever the counter is aboutto overflow. In our scheme,

we increase the counter by a value larger than one upon every cache line eviction from

the isolation cache. In other words, the evictions expedites the address-remapping process.

We call this stride value anexpediting factor. The rationale is that a line eviction from

the isolation cache results from the insertion of another attacked line,i.e.,a capacity miss.

This indicates that the the number of attack addresses exceeds the capacity of the isolation

cache, which poses a threat to PCM reliability. In our scheme,furthermore, as the attack

writes show high deviation, the counter values for their target addresses cross the fluctuation

margin boundary fast. Thus, their short learning phases increase the frequency of evictions
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from the isolation cache. Therefore, by using the eviction rate, we can expedite the wear

leveling to protect our PCM system from the intensive attacks.

Figure 36 shows the lifetime of each configuration when combining our scheme with

a single-level security refresh using a 7-bit counter,i.e., remapping two memory blocks

upon every 128 writes. Note that without our scheme this configuration of the single-level

security refresh endures only a few minutes under a malicious write attack. In the graph, all

the lifetimes of configurations are depicted as a relative value to the theoretical maximum

lifetime of 97.1 months under a perfect wear-leveling scheme. In each bar, the lower part

depicts the lifetime spent for demand writes and the upper part is for write overhead. We

used a16D4E(64) configuration for the decision maker withk = 8. As the expediting fac-

tor is increased from one to 2048, the lifetime for each configuration keeps increasing even

though its write overhead also increases. Thus, even the configuration using a 4-entry isola-

tion cache (1KB) endures 60.8 months including 25.7 months for additional writes. Given

the refresh rate (R) of a single-level security refresh, the rate of write overhead is calculated

by the expediting factor (F) and the eviction rate (E = the number of evictions
the number of writes to PCM). In

the graph, the eviction rate of each configuration is specified in parentheses below the con-

figuration name. Then, the rate of write overhead can be calculated by
(1− R) + R× F

R
.

0%

20%

40%

60%

80%

100%

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48 1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48 1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48 1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

5 TAddrs, 4-entry Iso-$
(4.55%)

9 TAddrs, 8-entry Iso-$
(4.54%)

17 TAddrs, 16-entry Iso-$
(4.52%)

33 TAddrs, 32-entry Iso-$
(4.36%)

R
el

at
iv

e 
L

if
et

im
e Overheads

Demand Writes

Figure 36:Lifetime improvement using single-level security refresh.

However, the high write overhead under a malicious write attack is affordable to pro-

tect the PCM main memory, while it must be mitigated in normal application behavior. To

evaluate the write overhead for normal applications, we simulated SPEC2006 benchmark

applications. In the simulations, the memory hierarchy includes a 32KB L1 data cache, a
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1MB L2 unified cache and an 8MB L3 unified cache, which are all eight ways. The cache

line size is 64B for L1 and L2 and 256B for L3. Our 32-entry isolation cache and the

16D4E(64) decision maker are located after the L3. Among the applications,483.Xalan

shows the highest eviction rate of 0.24%. Thus, by using an expediting factor of 128, we

can restrict the write overhead for normal applications down to 1.0%. With the expedit-

ing factor of 128, the configuration using a 32-entry (8KB) isolation cache can endure 39

months under a malicious attack. Note that when restrictingwrite overhead at around 1.0%

in the two-level SR scheme with 512 sub-regions (12KB), its lifetime is 26.0 months.

5.6 Related Work

The front-end of our decision maker is a variation form of theoriginal Bloom filter [38],

which also employs multiple hash functions to map the outcomes of an input set to a bit-

vector to create a signature for the given set. Acounting Bloom filter[37] replaced each

bit of the bitvector with a counter to enable the deletion of an evicted element. Unlike

our multi-dimensional counters, the counting Bloom filter indexed all hashed results into a

unified counter array. Ghoshet al. described asegmented counting Bloom filter[39] that

has both the bitvector and the counters with duplicated hashes in one Bloom filter for re-

ducing energy and expediting lookup for a match in the bitvector. Note that the use model

and update mechanism of the counters in our scheme are drastically different from those

of prior Bloom filters. The prior use of counters was to enablethe insertion and deletion

of elements without rehashing given no saturation occurs inthe counters. In contrast, our

counters are used to train the decision maker for scoring thewrite frequency of observed

addresses. Then the sum of the counters above threshold of all dimensions is used as a

binary classifier, in some sense, similar to a single-layered perceptron neural networkstud-

ied in branch predictors. Basuet al. proposed askewed Bloom filterto count the L2 cache

misses [40]. Even though the skewed Bloom filter used multiple dimensions, its counter

management and decision are very different from ours. With the counter scheme, it is hard
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to differentiate aberrant write patterns from normal ones becausethe scheme used the ab-

solute counter values rather than the degree of deviation. Dharmapurikaret al. proposed

parallel Bloom filters(PBF) for deep packet inspection [41]. Each of the PBF contains

a signature of a particular string length to identify suspicious network traffic. Recently,

Xiao and Hua [42] proposed a generalized PBF based on counting Bloom filters that keeps

multiple attributes of a given element in the PBF. The PBF design is somewhat similar to

the design principle of our multi-dimensional Bloom filters. However, the organization and

use model of our counters are very different from prior art.

The previously proposed PCM architectures [1, 4, 6, 43] advocated PCM to be used as

a main memory or a last-level cache with little or no consideration of write-endurance is-

sues. These proposals leave PCM vulnerable and unusable in practice under the worst-case

scenarios or malicious write attacks. Parket al. [16] studied a vertical hybrid-DRAM/PCM

architecture from power management perspective but ignored PCM’s reliability. Qureshi

et al. [2] suggested a vertical hybrid hierarchy using a DRAM buffer as a filter with wear

leveling. Their scheme will incur large overhead because ofthe sheer size of the DRAM

buffer and the hardware storage (4MB) for the wear-leveling counters. Zhang and Li pro-

posed a horizontal hybrid-PCM/DRAM using OS to migrate hot pages [17] to a parallel

DRAM based on page-worn information. This scheme will not work in tandem with a

PCM employing wear leveling, which OS has no control over. As discussed in Section 2.3,

a filter-based DRAM cache scheme proposed by Jianget al. [44] and a multiple-buffer

scheme proposed by Leeet al. [1] are vulnerable to malicious attacks because of their

deterministic behavior.

A delayed write queue(DWQ) scheme was proposed by Qureshiet al. [9], where a

PCM write queue delays the writes to PCM until the number of pending writes exceeds

a cetain threshold called a delayed write factor. If the write queue supports a function to

merge write requests to the same address, then the DWQ has the same effect with our hybrid

architecture in terms of the capability of helping wear-leveling by forcing adversaries to
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attack multiple targets. A main difference is that the DWQ fails to reduce the number of

writes to PCM. For instance, when using an-entry DWQ, an adversary can easily shift out

the writes in the DWQ to PCM by sequentially attacking (n+ 1) target addresses. In other

words, afterk iterations of attacking the (n+ 1) targets, the total number of writes to PCM

will be k · (n + 1). On the other hand, ourn-entry isolation cache can reduce it to near
k · (n+ 1)

n+ 1
as described in Section 5.5.2.

Also, Qureshiet al. proposed apractical attack detection(PAD) scheme which can

estimate the degree of attack severity, named attack density [8]. The PAD scheme makes it

possible to achieve an efficient wear-leveling scheme that can control wear-levelingover-

head depending on the attack density. Moreover, since a frequency-based PAD (F-PAD)

composed of 16 entries has 16 frequency counters for each entry, the frequency informa-

tion can be used for isolating frequently written addresses, just as the degree of deviation

in our detection scheme. However, the difference is that the F-PAD estimates the degree of

deviation only for the addresses stored in the 16 entries while our multi-dimensional clas-

sification scheme contains the information of all addressesrecently written. This limited

information of the F-PAD may cause inefficient isolation.

5.7 Summary

To address the reliability requirement for making phase-change memory a reality in the

main memory hierarchy, we proposed a hybrid-memory architecture that integrates a small

SRAM called isolation cache with a detection mechanism inside the PCM main memory to

identify and isolate the frequent writes into the durability-proof isolation cache. We argue

that the reliability of phase-change memory should be guaranteed by memory vendors,

and therefore the entire wear-out management hardware mustbe embedded within each

memory chip. We proposed the design of a multi-dimensional Bloom filter along with

a binary classifier to detect suspicious memory writes and confine their future writes to

the SRAM. Our technique, when combining with wear leveling,will create a synergistic
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improvement for the operational lifetime. As our experimental results showed, lifetime can

be extended to 81.5 months out of a theoretical limit of 97.1 months under the worst-case

scenario or malicious write attack with small hardware overhead.
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CHAPTER 6

TRI-LEVEL-CELL PHASE CHANGE MEMORY:
TOWARD AN EFFICIENT AND RELIABLE MEMORY SYSTEM

A multi-level PCM cell can store more than one bit by defining the intermediate states

between set and reset states [30]. The resistance of a PCM cellis as low as 103 ohms in

the set state and 106 ohms in the reset state. By further exploiting the resistance difference,

a PCM cell can have two or even more intermediate states in addition to set and reset to

increase data density per-cell. For example, four-level-cell (4LC) PCM stores two bits

per cell by exploiting two additional intermediate states,while eight-level-cell (8LC) PCM

stores three bits per cell with six more intermediate states. Such multi-level-cell (MLC)

PCM requires the following operations to function correctly. Firstly, an MLC PCM cell

needs iterative write-and-verify steps to verify its written value. When the resistance fails

to fall into a predefined range, a PCM chip needs to repeat the write-and-verify step. This

iterative writing process takes up to eight times longer than a typical write in single-level-

cell (SLC) PCM [45]. Secondly, when the resistance of an MLC PCM cell is drifted and

crosses the storage level boundary, a soft error (i.e., bit flipping) occurs and needs to be

recovered by error correcting mechanism, which can be costly. Unfortunately, the soft

error rate (SER) due to resistance drift in MLC PCM is fairly high. With a detailed model

of resistance drift [21], we calculate the probability of the SER of an MLC PCM cell. As

we show in Section 6.3, the SER increases over time because the resistance of the MLC

PCM cell increases over time. In other words, the chance of crossing the storage level

boundary increases over time along with the resistance. More importantly, Section 6.2

shows that the SER of MLC PCM is significantly higher than that of DRAM. To address

such shortcomings, Xuet al. [21] proposed a time-aware error correction scheme, which

employs extra cells for storing predefined reference resistance values. The reference cells

are adjusted to the predefined values whenever the other cells in its corresponding data
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block are written. When reading the data block, the resistance of the reference cells are

used to compensate the drifted resistance in other cells. Byusing such a technique, the SER

(called raw bit error rate in [21]) could be reduced from 10−3 ∼ 10−1 to 7×10−4 ∼ 10−2. On

the other hand, Awasthiet al. proposed an efficient scrub mechanism for MLC PCM [46].

The mechanism effectively reduced 99.6% of uncorrectable errors; however, the lowest

possible SER for long-term writes1 of 4LC PCM was 6.74× 10−5.

DRAM also experiences soft errors caused by particle strikes. Its SER is known to be an

average of 25,000∼ 75,000 FIT (failures in time per billion hours of operation) perMbit,

i.e.,25×10−12 ∼ 75×10−12 per bit-hour [47]. For example, 16GB of DRAM is expected to

have 3.43 to 10.31 soft errors every an hour. In contrast, 4LCPCM with SER of 6.74×10−5

(the lowest SER for long-term writes in [46]) is expected to incur 9.26× 106 errors, near

106 times more errors than DRAM. Moreover, in this comparison, an eight-bit correction

BCH ECC is assumed [46] whereas no ECC was assumed in DRAM. Even so, 4LC PCM

shows several orders of magnitude higher SER than DRAM even with sophisticated ECC

support.

The downside of 4LC PCM is more than its high SER and the requirement for ECC

support. If we adopt redundant PCM cells for storing reference values and compensate the

increase in resistance, a block of PCM cells must share the redundant cells for reducing

the capacity overhead [21]. As such, any small change must read and rewrite the entire

block. This strategy triggers more writes to the cells, reduces their lifespan, consumes

more power, and degrades performance. On the other hand, if the scrub mechanism is used

for reducing soft errors [46], the memory controller will spend more time in scrubbing than

DRAM, which degrades the overall performance of the memory subsystem. However, in

both cases, the performance impact of those overheads were not discussed. In summary,

4LC PCM not only has higher SER than DRAM even with ECC support but also requires

extra overheads that have not been quantitatively evaluated. The motivation of this research

1The original paper [46] defined a long-term write as follows.Some PCM cells experience sufficiently
high timing gap between writes. These types of writes are called long-term writes.
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stems from these observations. As we will show in later sections, if we reduce the number

of storage levels from four to three, a PCM cell shows fewer errors than DRAM, and thus

eliminates the need of ECC, reference cells, and scrubbing. Wecompare our proposed tri-

level-cell (3LC) PCM over 4LC PCM to demonstrate that 3LC PCM is the only feasible

solution for putting multi-level cells into practical use.

6.1 Tri-Level-Cell (3LC) PCM

For 3LC PCM design, the most straightforward approach is to remove the most error-prone

state from 4LC PCM. We first discuss the physical parameters of4LC PCM. By measuring

the resistance drift of reset and set states from iterative experiments, Ielminiet al. [48, 49]

showed that the drift can be represented by a power-law modelshown below:

Rdri f t(t) = R× { t
t0
}α (1)

whereR and t0 are normalization constants andα is a drift exponent. Because the main

cause of the drift is the structural relaxation of the amorphous state, the drift exponent of

the reset state is much larger than that of the set state in theexperiments. In other words,

the drift exponent will increase as the portion of the amorphous state in a cell increases.

As mentioned earlier, the resistance drift causes soft errors in the MLC PCM. To es-

timate the reliability impact of resistance drift, we make the following assumptions for

the normalization constants and the drift exponent for eachstorage level. According to

the experiments of Nirschlet al. [30], the iterative write-and-verify sequence adjusts the

programmed resistanceR to be located within a desired resistance range for a given stor-

age level, where log10 R follows a normal (Gaussian) distribution. Thus, we assume that

the logarithm of a normalization resistance, log10 R, will follows a normal distribution of

N(µR, σ
2
R). In addition, a desired programmed resistance range for a given state is set to the

range within 10µR±2.75×σR Ω and the upper and lower sensing boundaries for the state are set

to 10µR±3×σR Ω. The value of a drift exponent is also assumed to follow a normal distribu-

tion of N(µα, σ
2
α). The parameters we use in our drift analysis are based on theprevious
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works [46, 21] and described in Table 4.

Table 4:Configuration Variables of Four-Level-Cell (4LC) PCM When t0 = 1 s.

Storage Level Data
log10 R α

µR σR µα σα

0 01 3.0

1
6

0.001

0.4× µα
1 11 4.0 0.02
2 10 5.0 0.06
3 00 6.0 0.10

A soft error occurs when the resistance of a MLC PCM cell is drifted above the upper

boundary of its programmed state. From the state-boundary settings described above, the

condition of a soft error can be represented as follows.

Rdri f t(t) > 10µR+3×σR (2)

In other words, when considering the values in Table 4, the target resistance values for

the four storage levels are 103, 104, 105, and 106Ω, respectively, and the three sensing

boundaries between two adjacent levels are 103.5, 104.5, and 105.5Ω. For instance, when

the resistance of a cell programmed for storage level 2 drifts larger than 105.5 Ω, the cell is

sensed as the next storage level, generating a soft error.

By using the assumption that log10 Randα follow normal distributions as shown in Ta-

ble 4, we can calculate the probability of such soft error type. The detailed development of

formula is presented in Section 6.2. As we show in later sections, the most error-prone state

in 4LC PCM is the third storage level for the following reasons. Firstly, the fourth storage

level (amorphous state) in the highest resistance range does not generate errors. Secondly,

becauseα is proportional toR, the third storage level experiences the rapidest resistance

drift among all levels. If we remove the third storage level,this will not only remove the

errors generated by itself but also reduce most of the errorsgenerated by the second storage

level. For instance, the majority of errors generated by thesecond storage level occurs on

the boundary between the second and the third storage levels, which can be avoided by not

using the third storage level. Table 5 shows our design points for 3LC PCM.
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Table 5:Configuration Variables of Tri-Level-Cell (3LC) PCM When t0 = 1 s.

Storage Level
log10(R) α

µR σR µα σα

0 3.0
1
6

0.001
0.4× µα1 4.0 0.02

2 6.0 0.10

Given the physical parameters in Table 5, we calculate the SER of 4LC PCM and 3LC

PCM. Note that we use the analytical model discussed in Section 6.2 and present the results

in Tables 6 and 7. Table 6 shows the SER of two intermediate storage levels of 4LC PCM

based on time intervals since they were written while Table 7shows the SER of the first

two storage levels of 3LC PCM. For example, if a 3LC PCM cell is written to the second

storage level att = 0, the SER of the cell is 5.93× 10−14 at t = 245. Note that we mark “too

small” in the tables when Mathematica 8.0 outputs zero due tolack of precision. As Table 7

shows, there is no error in 3LC PCM up to 234 seconds or more than 500 years. Because of

such low SER, scrubbing will be unnecessary for 3LC PCM in the time range of interest.

For the same reason, ECC or other similar techniques can be waived. In summary, the SER

of 3LC PCM is even lower than that of DRAM. It does not require scrubbing nor ECC to

achieve the satisfactory level of reliability. To further justify the use of 3LC PCM over 4LC

PCM, we quantitatively compare and evaluate these two designoptions in the subsequent

sections.

Table 6:Probability of Soft Error of Four-Level-Cell (4LC) PCM by Equation (4) in Section 6.2

Time (s) Storage Level 1 Storage Level 2

2 (too small) 5.85E-06%
22 1.59E-12% 0.02%
23 5.85E-06% 0.12%
24 7.45E-04% 0.28%
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Table 7:Probability of Soft Error of Tri-Level-Cell (3LC) PCM by Equation (4 ) in Section 6.2

Time (s) Crystalline State Intermediate State

2 ∼ 234 (too small) (too small)
235 2.28E-16% (too small)
240 1.59E-14% (too small)
245 5.71E-10% 5.93E-14%

6.2 Analytical Error Model and Validation

In building an analytical error model for both 4LC PCM and 3LC PCM, we continue dis-

cussion on top of Table 4 and Table 5. First, we define two more variables,m= log10 Rand

n = log10 t. By substituting Equation (1) withmandn, we obtain the following.

log10(Rdri f t(t)) = log10 R+ α log10 t = m+ nα

Thus, the condition of a soft error can be rewritten as follows.

m+ nα > µR+ E

nα > µR+ E −m,

whereE =







































0.5 for storage level 0, 1, and 2 of 4LC PCM

0.5 for storage level 0 of 3LC PCM

1.5 for storage level 1 of 3LC PCM

Asα follows N(µα, σ
2
α), nα follows N(nµα, (nσα)

2). The probability fornα to be more than

µR+ E −mcan be calculated as follows.

Probability of soft error for a givenm= 1− Φ(
µR+ E −m− nµα

nσα
),

whereΦ(x) =
1
√

2π

∫ x

−∞
e−x2/2dx

(3)

Here, we also take the effect of the iterative writing into account. As mentioned earlier,

cell programming iterates a write-and-verify sequence until log10 R is less thanµR+2.75σR

or larger thanµR − 2.75σR. It means the probability density function of a random variable
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m, f (m) is as follows.

f (m) =























1
Kφ(

m−µR

σR
) µR− 2.75σR < m< µR+ 2.75σR

0 otherwise,

where K =
∫ µR−2.75σR

µR+2.75σR

φ(
m− µR

σR
)dm, and φ(x) =

1
√

2π
e−x2/2

Therefore, we can obtain the probability of soft error as a function of time (t = 10n) by

integrating Equation (3) with a random variablem for µR− 2.75σR < m< µR+ 2.75σR.

Probability of soft error=
∫ µR−2.75σR

µR+2.75σR

(1− Φ(
µR+ E −m− nµα

nσα
)) f (m)dm (4)

We evaluate Equation (4) for 4LC PCM and also run Monte Carlo simulations to verify

these equations. In the simulation, we randomly pickedR andα from their corresponding

normal distributions in Table 4 and calculate the drift resistance,Rdri f t(t), to determine if

it generates any soft error. For each storage level, the simulator executes one billion trials.

Figure 37 shows the results side by side. We omit the soft error rates for set and reset states,

i.e., the storage level 0 and 3, because (i) resistance drift in level-3 states does not lead to

a soft error, and (ii) the error rates of level-0 states are too small to be evaluated and can

be ignored. For example, Mathematica 8.0 shows the first non-zero error rate for level-0

states whent = 235 or 1090 years, and the error rate is 2.3 × 10−18. Similarly, note that

three data points for storage level 1 and 2 are missing because either (i) Mathematica 8.0

returns zero for Equation (4) or (ii) Monte Carlo simulation found no error in one billion

trials. By comparing results from two independent sources,we validate the accuracy of our

theoretically derived Equation (4) by simulation.

6.3 Revisiting Four-Level-Cell (4LC) PCM

Given the soft error rates in Table 6, it is clear that withoutany mechanism for reducing

the soft error rates, 4LC PCM is unusable as main memory. Researchers have proposed

several drift-tolerant approaches such as error correction schemes [46, 50, 19, 21], data en-

coding schemes using relative resistance difference [19, 50], a reference cell scheme [20],
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Figure 37:Probability of Soft Error of Four-Level-Cell (4LC) PCM Over Time

a time-aware drift estimation mechanism [21], and most recently an efficient scrubbing

scheme [46]. Among them, we focus on the most recent work by Awasthi et al. [46]

who described an architectural mechanism combining a memory scrubbing scheme with a

strong error-correction method to lower soft error rates aiming to use PCM as main mem-

ory. However, as we will show, even with the most efficient scrubbing mechanism, the soft

error rate of 4LC PCM is still much higher than that of DRAM.

6.3.1 Estimating Scrubbing Overhead

In this section, we compare the SER of 4LC PCM to that of contemporary DRAM and

argue that 4LC PCM is impractical for main memory due to reliability concern. First, we

assume a 16GB PCM main memory with eight banks (i.e., 2GB per bank) using a 256B

data block2 as a basic access unit as assumed in prior literature [51, 52]. According to

recent work by Choiet al. [53], the read and write latencies in SLC PCM are 120nsand

150ns, respectively. Considering iterative write-and-verify steps are required for MLC

2A large last-level DRAM cache is typically used to compensate for the relatively slower PCM access
latencies. Its cacheline size is assumed to be 256B
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PCM, we assume that scrubbing one cacheline takes at least 1.15µs. Also, we assume that

each storage level has the same probability of occurrences.

The first column in Table 8 shows the scrubbing overhead decreases as the scrubbing

period increases. Here, the scrubbing overhead is defined as
Time used for scrubbing

Scrubbing period . A

2GB PCM bank has 8M cachelines. Thus, about 9.65 seconds (≃ 8 × 220 × 1.15µs) are

required for scrubbing the entire physical PCM even if the eight PCM banks are scrubbed

in parallel. As shown in Table 6, even when the memory controller performs nothing but

scrubbing (100% overhead,i.e., the memory controller will not have time to respond to any

memory request), the SER of storage level 2 in 4LC PCM is 0.12% which is significantly

higher than that of DRAM. Moreover, if we use the scrubbing period of 45 minutes as in

the DRAM memory system for real servers [47], the SER of a PCM cell programmed to

storage level 2 will escalate to 5%, which is intolerable. Clearly, 4LC PCM with scrubbing

mechanisms cannot guarantee the most basic reliability by any standard. To reach a very

low SER and reduce the scrubbing overhead simultaneously, the maximum PCM capacity

per bank must be limited. Our next section will show the largest capacity of 4LC PCM the

scrubbing mechanism can support for different combinations of target SER and scrubbing

overhead.

6.3.2 Reducing Capacity to Achieve Low Soft Error Rates

Another way of lowering SER of 4LC PCM is to limit the maximum capacity. We assume

the capacity of 4LC PCM as 2GB per bank in Section 6.3.1 when estimating the scrubbing

overhead. Because the scrubbing overhead proportionally increases with the capacity, as-

suming 1GB per bank of capacity results in halving the overhead. If we further reduce the

capacity, 4LC PCM can achieve lower SER. Table 9 shows the results.

In Table 9, we calculate the maximum capacity of 4LC PCM for different combinations

of SER and scrubbing overhead. The leftmost column represents the scrubbing period for

each 256B memory block. The next column represents the combined SER, which is an

average of SER of all four states in 4LC PCM. However, because the third storage level
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Table 8:Probability of Uncorrectable Errors by ECC and S ERcombinedfor 2GB per Bank 4LC
PCM

Probability of Uncorrectable Errors for 512 bits
= Perror(512b)

Scrubbing Period
(Overheads)

S ERcombined No ECC (72,64)
BCH-8

(512b+80b)

23 seconds (100+%) 0.030% 7.4% 0.05% (too small)
24 seconds (60.29%) 0.070% 16.4% 0.24% 1.44E-10%
25 seconds (30.15%) 0.133% 28.9% 0.86% 3.80E-8%
26 seconds (15.07%) 0.218% 42.8% 2.26% 2.64E-6%
27 seconds (7.54%) 0.325% 56.5% 4.84% 7.45E-5%
28 seconds (3.77%) 0.475% 70.4% 9.76% 1.54E-3%
29 seconds (1.88%) 0.668% 82.0% 17.8% 0.02%
210 seconds (0.94%) 0.91% 90.4% 29.4% 0.18%
211 seconds (0.47%) 1.21% 95.6% 44.2% 1.08%
212 seconds (0.24%) 1.57% 98.3% 60.6% 4.61%

Probability of Uncorrectable Errors for 512 bits
= Perror(512b)

Scrubbing Period
(Overheads)

S ERcombined
BCH-16

(512b+160b)
BCH-24

(512b+240b)
BCH-32

(512b+320b)

23 seconds (100+%) 0.030% (too small) (too small) (too small)
24 seconds (60.29%) 0.070% (too small) (too small) (too small)
25 seconds (30.15%) 0.133% (too small) (too small) (too small)
26 seconds (15.07%) 0.218% (too small) (too small) (too small)
27 seconds (7.54%) 0.325% (too small) (too small) (too small)
28 seconds (3.77%) 0.475% 1.27E-10% (too small) (too small)
29 seconds (1.88%) 0.668% 2.32E-8% 4.11E-13% (too small)
210 seconds (0.94%) 0.91% 2.15E-6% 2.81E-12% (too small)
211 seconds (0.47%) 1.21% 1.10E-4% 1.34E-9% (too small)
212 seconds (0.24%) 1.57% 3.14E-3% 2.66E-7% 8.69E-12%

shows significantly larger SER than the other levels, this combined SER is close to one

fourth of the third storage level’s SER. In addition, we showthe maximum capacity by

each given scrubbing overhead. When the overhead is 100%, thememory controller cannot

service any request from the upper memory hierarchy. Since 100% scrubbing overhead is

impractical, the third column of Table 9 can be viewed as an upper bound.

Table 9 also shows the maximum capacity when the scrubbing overhead are set to

12.5% and 1.0%, respectively. For example, if we design 4LC PCM with the scrubbing
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Table 9: Maximum Capacity Per Bank of Four-Level-Cell (4LC) PCM by Soft Er ror Rates
and Scrubbing Overhead

Scrubbing Overhead
Scrubbing
Period (s)

S ERcombined 100.0% 12.5% 1.0%

2 1.46E-06% 488MB 61.0MB 4.88MB
22 0.005% 977MB 122MB 9.77MB
23 0.030% 1.95GB 244MB 19.5MB
24 0.071% 3.91GB 488MB 39.1MB
25 0.132% 7.81GB 977MB 78.1MB

overhead of 1.0%, leaving 99% of the time for servicing memory requests, the maximum

PCM capacity will be merely 4.88MB for achieving an average of1.46 × 10−6% SER.

Note that when 4LC PCM comprises multiple ranks or banks, scrubbing can be performed

in parallel. Thus, when one bank is being scrubbed, the otherbanks can respond to re-

quests from the CPU. However, even with eight banks, the maximum capacity amounts to

39.1MB, which is still substantially below the main memory capacity required in modern

computing systems. In sum, although a lower SER can be achieved by reducing the total

capacity of 4LC PCM, the memory capacity becomes too small to be useful.

6.3.3 Using Error-Correcting Codes

Error-correcting codes (ECC) can be applied to compensate theSER of 4LC PCM. For

example, the industry standard (72,64) Hamming code [35] can correct single bit errors

by adding 8 redundant bits on top of 64 bits data.3 This scheme is commonly found in

main memory of server systems because of the simplicity in encoding and decoding [54].

Moreover, stronger ECC can also be used to protect data from multiple bit errors. For

example, BCH codes [55, 56] correct 8, 16, 24, or 40 bits errorsfrom 256, 512, 1024

bytes of data depending on the size of the redundant bits. Because decoding BCH codes

require more computing power and time than (72,64) Hamming code, these codes are not

frequently used for latency-sensitive devices such as mainmemory but commonly found in

3The capacity overhead is 12.5%.
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slower devices such as NAND-based storage. With the combined SER for each cell of 4LC

PCM developed in previous sections, we calculate the error rates after applying (72,64)

Hamming code and various BCH codes. Note that for every ECC evaluated in this section,

we fix the data size at 512 bits as in [46].

(72,64) Hamming code corrects one bit error, and thus, having more than two bit errors

among 72 bits is uncorrectable. In addition, since storing 72 bits requires 36 4LC PCM

cells, the probability of having more than two bit errors outof 36 cells can be calculated as

follows. Note that by using Gray codes as described in Table 4, one step change in storage

levels is limited to affect only one bit in two-bit data. Thus, two bit errors can happen only

when two 4LC PCM cells are changed due to resistance drift.

Probability of having at least two bit errors in 72 bits

=1− P(no errors)− P(one bit error)

=1− (1− S ERcombined)
36−

(

36
1

)

(1− S ERcombined)
35(S ERcombined)

=Perror(72b)

(5)

Now we calculate the probability of uncorrectable errors in512 bits. 512 bits comprises

eight of 64 bits data, therefore, to reconstruct the entire 512 bits, all eight blocks should not

generate any uncorrectable error. If we define the result of Equation (5) asPerror(72b), then

the probability of uncorrectable error for 512 bits is defined as follows.

Perror(512b) = 1− (1− Perror(72b))8

The fourth column in Table 8 shows the results. In Table 8, we calculate the probability

of uncorrectable errors by scrubbing period, scrubbing overheads, andS ERcombined. If we

compare the error rates of 4LC PCM to that without ECC, (72,64) Hamming code reduces

the error rates, but those rates are still too high for practical use. The results indicate that

4LC PCM must use stronger ECC that requires more redundant bitsand higher computa-

tional overheads.
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Now we calculate the probability of uncorrectable errors with stronger ECC. On top of

512 bits of data, BCH-8 corrects up to 8 bits errors by adding 80redundant bits, and BCH-

16 corrects up to 16 bits errors by adding 160 redundant bits.4 We generalize Equation (5)

for calculating the probability of having at leastn bit errors out ofmbits as follows.

Probability of having at leastn bit errors out ofmbits

= 1−
n−1
∑

k=0

(

m
k

)

(1− S ERcombined)
m−k(S ERcombined)

k
(6)

Table 8 also shows the results from Equation (6). When the scrubbing period is 28 seconds,

the scrubbing overhead is 3.77%, andPerror(512b) is 1.54× 10−3% for BCH-8. The error

rate is significantly smaller than that of 4LC PCM with (72,64)Hamming code; however,

still 106 ∼ 107 times higher than the SER of DRAM without ECC support.

Table 8 shows that if we limit the maximum scrubbing overheadto 1%, 4LC PCM

is only usable with BCH-32. However, such requirement prevents 4LC PCM from being

used as main memory of commodity systems because of the following reasons. Firstly,

a memory controller with a complex error-correcting mechanism requires extra chip area

and design effort, which increase the chip cost. Since memory controllersare typically

integrated in the same die with processor cores, vendors need to design and fabricate a

customized CPU for supporting 4LC PCM. Secondly, the higher computational overhead

in decoding increases the memory latency and degrades the performance. For these reasons,

the majority of commodity systems typically implement no ECCschemes or at most the

(72,64) Hamming code.

Moreover, the most critical downside of BCH-32 is a capacity overhead. To correct up

to 32 errors from 512 bits of data, we must add 320 parity bits to make a total of 832 bits of

data. In storing 832 bits, 416 4LC PCM cells are needed. On the other hand, 416 3LC PCM

cells can store 659 bits (= ⌊log2(3416)⌋). Note that because 3LC PCM has no soft errors in

the time range of interest, all 659 bits can be used to store useful information without parity

4The capacity overheads are 15.6% and 31.3%, respectively.
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bits. In summary, 3LC PCM theoretically achieves higher information density than 4LC

PCM. The next sections explains practical implementation for 3LC PCM.

6.4 Tri-Level-Cell (3LC) PCM in Practice

So far, we have discussed that by using 3LC PCM, we can achieve aconfident level of

reliability that 4LC PCM cannot provide. In this section, we will address 3LC PCM imple-

mentation issues.

6.4.1 Binary-to-Ternary Conversion

Since tri-level cells do not match any conventional binary digital system, we need an ef-

ficient way to convert binary information into the ternary number system and vice versa.

The efficiency of number conversion methods can be evaluated with cell utilization and

implementation feasibility. In other words, it is desirable if a number conversion method

can fully utilize the cell capacity with low-cost hardware.

First, we need a way to evaluate the cell utilization of a number conversion method

considering extra overhead. For example, if a conversion method usesn
2 four-level cells to

storen-bit data, then the four-level cells can be regarded as fullyutilized. On the contrary,

if a conversion method needsn four-level cells to storen-bit data, then its cell utilization

will be halved. This concept can be generalized as follows. When a number conversion

method usesm k-level cells to storen-bit data, its cell utilization is

Cell Utilization=
logk 2n

m
=

n
m

logk 2. (7)

In this equation, 2n is the number of different states represented byn-bit data and logk 2n is

the theoretically minimum number ofk-level cells to storen-bit data. For instance, if a 4LC

PCM requires a BCH-32 error correction scheme to prevent drift-induced soft errors, the

cell utilization of the binary to quaternary conversion is calculated as
512
416

log4 2 ≃ 0.615

where the BCH-8 requires 320 more parity bits to recover 512-bit data from eight errors.

As mentioned in Section 6.1, the 3LC PCM does not require any complicated error
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correction scheme. However, some capacity loss of 3LC PCM is unavoidable due to binary-

to-ternary conversion. In other words, when usingn bits as a basic store unit, the minimum

number of 3LC PCM cells to store then bits is ⌈n log3 2⌉(= m). For example, storing

three-bit data requires at least two 3LC PCM cells. The two 3LCPCM cells are used for

differentiating 23 states even though they can represent maximum 32 states. Thus, one

of the states represented by two 3LC PCM cells is remained unused. Figure 38 shows

achievable cell utilization for〈n,m〉 binary-to-ternary conversion methods when varying the

size of a basic store unit,n, from one to 32. Among those conversion methods, the〈19,12〉

conversion storing 19 bits to 12 3LC PCM cells can achieve the highest cell utilization

of 0.999, while the cell utilization of a〈8,6〉 conversion method is at most 0.841. For

reference, in the〈1,1〉 and〈2,2〉 conversion methods, a 3LC PCM cell acts like a SLC-

PCM cell and the cell utilization is 0.631.
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Figure 38:Tri-Level-Cell Utilization

Another factor that should be considered for a conversion method is how feasible the

conversion method is to implement. Those〈n,m〉 conversion methods for 3LC PCM can

be implemented with several ways such as using a look-up table (LUT), calculating with

arithmetic units, and implementing with basic logic gates.Those implementation methods

have their respective pros and cons. Using a look-up table can reduce conversion latency,

while the number of table entries is exponentially increased when increasing the size of a

basic store unit,n. On the other hand, calculating ternary numbers with arithmetic units

consumes less hardware costs than LUT but its latency is increased due to complicated
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arithmetic operations. Thus, increasing a basic store unit, n, to achieve higher cell utiliza-

tion results in high hardware cost or long access latency. Moreover, since a conversion

method should be embedded inside a memory chip, its hardwarecost and access latency

are critical for its implementation feasibility.

Therefore, we propose to use a simple number mapping method such as〈1,1〉, 〈2,2〉,

and 〈3,2〉 conversion methods that are implementable with simple logic gates. With a

combination of the three conversion methods, we can build any conversion method whose

cell utilization is less than or equal to the cell utilization of 〈3,2〉, 0.946. For example, a

〈8,6〉 conversion can be composed of two〈3,2〉 conversions and one〈2,2〉 conversion,i.e.,

2〈3,2〉+〈2,2〉 = 〈8,6〉, and a〈16,11〉 conversion can be composed of five〈3,2〉 conversions

and one〈1,1〉 conversion,i.e.,5〈3,2〉 + 〈1,1〉 = 〈16,11〉.

Table 10 shows an example of the〈3,2〉 number mapping method. In this example,

eight ternary states except the 11 state are used to represent three-bit binary data. This

simple number mapping method can be implemented with several logic gates. Assume that

three-bit data,b2b1b0, is stored to two tri-level cells,t1t0 and each cell uses two control

signals,pc1 and pc0, to select a programming current corresponding to its state, wherec

indicates a corresponding cell number. If the relationshipbetween the cell states and their

control signals is shown in Table 10, the control signals canbe represented with the three

binary bits as follows.

p11 = b2 · b1 + b2 · b0

p10 = b2 + b1 · b0

p01 = b2 · b1 + b1 · b0

p00 = b1 + b2 · b0

Similarly, when reading a 3LC PCM cell, its programmed resistance is represented with the

outputs of two sense-amplifiers,rc1 andrc0 as described in Table 10. From the four outputs
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of two cells, the three-bit data can be decoded with simple logic gates as follows.

b2 = r11+ r10 · r01 · r00

b1 = r01+ r11 · r00

b0 = r11 · r01+ r11 · r10 · r01+ r11 · r10 · r00

Table 10:An example of the〈3,2〉 number mapping method.

3-digit binary 2-digit ternary
control signals

cell1 for t1 cell0 for t0
(b2b1b0) (t1t0) s11 s10 s01 s00

000 00 0 0 0 0
001 01 0 0 0 1
010 12 0 1 1 x
011 02 0 0 1 x
100 10 0 1 0 0
101 20 1 x 0 0
110 22 1 x 1 x
111 21 1 x 0 1

Relationship between ternary levels and control signals:
〈 Programming〉

tc pc1 pc0

2 1 x
1 0 1
0 0 0

〈 Reading〉
tc rc1 rc0

2 1 x
1 0 1
0 0 0

where “x” means redundant condition

In this section, we showed that by using a〈3,2〉 number mapping method we can

achieve the cell utilization of up to 0.946 with low cost hardware. Thus, when using an

〈8,6〉 conversion composed of two〈3,2〉 and one〈2,2〉 conversion methods, 512-bit data

can be stored in 384 tri-level cells. Here, it is noteworthy that in the case of 4LC PCM,

416 cells are required to store 512-bit data when using a BCH 32-error correcting scheme

to achieve a confident level of reliability.

6.4.2 Bandwidth Enhancement

So far, we achieved the desired reliability with 3LC PCM by eliminating the most error-

prone state from the four-level cell PCM as shown in Figure 39(a). To program a cell to the
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intermediate state, “L1”, 3LC PCM use the same write-and-verify iterations of 4LC PCM.

Since a prime concern in 4LC PCM is to maximize its reliability, it is desirable to precisely

tune the resistance of intermediate levels to render drift margins between adjacent levels as

large as possible. However, this precise programming leadsto a long write latency, which

is the root cause of low write bandwidth in MLC PCM. The question is whether the tight

resistance ranges for the intermediate levels achieved by write-and-verify iterations are still

necessary for 3LC PCM.
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Figure 39:Cell Distribution vs. Programming Sequence

According to our analytical model, the 3LC PCM using the same resistance ranges

with 4LC PCM is virtually free from drift-induced soft errors. As described in Table 7, its
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SER is extremely small even comparing with that of DRAM, indicating that the resistance

range for the intermediate level is unnecessarily tight. Since the tight resistance range

is obtained by sacrificing the write latency, we can reduce the write latency by relaxing

the resistance range and eventually improve the overall write bandwidth. Therefore, we

propose bandwidth-enhanced 3LC (BE-3LC) PCM using a relaxed resistance range for the

intermediate level.

Figure 39(b) shows two examples to program a relaxed intermediate level in 3LC PCM.

The relaxed intermediate level can be programmed with less number of write iterations be-

cause of its widened resistance range. Another choice to program the relaxed intermediate

level is to use the moderate-quenched (MQ) programming which controls the falling slope

of a reset current pulse [57]. By using the MQ programming method, the write latency of

an intermediate level in 3LC PCM cell can be reduced below the set latency,i.e., the write

latency of SLC PCM.

As mentioned, relaxing the acceptable resistance range forthe intermediate level helps

to reduce the write latency and enhance write bandwidth. However, it reduces the drift

margin between resistance levels and the narrow margin causes the drift-induced SER to

be somewhat increased. In Section 6.4.3, we will introduce how to use conventional ECC

schemes for the slightly increased SER of BE-3LC PCM. Also, wewill evaluate the SERs

of both 3LC PCM and BE-3LC PCM in Section 6.5.1.

6.4.3 Efficient 〈3,2〉 Conversion for Error Correction

Using error correcting codes can improve the 3LC PCM reliability as in other memory

systems. The problem is how efficiently 3LC PCM uses the conventional ECC schemes.

In the case of 4LC PCM, four states of a cell is encoded with two-bit Gray code. By

doing so, one state transition in a four-level cell affects only one bit in binary data, which

enables to use a binary error-correcting code for correcting the state transition of four-

level cells. Similarly, if one drift-induced error in a tri-level cell affects only one bit in the

corresponding binary code, a binary error correcting code can be used for recovering the
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data from the drift-induced error.

In this section, we propose a state mapping method of〈3,2〉 conversion for using binary

error correcting codes. Figure 40(a) shows possible state transitions caused by drift-induced

errors in two 3LC PCM cells. Because the resistance drift increases the resistance level of

a PCM cell,i.e., from level 0 to level 1 or from level 1 to level 2, the state transitions are

uni-directional. The main idea is to map the state transition graph of two 3LC PCM cells

into the transition graph of the three-bit Gray code depicted in Figure 40(b).
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Figure 40:State mapping of〈3,2〉 conversion for efficient error correction in 3LC PCM

First, we exclude “11” state from the state mapping of our〈3,2〉 conversion. Note that

the state “11” was excluded because it has four transition edges, which cannot be mapped

into the Gray code, and also two tri-level cells can represent one more state than a three-bit

binary code. Then, the rest of states and edges are mapped into the Gray code graph as

shown in Figure 40(c),5 which means that all one-hop error transitions of the two-ternary-

cell states except ones from/to the “11” state are represented with one-hop error transitions

of the three-bit binary code. Note that we need a special process for the “11” state because

removing the “11” state from the state mapping cannot prevent error transitions to the “11”

state. When the “11” state is read from two 3LC-PCM cells, it indicates that the state

results from one or more drift-induced errors. Also, considering the monotonic increase

property of resistance drift, only “00”, “01”, and “10” states can be shifted to the “11” state.

5This state mapping is the same as one in Table 10.
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Thus, when the “11” state is read from the two tri-level cells, we can limit the maximum

number of transition-error hops to one by substituting it with a “00” state. By doing so,

one state transition error caused by resistance drift affects only one data bit. For example,

let’s assume that (72,64) Hamming code is used for single error correction and double error

detection (SECDED). The 72-bit code can be stored in 48 3LC PCM cells when using〈3,2〉

conversion. With the state mapping of〈3,2〉 conversion, the (72,64) Hamming code can

detect two drift-induced errors in the 48 tri-level cells and can correct one drift-induced

error.

Furthermore, considering a 72-bit PCM DIMM composed of 8 PCM chips, each PCM

chip has a 9-bit datapath which are matched to three〈3,2〉 conversion units. Note that if

eight 8-bit PCM chips are used to compose a 64-bit PCM DIMM for symmetry, each chip

becomes to use〈8,6〉 conversion. As a result, the 64-bit data is stored to 48 3LC PCM

cells which is the same amount of 3LC PCM cells to store a 72-bitcode. Therefore, given

a real PCM DIMM organization, our〈3,2〉 state mapping method allows to use the (72,64)

Hamming code without additional storage overhead.

6.5 Evaluation
6.5.1 Soft Error Rate of BE-3LC PCM

As discussed in Section 6.4.2, 3LC PCM can reduce writing latency by using fewer writ-

ing iterations. As such, the distribution of the resistanceis compromised, and which will

increase the SER of the PCM cell. In this section, we formulatethe relationship between

writing latency and the SER of 3LC PCM and argue that 3LC PCM can achieve the writing

latency close to SLC-PCM without compromising the SER.

Kanget al. [57] shows the distribution of the resistance of a PCM cell by two different

writing strategies; (i) iterative writing (write and verify) and (ii) writing without iterations.

As 3LC PCM does not use the third storage level, we focus on the distribution of the second

storage level. More specifically, we read the distribution of the resistance of the second

storage level from Figure 1 based on [57] and calculate the mean and the variance of the
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resistance when a cell is written without iterations. As we show in Table 11,σR andµα are

worsened from 4.0 to 4.255 and from 0.167 to 0.188, respectively. In addition, we assume

linear increment inµα andσα by σR for estimating the distribution ofα. For example, we

use the physical parameters in Table 4 and apply 0.04 increment in µα for every 10x inR.

Table 11:Physical Parameters for the Second Storage Level of 3LC PCM When t0 = 1 s.

Writing Strategy
log10(R) α

µR σR µα σα

Iterative 4.0 0.167 0.02
0.4× µαNon-iterative 4.255 0.188 0.02157

After obtaining the physical parameters of the second storage level of 3LC PCM, we

calculate the SER of 3LC PCM by using analytical models discussed in Section 6.2. The

summary of results is as follows. Firstly, the majority of the errors happen in between the

set state and the second storage level. Such errors are not due to the resistance drift, but

because of the initial writing failure. For example, the memory controller writes 01 to a

3LC PCM cell, and the cell reads 00 immediately after the writing. The error rate for this

case is 3.04× 10−3%. Secondly, if we exclude such initial writing failures, the SER of 3LC

PCM caused by resistance drift is negligible untilt = 220 seconds. Table 12 shows the error

rate for this case.

When a PCM chip reads PCM cells immediately after writing them, the chip can detect

and rewrite the cells to fix the initial writing failures. More specifically, we assume that the

PCM chips rewrite the cells by sensing the written values immediately after writing. Even

though such strategy is similar to the iterative writing commonly used in 4LC-PCM, this

strategy is different in terms of the expected numbers of iterations. For the(100− 3.04×

10−3)% of the time, writing to our proposed BE-3LC-PCM finishes at the first attempt. The

second attempt is required for only 3.04× 10−3% of the time, and the expected numbers

of writing iterations in this case is close to one. Moreover,we also show the SER of 3LC-

PCM with industry standard (72,64) ECC support in the rightmost column of Table 12. This
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column is calculated based on the fact that 48 3LC-PCM cells store 72 bits, and (72,64)

ECC corrects one bit error. Again, the proposed PCM with (72,64) ECC shows a negligible

SER until t = 225 seconds. In summary, writing to 3LC PCM cells must be followedby

reading and verifying. Such small overhead will remove majority of the errors, and 3LC

PCM experiences no errors in the time range of our interest.

Table 12:Soft Error Rates of Intermediate Storage Level of BE-Three-Level-Cell (BE-3LC)
PCM

Scrubbing
Period (s)

Iterative
Writing

BE Writing
BE Writing
+(72,64) ECC

25

(too small)

(too small) (too small)
210 (too small) (too small)
215 (too small) (too small)
220 3.60E-16% (too small)
225 1.28E-10% 2.66E-15%

6.5.2 Performance

4LC PCM requires a scrubbing mechanism and a multiple-error correction scheme for

a confident level of reliability. However, to use the 4LC PCM, we have to consider other

aspects such as performance and hardware overhead. If the gain from its high density needs

other considerable cost, the 4LC PCM will be regarded as infeasible. First, to evaluate the

performance impact of using MLC PCM, we simulated 26 applications from SPEC2006

benchmark using SESC [28]. The read and write latencies of SLC PCM are assumed

to be 150ns including a row activation latency (tRC) of 120ns,and 200ns considering an

internal write verification delay, respectively [53]. For 3LC and 4LC PCMs, its read latency

is the same with the SLC’s, while its write latency is assumed to be 1000ns because of

its iterative write-and-verify iterations [46]. Similar to other studies [2, 9], an 8MB L3

DRAM cache composed of 256B cache-lines is employed to hide the PCM access latency.

Also, we assumed a PCM main memory composed of eight 2GB banks and we modeled a

memory controller that can efficiently schedule memory requests by exploiting bank-level

parallelism and PCM row buffer hits. Note that in the request scheduling, read requests
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have higher priority than write requests because write accesses are typically not on the

critical path in terms of performance.

Figure 41 shows the relative instruction-per-cycle (IPC) values normalized to the IPC

of SLC PCM. As in the recent paper [46], the two 4LC PCM configurations are assumed

to use a BCH code capable of eight error corrections for a 512-bit data block.6 According

to our analysis, the 4LC PCM with the BCH code has to scrub the entire memory space

every eight seconds to achieve a DRAM-level soft error rate.However, the eight-second

scrubbing is impossible because the minimum latency to scrub a 2GB PCM bank is about

9.6 seconds. Thus, we chose a 16 second scrubbing for 4LC PCM. Awasthiet al. pro-

posed a scrubbing overhead reduction scheme calledLight Array Read for Drift Detection

(LARDD) [46]. However, since LARDD reduces scrubbing overhead by sacrificing reli-

ability, we assume an 8-second period for the LARDD scheme. As shown in Figure 41,

the 4LC PCM scrubbed every 16 seconds experienced 72.2% performance degradation on

average. Especially,429.mcf that shows the highest write frequency (2.81 per 1000 in-

structions) incurred 95.2% performance degradataion. This is because of the five times

longer write latency of 4LC PCM and its scrubbing overhead occupying 60.0% of total

execution time. This tremendous performance degradation can be reduced by employing

the LARDD scheme. However, the LARDD still experienced 26.7% performance degrada-

tion. This means that although LARDD reduces the write frequency to PCM, there are still

too many read-and-check operations performed inside a chip, leading to substantial perfor-

mance degradation. On the other hand, the 3LC PCM experiencedonly 10.4% performance

degradation on average, although its write latency is also 1000 ns as in 4LC PCM.

Furthermore, the performance of 3LC PCM can be improved by using the bandwidth-

enhanced (BE) 3LC. Figure 42 shows the relative IPC of BE-3LC PCM which is nor-

malized to the IPC value of SLC PCM. The write latency of BE-3LCPCM is obviously

6We assumed the encoding and decoding latencies of the eight-error-correction BCH code take one mem-
ory clock cycle because the encoding and decoding logic can be fully parallelized by accepting its exponen-
tially increased area overhead.
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Figure 41:Performance comparison with 4LC and 3LC

decreased close to SLC PCM’s latency, however, estimating the accurate write latency is

beyond this research scope. Thus, we performed a sensitivity study varying its write latency

from 350ns down to 200ns monotonically decremented by a 50nsinterval. In addition, the

SER of BE-3LC is confined to less than 3.6 × 10−18 when the BE-3LC is scrubbed every

220 seconds, as mentioned in Section 6.5.1. Thus, all the BE-3LCPCM configurations are

assumed to use a 220 second scrubbing scheme. The relative IPC of the four configurations

are 0.982, 0.988, 0.994, and 1.000, respectively. As a result, BE-3LC PCM makes it feasi-

ble to achieve the increment of memory capacity with negligible performance degradation,

compared with SLC PCM.
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Figure 42:Sensitivity study of bandwidth-enhanced 3LC

6.5.3 Information Density

Another way to reinforce 4LC PCM reliability is to increase the number of correctable er-

rors in a data block. However, if the number of additional cells required for a multiple error
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correction code is equal to or larger than the number of data cells, then it is meaningless

to use 4LC PCM. For example, since the BCH code correcting nine errors in a 64-bit data

block requires additional 64 bits, a total of 64 4LC PCM cells should be used to store the

128 bits. Then, the 4LC PCM using a nine-bit correction (128,64) BCH code is no better

than using SLC PCM.

Here, we defineinformation densityas the number of data bits stored in one cell to

measure the cell efficiency. For instance, information density of SLC PCM is 1.00 because

every SLC PCM cell stores one data bit, and SLC PCM does not require capacity over-

heads from ECC. In the case of 3LC PCM, it uses an〈8,6〉 conversion scheme and thus its

information density is8
6 ≃ 1.33. In the proposed BE-3LC PCM, a (72,64) hamming code

is stored to 48 cells. Thus, its information density is still64
48 ≃ 1.33.

In Figure 43, we compare the information density of 4LC PCM with SLC PCM and

our proposed 3LC PCM. For example, the eight-bit correction (592,512) BCH code uses

592
2 cells to store a 512-bit data block and its information density is 1.73. However, the 4LC

PCM using a (592,512) BCH code requires an eight-second scrubbing scheme to achieve

confident reliability, which seriously degrades performance as discussed in Section 6.5.2.

If we use a strong error correction code recovering a data block from more errors, we

can reduce the scrubbing frequency and diminish its performance degradation caused by

scrubbing operations. Thus, we evaluate the SER of each configuration when a scrubbing

period is 210 seconds. Because it spends 9.65 seconds to scrub all 256B memory lines in

a 2GB PCM bank, the maximum performance degradation caused byscrubbing operations

can be limited to less than 1.00% (> 9.65
210 ). According to our analytical model, when the

size of a data block is 512 bits, a 26 or more error correction scheme is required to achieve

the same level of SER with the proposed BE-3LC in Table 12. Whenusing a 256-bit data

block, an error correcting scheme has to be able to correct 20or more errors. As shown

in Figure 43, those configurations marked in rectangles havelower information density

than that of 3LC PCM, 1.33. In other words, 3LC PCM is more efficient than 4LC PCM to
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store data bits at the same level of reliability.
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Figure 43:Information density of 4LC PCM

6.6 Summary

In this chapter, we asked the question about how reliable thewidely studied four-level-

cell (4LC) PCM can be by exploiting the schemes aimed at overcoming resistance drift

problems. We modeled the resistance drift in MLC PCM and showed that conventional

ECC schemes and scrubbing mechanisms are not usable in 4LC PCM for minimizing

drift-induced soft errors to a tolerable level for reliability due to their unduly overheads

and certain physical limit. We then evaluated architectural approaches addressing drift is-

sues in 4LC PCM including efficient scrubbing mechanisms and multiple error correction

schemes. To achieve a confident level of reliability, however, the latest scrubbing mecha-

nism still incurs significant performance degradation of 26.7% compared to 2LC PCM. On

the other hand, when using a stronger error correction code for correcting multiple errors,

the performance impact of the scrubbing mechanism could be alleviated but the increase of

codeword length compromisesinformation density, i.e., the number of data bits stored in

each cell, to lower than 1.33.

Considering these shortcomings, it is premature to use the 4LC PCM for an efficient
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and reliable memory system. Therefore, we propose tri-level-cell (3LC) PCM by remov-

ing the most drift-error-prone level from 4LC PCM. This new technology can eliminate

the reliability concerns due to drift-induced errors. Furthermore, by relaxing an accept-

able resistance range of the intermediate level, the programming latency of 3LC PCM can

be reduced close to that of 2LC PCM, making the performance impact negligible. Also,

we propose a state-mapping〈3,2〉 conversion to efficiently store binary data to tri-level

(ternary) cells. The state-mapping〈3,2〉 conversion scheme can be implemented with sim-

ple logic gates. Another merit of the state-mapping scheme is that it enables a conventional

binary ECC scheme such as a (72,64) Hamming code to be used for correcting a ternary

cell error while maintaining its information density to at least 1.33. In sum, by using 3LC

PCM, we can obtain benefits from the increasing memory capacity without any concerns

about memory reliability as well as without performance degradation.
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CHAPTER 7

CONCLUSIONS

In this dissertation, we addressed reliability issues of phase-change memory, such as the

limited write endurance and the resistance drift. Those issues are the most critical to use

PCM as a main memory. To overcome those issues, we propose various architectural solu-

tions and compare them with prior schemes in various aspectssuch as reliability, security,

performance, feasibility, etc. This dissertation includes the following contributions.

• A secure wear-leveling scheme dynamically changing address mapping.

• A multiple stuck-at-fault error correction scheme.

• A hybrid memory architecture using multi-dimensional classification to detect and

isolate malicious writes.

• Tri-level-cell phase-change memory as a practical use of multi-level cell PCM.

The first approach used to overcome the limited write endurance is a wear-leveling

scheme which evenly wears out the entire memory space to extend PCM lifetime. How-

ever, we found that if the memory mapping used by a wear-leveling scheme is leaked to

an adversary, malicious code can be easily designed to accelerate PCM cell aging and fail

the PCM main memory. Ironically, PCM’s relatively fast accesstime can be used to re-

duce the attack time to fail the memory. Thus, we propose a secure, low-cost wear-leveling

scheme,security refresh, which can dynamically change memory address mapping. For ad-

dress mapping, security refresh uses an algebraic function, which uses much less hardware

overhead than other table-based wear-leveling schemes. Since the algebraic function peri-

odically changes random keys, security refresh can effectively obfuscate address mapping

information. Another finding is that the recursive use of security refresh can extend PCM

lifetime further under malicious attacks even with less remapping overhead. The evaluation

shows that two-level security refresh endures more than fiveyears under malicious attacks

with less than 2.0% remapping overhead.
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Secondly, we focused on the fact that PCM cell wear-outs eventually incur stuck-at

faults. Thus, without any error recovery schemes, the weakest endurance cell dictates the

PCM lifetime. Moreover, multiple error recovery schemes aredesirable considering PCM

cell endurance variation that may increase as technology scales. To provide a stable PCM

lifetime, we proposed a multiple error correction scheme, SAFER, specialized for treating

stuck-at-fault errors. Different from other ECC schemes originally devised for correcting

transient errors, SAFER efficiently recovers data from multiple stuck-at faults by using the

properties of stuck-at faults such as permanency and readability. SAFER dynamically par-

titions a data block into multiple groups ensuring that eachgroup has at most one stuck-at

fault, and then applies a data-inversion scheme to each group as a single-error-correction

scheme. By doing so, SAFER32 which can correct at least 6 errors shows better lifetime

improvement than an eight-error correction Hamming code even with less storage over-

head.

The third approach to address the limited write endurance isto efficiently detect mali-

cious writes and isolate them. To do so, we proposed a hybrid memory architecture that

integrates a small SRAM called isolation cache with a detection mechanism. For the detec-

tion mechanism, we also proposed a multi-dimensional classification. In the mechanism,

the overall operation of each dimension is similar to a counting Bloom filter but its counters

indicate not write frequency itself but the degree of deviation of the write frequency. Thus,

temporarily concentrated write addresses are detected andisolated to the isolation cache.

Another merit of this scheme is to make wear-leveling more efficient by detecting abnormal

write behavior and forcing malicious code to use more attacktargets than the number of

isolation cache entries.

The last contribution of this dissertation is to evaluate the reliability of multi-level-cell

(MLC) PCM exploiting prior schemes to overcome resistance drift issues. According to the

evaluation, the bit error rate of four-level-cell (4LC) PCM achieved by the prior schemes are

still much higher than that of DRAM. To achieve a DRAM-level bit error rate in 4LC PCM,
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the benefit from the capacity increase of multi-level cells will be offset due to its storage and

performance overhead. Thus, we proposed to use tri-level-cell (3LC) PCM and showed that

3LC PCM is a more feasible option than 4LC PCM when considering additional overhead

and information density as well as the reliability. Also, for the practical use of 3LC PCM,

we proposed a state-mapping conversion scheme to efficiently store binary data to tri-level

cells. The〈3,2〉 state-mapping conversion using two tri-level cells to store three bits can

achieve at least 1.33 of information density. In addition, we showed that when using the

〈3,2〉 state-mapping, a (72,64) Hamming code can further increasethe reliability of 3LC

PCM without any storage overhead.
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[39] M. Ghosh, E.Özer, S. Ford, S. Biles, and H.-H. S. Lee, “Way guard: a segmented
counting bloom filter approach to reducing energy for set-associative caches,” inPro-
ceedings of the 14th ACM/IEEE International Symposium on Low Power Electronics
and Design, pp. 165–170, 2009.

[40] A. Basu, N. Kirman, M. Kirman, M. Chaudhuri, and J. Martinez, “Scavenger: A
new last level cache architecture with global block priority,” in Proceedings of the
International Symposium on Microarchitecture, 2007.

[41] S. Dharmapurikar, P. Krishnamurthy, T. Sproull, and J.Lockwood, “Deep packet in-
spection using parallel bloom filters,”IEEE Micro, vol. 24, no. 1, pp. 52–61, 2004.

[42] B. Xiao and Y. Hua, “Using parallel bloom filters for multiattribute representation on
network services,”IEEE Transactions on Parallel and Distributed Systems, vol. 21,
no. 1, pp. 20–32, 2009.

[43] X. Wu, J. Li, L. Zhang, E. Speight, R. Rajamony, and Y. Xie, “Hybrid cache ar-
chitecture with disparate memory technologies,” inProceedings of the International
Symposium on Computer Architecture, 2009.

[44] X. Jiang, N. Madan, L. Zhao, M. Upton, R. Iyer, S. Makineni, D. Newell, Y. Soli-
hin, and R. Balasubramonian, “Chop: Adaptive filter-based dram caching for cmp
server platforms,” inProceedings of the International Symposium on High Perfor-
mance Computer Architecture, 2010.

[45] M. Qureshi, M. Franceschini, and L. Lastras-Montano, “Improving read performance
of phase change memories via write cancellation and write pausing,” inProceedings
of the International Symposium on High Performance ComputerArchitecture, 2010.

[46] M. Awasthi, M. Shevgoor, K. Sudan, B. Rajendran, R. Balasubramonian, and V. Srini-
vasan, “Efficient scrub mechanisms for error-prone emerging memories,” in Proceed-
ings of the International Symposium on High Performance Computer Architecture,
2012.

[47] B. Schroeder, E. Pinheiro, and W. Weber, “Dram errors inthe wild: a large-scale field
study,” inProceedings of the eleventh international joint conference on Measurement
and modeling of computer systems, pp. 193–204, ACM, 2009.

113



[48] D. Ielmini, A. Lacaita, and D. Mantegazza, “Recovery and drift dynamics of resis-
tance and threshold voltages in phase-change memories,”IEEE Transactions on Elec-
tron Devices, vol. 54, no. 2, pp. 308–315, 2007.

[49] D. Ielmini, S. Lavizzari, D. Sharma, and A. Lacaita, “Physical interpretation, mod-
eling and impact on phase change memory (pcm) reliability ofresistance drift due
to chalcogenide structural relaxation,” inProceedings of the IEEE International on
Electron Devices Meeting (IEDM), pp. 939–942, 2007.

[50] W. Zhang and T. Li, “Helmet: A resistance drift resilient architecture for multi-level
cell phase change memory system,” inProceedings of 2011 IEEE/IFIP 41st Interna-
tional Conference on Dependable Systems& Networks (DSN), pp. 197–208, 2011.

[51] N. H. Seong, D. H. Woo, V. Srinivasan, J. A. Rivers, and H.-H. S. Lee, “SAFER:
Stuck-at-fault error recovery for memories,” inProceedings of the 43rd IEEE/ACM
International Symposium on Microarchitecture, 2010.

[52] N. H. Seong, D. H. Woo, and H.-H. S. Lee, “Security Refresh: Protecting Phase-
Change Memory against Malicious Wear Out,”IEEE Micro, vol. 31, no. 1, pp. 119–
127, 2011.

[53] Y. Choi, I. Song, M.-H. Park, H. Chung, S. Chang, B. Cho, J. Kim, Y. Oh, D. Kwon,
J. Sunwoo, J. Shin, Y. Rho, C. Lee, M. G. Kang, J. Lee, Y. Kwon, S.Kim, J. Kim, Y.-
J. Lee, Q. Wang, S. Cha, S. Ahn, H. Horii, J. Lee, K. Kim, H. Joo, K. Lee, Y.-T. Lee,
J. Yoo, and G. Jeong, “A 20nm 1.8V 8Gb PRAM with 40MB/s Program Bandwidth,”
in Technical Digest of the 2012 IEEE International Solid-State Circuits Conference,
2012.

[54] D. H. Yoon and M. Erez, “Virtualized and flexible ecc for main memory,” inPro-
ceedings of the International Conference on Architectural Support for Programming
Languages and Operating Systems, 2010.

[55] R. Bose and D. Ray-Chaudhuri, “On a class of error correcting binary group codes,”
Information and control, vol. 3, no. 1, pp. 68–79, 1960.

[56] A. Hocquenghem, “Codes correcteurs d’erreurs,”Chiffres, vol. 2, no. 2, pp. 147–156,
1959.

[57] D. Kang, J. Lee, J. Kong, D. Ha, J. Yu, C. Um, J. Park, F. Yeung, J. Kim, W. Park,
et al., “Two-bit cell operation in diode-switch phase change memory cells with 90nm
technology,” inProceedings of 2008 Symposium on VLSI Technology, pp. 98–99,
2008.

114


