COOLPRESSION — A HYBRID SIGNIFICANCE COMPRESSION
TECHNIQUE FOR REDUCING ENERGY IN CACHES

Mrinmoy Ghosh

Weidong Shi

Hsien-Hsin S. Lee

School of Electrical and Computer Engineering
Georgia Institute of Technology, Atlanta, GA 30332
{mrinmoy, shiw, lechs}@ece.gatech.edu

ABSTRACT

This paper describes CoolPression, a hybrid hardware-
based significance compression technique for reducing en-
ergy in caches. The scheme exploits data compression op-
portunities at bit granularity by employing two compres-
sion schemes: a novel significance compression scheme that
counts leading ones and zeros, and a dynamic zero com-
pression technique. Based on actual data, the more energy-
efficient scheme is selected dynamically to minimize bitline
drives needed for each cache access. Using SPECint2000
benchmark, our experiments show that the CoolPression
improves dynamic energy consumption by more than 35%
against a baseline cache, while having a saving ranged from
5 to 15% compared to each scheme applied alone.

1. INTRODUCTION

Continuous shrinking of transistor feature size and de-
mands of the working set size from increasingly complex
applications has led to ever-larger on-chip cache design
with a slew of read/write ports making it a major con-
sumer of on-chip power. A significant part of the cache
energy is drawn by the bitline driver circuitry because the
bitlines are densely loaded with a large number of storage
cells thus increasing its effective switching capacitance. To
address this issue, many low-power cache techniques were
proposed including sub-banking, segmented bit-lines [4, 7],
and pulsed word-line drivers [1] , etc.

Another interesting approach is to perform data com-
pression which allows gating off unused bit-lines while read-
ing from and writing data to the cache. Kim et al. [5]
describes a sign compression technique, where the most
significant half word is compressed to a sign bit to reduce
energy. Canal et al. in [2] also applies significance com-
pression to reduce power consumption in all stages of the
pipeline. Villa et al. [8] describe a Dynamic Zero Compres-
sion (DZC) scheme that compresses if a given entire byte
is zero.

In this paper we propose CoolPression, a hybrid signif-
icance compression technique by using Villa’s DZC as a
basis along with a novel technique called CoolCount, and
then dynamically determine the more energy-efficient way
to minimize the number of instances of driving data bit-
lines. The CoolPression circuitry monitors all accesses to
the cache and compresses/encodes any data written to the
cache, using either of the two compression schemes accord-
ing to the compressibility of the given data. An extra bit is
used to indicate which compression scheme was used. For
every read it decodes the data before sending it. The Cool-
Count technique uses a novel priority encoder and XOR
gates, and can count both leading ones and leading zeroes.
The novelty of the counting technique lies in the fact that
this scheme compresses information' in the granularity of

!Information hereafter represents both instructions and
data in general.

bits, while all prior schemes applied compression in the
granularity of bytes at best, losing the saving opportuni-
ties across byte boundaries. In addition, CoolCount is able
to exploit data with leading ones, primarily the small neg-
ative integer numbers. Reusing the most significant byte
for book-keeping purposes also avoids the area overheads,
thus no extra dynamic and leakage energy is consumed.
As shown in our experiments, our compression scheme can
save an averaged 35% of the cache energy against a baseline
cache. As the cache size keeps increasing, the CoolPression
will demonstrate even more benefits.

The rest of the paper is organized as follows. Section 2
provides the motivation of adopting a hybrid scheme. Sec-
tion 3 explains the enabling technique for CoolPression.
Section 4 discusses the power and delay of the CoolCount
circuit from the CoolPression Cache. Section 5 analyzes
our simulated results. Section 6 concludes the paper.

2. MOTIVATION

It has been shown in [3] that more than 70% of bits read
from or written to the cache are all zeroes. Also more
than 75% of the values used are rather small, having a
large number of leading ones or zeroes.

As shown in Figure 1, we conducted a study on the data
accesses for SPECint2000 benchmark to profile how many
data accesses to the Dcache has “x” (1< “x” < 64) number
of leading zeroes and ones. In the two figures, Y-axis plots
the number of leading zeroes (or ones) from 1 to 64 while
the X-axis shows the number of instances. The triangle in
the plots represents the average number of instances. Each
vertical bar shows the range of the number of instances
from the 8 SPEC2000 integer benchmark programs. As
shown in Figure 1(a), the average number of times we ac-
cess a piece of data which has “x” number of leading zeroes
is quite uniform across the board, for 1<x<64. A simi-
lar trend is also observed for the number of leading ones
as shown in Figure 1(b). The encoding techniques pro-
posed in [5, 8] are unable to adequately capture instances
in which leading zeroes are not in multiples of 8. There-
fore, we will be losing a lot of energy saving opportunities
if we only consider compressing data in the granularity of
bytes rather than in bits. Based on this analysis, we in-
troduce a compression scheme where we count the leading
bits, and keep the count instead of all the bits. We would
need 6 counting bits for counting 64 bits of data. We also
need another bit indicating whether we counted leading
ones or zeroes. If we add 7 bits for every 64 bits of data in
the cache, our area overhead would become prohibitively
large. We thus propose to reuse the most significant byte
of the data to keep the count. Using this method we would
need to have only one extra bit for every 64 bits to indi-
cate whether we have employed the counting scheme. If the
data being accessed has “count” number of leading zeroes
or ones, we need to enable only 64 minus count bitlines to
read or write the actual data and append them with lead-

1000000000

100000000

10000000

1000000

100000

10000

1000

100

10

1
1.3 5 7 9 111315 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63

(a) Number of Leading Zeroes

1000000000

100000000

10000000

1000000

100000

10000

1000

100

0 000 O Y R A

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64

(b) Number of Leading Ones

Figure 1: Leading 0’s and 1’s for SPECint2000

ing zeroes or ones. We detail our approach in the following
section.

3. COOLPRESSION CACHE

The CoolPression cache is illustrated in Figure 2. It
employs two compression schemes — Dynamic zero com-
pression to capture the zero bytes, and a new CoolCount
technique to exploit compression opportunities in bit-level
granularity. To explain our approach we would first ex-
plain each one individually before we demonstrate the hy-
brid approach.

3.1 Dynamic Zero Compression (DZC)

The DZC in [8] uses an extra bit, known as the Zero
Indicator Bit (ZIB), for each data byte in the cache. On
every data write, it is checked whether any of the eight
data bits being written are all 0’s, if so, the ZIB is enabled
and the write for the eight bits is disabled. If the data bits
are not all zeroes then the ZIB is cleared and the data is
written to the cache as normal. On a cache read, if the
ZIB for a byte is enabled, the corresponding bit-lines are
gated off and a zero byte is emitted, through a bank of
NOR gates. If the ZIB is zero for a byte then a normal
cache read operation occurs.

3.2 CoolCount

Our proposed technique, CoolCount, counts the number
of leading 0’s or 1’s and reuses the most significant byte
to record the count. On a cache write the CoolCount cir-
cuit counts the number of leading 0’s or 1’s. If the count

Max

sAvg

Max
Min
4 Avg

DZC Scheme
Z1Bs

EAANS
1

CoolCount Scheme

CE Bit

CEBit-_

73 © Bitline Enabling Circuitry

t

ok i
Data Qutps

Read Bvtes which are not Zeroes.
as indicated by the Zero Indicator Bits

64
Coolcount Circui

Data Outjes

Read First 7 Bits, determine "count”
Then read only 64-count bits

Figure 2: CoolPression Cache

Read in Count Enable (CE)
bit and first 6 bits of data

Enable the least significant
(32-count) bitlines

o

Read data from the
least significant (32-count)
bitlines and append with
count leading zeroes or
ones

Read data for bytes where
ZIB is not enabled and
make the other bytes
zero

Figure 3: Read Data from Caches

is more than eight, it asserts the Count Enable (CE) bit
high. The most significant bit is used to store whether
we counted leading 0’s or 1’s. The next six bits from the
most significant byte are used to keep the count. Along
with this, (64 - count) least significant bitlines are enabled
to store the actual data. If the number of leading 0’s or
1’s is lower than eight, the cache performs a normal write.
The cache read is illustrated in Figure 3. Reading is a
two step but pipelined process. On a cache read if the CE
bit is enabled, the most significant 6 bits are read to get
the number of leading 0’s or 1’s. Next the least significant
bit-lines are enabled to get the actual data appended with
the leading bits to obtain the final data. However if the
CE bit is zero, the CoolCount cache behaves exactly like
a normal cache for a read.

3.3 Hybrid Compression Scheme
Our evaluation indicated that both techniques can lead
a significant energy saving when operated independently.

However, there are certain cases where the CoolCount scheme

outperforms the DZC and in some cases the DZC does bet-
ter. For instance, CoolCount can capture energy saving
opportunities at finer granularity while DZC can exploit
the hidden opportunities where zero bytes are embedded
in the middle of a data word. Based on this observation,
we propose a hybrid compression scheme which employs
both DZC and CoolCount and exploits all possible oppor-
tunities in a dynamic manner.

The operations occurring in the CoolPression cache for
reads and writes are illustrated by the flow-charts in Fig-
ure 3 and Figure 4. On each cache write, one circuit will
count the leading 0’s or 1’s, while another circuit counts
how many bytes of the data are zero. These circuits and
their energy impact are detailed in Section 4. The results
are compared to determine which scheme is better. If the
CoolCount is better, the CE bit is turned on, all the ZIB’s

Count number of
leading zeroes or ones

Check for bytes which are|

i

zero

Set CE to one and enable|
most significant 6 bitline:
and least significant
(32-count) bitlines

l

Write encoded data to
cache

of zero bytes*8
> # of leading zeroes
or ones

Set CE bit to 0 and write
data to cache and set
ZIBs where necessary

Figure 4: Write Data to Cache

are cleared and the CoolCount scheme is followed. If DZC
is found better, the CE bit is cleared, the corresponding
ZIB’s are enabled and the DZC is used. For reading data
from the cache, after address decoding is completed, the
CE bit, the most significant 6 bits and the ZIBs are read
in the first cycle of the cache read. The CE bit enables the
Coolcount decoder shown in Figure 5 which uses the count
bits to precharge the least significant 64 - count bits before
the start of the second cycle. If the CE bit is disabled, the
ZIBs are used to precharge only the relevant "byte” lines.
The precharged bit lines are read in after the end of the
second cycle and properly appended with zero or one bits
to form the final data.

4. COOLPRESSIONIMPLEMENTATION

Figure 5 illustrates the schematic of our logic circuits
for an efficient implementation for counting the leading 0’s
or 1’s. For illustration purposes, the circuit shown in Fig-
ure 5(b) is a stripped-down version using a 8-to-3-line pri-
ority encoder for an 8-bit data set. Depending on the data
size supported by the targeted ISA, for example, the Cool-
Count circuit will have a 64-to-6-line priority encoder for a
64-bit data set. Note that as shown in the schematic, the
adjacent bits of the data are XORed together and fed into
the priority encoder. This design is to determine when the
data first changes from 0 to 1 or from 1 to 0, as we scan the
bits from the most significant bit. The position of this bit
is reported by the priority encoder. The number of leading
zeroes or ones is obtained by negating the above result.

Figure 5(a) illustrates the decoding circuits to enable
only the required bitlines depending on the number of lead-
ing 0’s or 1’s. The circuit illustrated is again for 8-bit data
only. The CoolCount circuits will be scaled for a 64 bit
data set. The output of the decoding circuit are used to
disable the Bitline Precharge signal using the Precharge
Control Transistor as shown in the Figure 5(a). This mech-
anism allows only the required bitlines from precharging
when reading or writing compressed lines to the cache. We
explain the overheads in terms of delay and extra power
consumed for the CoolPression circuit in the following sub-
section.

4.1 Overheads

Delay Overheads: To consider the effect of delay over-
heads we note that the decoding circuit Figure 5(a) is ex-
tremely simple, a tiny overhead compared to the cache
array, and the delay associated with it is minimal. Since
reading is a two stage process as shown in Figure 3, we
assume that a L1 cache read would take 2 cycles instead of
one, even though we could have headroom to customize the
entire read into one cycle for a lower frequency processor.
The 2 cycle latency can be easily pipelined by dividing the
cache access into address decoding and data transfer stage.

Cc2

)

Y6 decoder circuit

Precharge Enabley Bitline Precharge
from Coolcount
Precharge Control Transistor

VDD VDD

T
o> [

SRAM Cell
wi

:
:
Y1 .
wi
Vdd YO

b

o

(a) Decoder and Precharge Control Circuit

‘ Priority Encoder

YYy

(b) Encoder

Figure 5: Decoding/Encoding Logic Circuits

W Normal Cache O CoolPression Cache]

2.4

224

24

1.8

1.6

1.4

1.2 4

14
Crafty Gcec Gzip Mcf Parser Twolf Vortex VPR Avg

Figure 6: Performance Impact in IPC

This disadvantage is also omnipresent in other cache com-
pression schemes [5, 8]. This is an indispensable overhead
in any cache compression since extra time is always needed
for ascertaining whether the data were compressed prior
to being stored. Figure 6 studies the effect if a 2-cycle
pipelined Instruction and Data Cache is to be designed
against a single cycle uncompressed cache. It is observed
that the average IPC can be degraded by 7.8% for a 35%
savings in energy consumption of the cache. The processor
architects have to weigh the trade-off when making such
a design decision. The delay associated with the Priority
Encoder, is in the order of 6 gate delays. Nevertheless,
since the delay is only associated with a write and not a
read, it will be hidden in practice in the interval between
a write and the next read of the same cache line.

Power Overheads: The majority of the delay and en-
ergy consumption associated with the CoolCount circuit is
caused by the Priority Encoder (PE). The PE design used
for this study is an energy efficient high speed PE design
taken from [9]. The reported power numbers have been
scaled down to the current process technology parameters
using standard technology scaling rules [6]. The cache en-
ergy consumption numbers were reported using Wattch.
All numbers cited are for 0.1pym technology. The Cool-

[mBase = Coolcount oDZC oCoolPression

m 16K D Cache CoolPression @ 32K D Cache CoolPression 064K D Cache CoolPression
0O 16K | Cache CoolPression @ 32K | Cache CoolPression @ 641 | Cache CoolPression

0.8
0.6
04
0.2

Bzip2 Crafty GCC GzZIP MCF Parser Vortex VPR AVG
Figure 7: Norm. Energy in a 16KB L1 D-Cache

'=Base m Coolcount oDZC oCoolPression |

1.0
el | -

0.9
0.85
0.8

0.75

BZIP2 Crafty GCC GZIP MCF ParserVortex VPR AVG
Figure 8: Norm. Energy in a 16KB L1 I-Cache

Pression circuit only consumes 0.1% of the 64KB cache
power as reported by Wattch.

5. EXPERIMENTAL RESULTS

We integrated the CoolPression technique into SimpleScalar

to quantify the energy savings. The processor model is
similar to an Alpha 21264. Wattch and Cacti were used
to model total cache energy dissipation in each applica-
tion and the energy consumed in each cache array. A two
level cache was used and our technique was applied to both
levels. We simulated SPECint2000, each for 1 billion in-
structions.

Figure 7 shows the energy consumption in a 16K direct
mapped L1 data cache using the CoolCount, DZC and hy-
brid CoolPression, taking a word size of 64 bits. All the
results are normalized to the baseline cache with no com-
pression. We observe that the DZC and CoolCount are on
par within 3% savings, and there is no obvious trend as to
which one is better. Since the CoolPression can dynam-
ically choose the better scheme, therefore, as expected, a
lower energy is dissipated. The CoolPression beats the
DZC from 3 to 15%. In overall, the CoolPression provides
an energy savings of 36% to the baseline cache case. Fig-
ure 8 illustrates a similar analysis on a 16K L1 Instruction
cache which shows that the CoolPression generates con-
siderable savings even though it is not as significant as
the data cache. One reason for lower energy savings in the
Icache is that the data in the Icache consists of instructions
whose encodings would have a higher entropy in terms of
the distribution of 0’s and 1’s, while data, mostly, show a
large number of small positive and negative numbers, i.e.
many consecutive 0’s and 1’s, for integer programs. Our
technique did not show any substantial improvement for
the unified L2 cache since there are very few accesses to
the L2 cache in the benchmark we studied, and the L2
energy consumption is largely dominated by the leakage
energy due to its size.

In Figure 9, we plot the energy consumption for 32 KB
and 64KB L1 Dcache and Icache, showing CoolPression
reduces cache energy by as much as 50%. It is observed
that the CoolPression cache gives substantial energy sav-
ings for the larger caches. In addition, what we do not
show due to space contraint is that the CoolPression also
consistently provides more saving than the DZC and the
CoolCount when applied alone. The trend is similar to
what was shown in Figure 7 and Figure 8.

1
09
08
07
08
05
04
03
02
01

0

Bzip2 Crafty GCC GZIP . MCF Parser’(\/one;x Vpr] Av;‘
Figure 9: Norm. Energy in a 32k/64k L1 I/D-
Cache

6. CONCLUSION

In this paper we present CoolPresston, a hybrid hardware-
based data compression mechanism to reduce energy con-
sumption in caches by eliminating unnecessary bitline switch-
ings. CoolPression consists of a dynamic zero compres-
sion technique with a novel CoolCount scheme to exploit
both byte and bit-level compressibility. The CoolPres-
sion is system transparent in the sense that the rest of
the system does not change their interface with the Cool-
Pression cache. The CoolCount circuitry used a small
amount of hardware to encode data stored in the cache,and
succeeded in reducing the energy consumption by a sig-
nificant amount. Based on our simulation results using
SPECint2000, the CoolPression improves dynamic energy
consumption by more than 35% against a baseline cache,
while having a saving ranged from 5 to 15% compared to
the dynamic zero compression or CoolCount applied indi-
vidually.

The novel encoding scheme discussed in the paper may
be extended to save energy at all places wherever data
is being transferred. Some important locations that may
be considered are the pipeline latches. We may consider
using this technique for data transfer from L2 cache to
memory and memory to the disk. Effects of reducing the
bus transfer power at certain places where we would encode
the data using this scheme and transfer only the required
data gating off the other bits may also be considered.

7. ACKNOWLEDGEMENTS

This research was supported by NSF Grants CCF-0326396
and CNS-0325536. We would also like to thank Josh Fry-
man for his valuable suggestions.

8 REFERENCES

B. Amrutur and M. Horowitz. Techniques to Reduce Power in
Fast Wide Memories. In Proc. of the Int’l Symp. on Low
Power Electronics, 1994.

[2] R. Canal, A. Gonzalez, and J. E. Smith. Very low power
pipelines using significance compression. In MICRO-33, 2000.

[3] Y.-J. Chang, C.-L. Yang, and F. Lai. A Power-Aware SWDR
Cell for Reducing Cache Write Power. In ISLPED-03, 2003.

[4] K. Ghose and M. B. Kamble. Reducing power in superscalar
processor caches using subbanking, multiple line buffers and
bit-line segmentation. In ISLPED-99, 1999.

[5] N.S. Kim, T. M. Austin, and T. N. Mudge. Low-Energy Data
Cache Using Sign Compression and Cache Line Bisection. In
2nd Workshop on MPI, 2002.

[6] A. Matsuzawa. RF-SoC - Expectations and Required
Conditions. In IEEE Trans. on Microwave Theory and
Techniques, 2002.

[7] C.-L. Su and A. M. Despain. Cache design trade-offs for power
and performance optimization: a case study. In Proc. of the
Int’l Symp. on Low Power Design, 1995.

[8] L. Villa, M. Zhang, and K. Asanovic. Dynamic zero
compression for cache energy reduction. In MICRO-33, 2000.

[9] J.-S. Wang and C.-H. Huang. High-speed and low-power cmos
priority encoders. JSCC, 35(10), 2000.

