
Kicking the Tires of Software Transactional Memory:
Why the Going Gets Tough

Richard M. Yoo†

yoo@ece.gatech.edu
Yang Ni‡

yang.ni@intel.com
Adam Welc‡

adam.welc@intel.com

Bratin Saha‡

bratin.saha@intel.com
Ali-Reza Adl-Tabatabai‡

ali-reza.adl-
tabatabai@intel.com

Hsien-Hsin S. Lee†

leehs@ece.gatech.edu

†School of Electrical and Computer Engineering
Georgia Institute of Technology

Atlanta, GA 30332

‡Programming Systems Lab
Intel Corporation

Santa Clara, CA 95054

ABSTRACT

Transactional Memory (TM) promises to simplify concurrent pro-
gramming, which has been notoriously difficult but crucial in real-
izing the performance benefit of multi-core processors. Software
Transaction Memory (STM), in particular, represents a body of
important TM technologies since it provides a mechanism to run
transactional programs when hardware TM support is not avail-
able, or when hardware TM resources are exhausted. Nonethe-
less, most previous studies on STMs were constrained to execut-
ing trivial, small-scale workloads. The assumption was that the
same techniques applied to small-scale workloads could readily be
applied to real-life, large-scale workloads. However, by execut-
ing several nontrivial workloads such as particle dynamics simu-
lation and game physics engine on a state of the art STM, we no-
ticed that this assumption does not hold. Specifically, we identified
four major performance bottlenecks that were unique to the case of
executing large-scale workloads on an STM: false conflicts, over-
instrumentation, privatization-safety cost, and poor amortization.
We believe that these bottlenecks would be common for any STM
targeting real-world applications. In this paper, we describe those
identified bottlenecks in detail, and we propose novel solutions to
alleviate the issues. We also thoroughly validate these approaches
with experimental results on real machines.

Categories and Subject Descriptors

D.1.3 [Programming Techniques]: Concurrent Programming—
parallel programming; D.3.3 [Programming Languages]: Lan-
guage Constructs and Features—concurrent programming struc-

tures

General Terms

Design, Performance

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPAA’08, June 14–16, 2008, Munich, Germany.
Copyright 2008 ACM 978-1-59593-973-9/08/06 ...$5.00.

Keywords

C/C++, Compiler, Measurement, Performance, Runtime, Software
Transactional Memory

1. INTRODUCTION
Multi-core processors have brought multithreaded programming

to the mainstream, forcing even the average programmers to deal
with concurrency. Traditionally, programmers have used lock-based
mutual exclusion to synchronize shared memory accesses. How-
ever, lock-based programming often leads to many software en-
gineering problems, such as deadlock, non-scalable composition,
conservative synchronization, etc [4].

Transactional Memory (TM) [4, 7] offers a new concurrency
control mechanism that alleviates those pitfalls of lock-based syn-
chronization. Originally proposed as a hardware mechanism [4],
TMs have also been implemented in software (STM) [2, 5, 11, 12,
9]. Compared to Hardware Transactional Memory (HTM), STMs
are better suited for transactional programming since they provide
richer semantics and virtualized transactions, and they would run
on legacy hardware. Hence, an efficient STM implementation is
critical for enabling transactional programming.

However, most previous research on STMs were limited to two
aspects. First, previous studies stressed the underlying STMs with
synthetic kernels or workloads with small transactions. As a result,
these studies either stressed an STM system in a non-realistic envi-
ronment, or to a limited extent. Second, many of the STM systems
used were API-based [5, 11, 2, 9]. An API-based approach makes it
difficult to handle complex workloads with large transactions, since
it requires a programmer to manually annotate every transactional
memory accesses. In effect, this actually negates the advantages
of TM’s simple programming model. There existed several studies
utilizing compiler-based approaches [15], but they were also lim-
ited since they utilized benchmark suites such as SPLASH-2 [16],
which only exhibited small critical sections. In summary, previous
studies failed to stress the STM system in a realistic environment.

Our current work overcomes these limitations by first prepar-
ing realistic multi-core workloads. Our benchmark suite is com-
prised of workloads such as particle dynamics simulation, game
physics engine, speech recognition system, etc. We also ported the
STAMP [10] benchmark suite, whose transactional characteristics
were complex enough to stress the underlying STM. We then ex-
ecuted these workloads on an industrial-strength, compiler-based
STM system; our compiler was a modified version of Intel C/C++

compiler v 10.0, and our runtime was based on the highly tuned
framework introduced in [11].

By stressing our STM system in such a realistic environment,
we found that even a highly tuned STM system showed signifi-
cant scalability problems due to a number of performance bottle-
necks. More specifically, we identified four major performance
bottlenecks: false conflicts, over instrumentation of memory ac-
cesses, privatization-safety cost, and poor amortization of transac-
tion startup / teardown costs over short transactions.

• False conflicts are transactional conflicts that occur due to
the coarse granularity of the conflict detection schemes in
STMs [17]. We improved upon [17] by further breaking
down the category of such false conflicts. This enabled us to
identify that different types of false conflicts actually stress
different aspects of an STM system.

• Over-instrumentation occurs when the compiler generates
excessive read / write barriers due to its lack of application-
level knowledge. In general, excessive barriers incur more
false conflicts, which again brings about significant perfor-
mance degradation.

• Privatization-safety cost refers to the overhead of guaran-
teeing the correctness for common programming idioms such
as privatization [11, 6, 14]. We found that privatization-
safety significantly undermines the scalability of a program
in cases where it is not required but conservatively enforced
by the system.

• Poor amortization happens when the fixed costs of transac-
tion startup / teardown get poorly amortized over short trans-
actions. Under this circumstance, the underlying STM sys-
tem fails to scale. This behavior was observed even when
there were only few transaction aborts.

We believe these performance bottlenecks would be common to
any similar STMs targeting real-world TM applications. In this
paper, we propose several novel solutions that address the perfor-
mance bottlenecks described above, and we demonstrate the effec-
tiveness of these solutions by presenting a detailed performance
evaluation (Section 3). In addition to addressing these bottlenecks,
we also explore design issues that arise when rewriting large-scale
workloads with transactions (Section 4). These include additional
language constructs and performance metrics. Especially, we found
that traditional metrics, such as overall transaction abort rate, do not
suffice in fully characterizing the complex behavior of large-scale
transactional workloads.

The main contributions of this paper are the following:

• We identify the performance bottlenecks when “the rubber
hits the road” — that is, as large, realistic workloads are run
even on highly tuned STM systems. This work provides in-
strumental design guidelines to STM implementers.

• We propose novel solutions to the identified bottlenecks which
encompass language constructs and runtime optimizations.
We also show how traditional performance metrics fail to
characterize the complex behavior of realistic transactional
workloads, and propose new metrics.

• We provide detailed performance results of a compiler-based
STM system over a wide range of realistic TM workloads.

The rest of the paper is organized as follows. As a background,
Section 2 describes the STM and workloads used in our study. Sec-
tion 3 then describes the identified performance bottlenecks as well

as proposed solutions, while also presenting experimental results.
Section 4 discusses language design issues and novel performance
metrics. Related studies in the STM area can be found in Section
5. Finally, we conclude in Section 6.

2. BACKGROUND
To provide a background for further discussions, in this section

we describe the STM system (Section 2.1) and the benchmark suite
(Section 2.2) used in our study.

2.1 C/C++ Software Transactional Memory
Our STM system extends the C/C++ language with TM language

constructs, which are supported by the TM compiler and the McRT-
STM runtime. Following is a brief, simplified description of these
language constructs. The complete details can be found in [15].

In our TM extension to C/C++, a transaction is represented by
an atomic block, which is a statement block annotated with pragma
tm atomic. Once the TM compiler recognizes an atomic block, it
1) generates the corresponding transaction prolog and epilog, and
2) inserts transactional read / write barriers for every memory ac-
cesses made by the atomic block.

#pragma tm_function

int foo (int);

int bar (int);

#pragma tm_atomic

{

foo(3);

bar(10); // compiler error

}

Figure 1: Example for TM Language Constructs

A function called from inside of a transaction is referred to as an
atomic function, and the function must be annotated by the pro-
grammer with pragma tm function in its declaration. The TM
compiler then generates two copies of codes for each atomic func-
tion: a regular version and its transactional twin with transactional
read / write barriers inserted for each memory access. A call to
an atomic function is also translated into a call to its transactional
twin, if the call is made from inside an atomic block or an atomic
function. Calling a non-atomic function from inside a transaction
generates a compile-time error. Figure 1 (taken from [15]) shows
an example demonstrating the previous two language constructs.

The code generated for transactions relies on the runtime to ex-
ecute it atomically and in isolation from other transactions. Our
runtime is based on McRT-STM [11], which is an in-place update,
optimistic-read STM. It represents a design [7] taken by many other
high performance STMs.

Internally, the runtime maintains a table of transaction records,
called ownership table. Every memory address is mapped to a
unique transaction record in this table. Moreover, for each trans-
action, the runtime maintains a write set, a read set, and an undo
log, which are initialized in the prolog of a transaction.

On a memory store within a transaction, the write barrier tries
to exclusively lock the transaction record. If the transaction record
is already locked by another transaction, the runtime will try to
resolve the conflict before continuing, which may abort the current
transaction. If the transaction record is unlocked, the write barrier

Workload Source Original Type
Number of Time Spent in

Transactions Transactions (%)

Game Physics Engine (GPE) Intel Non-TM 10,661,289 36.6%

Smoothed Particle Hydrodynamics (SPH) Intel Non-TM 2,221,485 6.9%

Sphinx UIUC / ALPBench Non-TM 618,523 4.8%

Genome Stanford / STAMP TM 1,222,188 80.9%

Kmeans Stanford / STAMP TM 8,666,710 8.0%

Vacation Stanford / STAMP TM 8,866,711 93.6%

Table 1: Benchmark Suite for STM Performance Study

will 1) lock the transaction record, 2) record the old value and the
address in its undo log, 3) add the transaction record to its write set,
and then 4) update the memory location.

On a memory load within a transaction, the read barrier checks
if the transaction record is locked, but does not try to lock it. If the
transaction record is locked by another transaction, the conflict is
handled. If it is unlocked, the read barrier will 1) return the value
in the location, and 2) add the transaction record to the read set.

On commit, a transaction validates the read set, which makes
sure no transaction records in the set has been updated after the cur-
rent transaction read them. If the validation succeeds, the current
transaction unlocks all transaction records in its write set. Other-
wise, the current transaction aborts.

On the abort of a transaction, the old values recorded in the undo
log will be written back to the corresponding addresses, and the
transaction records in the write set will be unlocked.

2.2 Benchmark Suite
In the effective evaluation of an STM system, the selection of

proper workloads is very important. There are several criteria for
such workloads. First, a workload should represent an application
that an end user will actually execute on her system today, and in
the near future. Second, a workload should demonstrate enough
transactional characteristics to stress a TM system. For example,
a TM workload should launch significant number of transactions
during its execution, and should spend significant amount of time
inside transactions. Following these criteria, we selected a set of
workloads for our study, as listed in Table 1.

Game Physics Engine (GPE) performs collision detection by
solving ordinary differential equations. This application represents
the core computation found in many 3D graphics applications such
as 3D games.

Smoothed Particle Hydrodynamics (SPH) performs particle
dynamics simulation, a typical application found in computer ani-
mated fluid.

Both workloads were strategically developed by Intel for multi-
core processor research. They were originally written using fine-
grained locks (pthread mutexes). We created a TM version and a
single global lock (GLOCK) version by converting critical sections
into atomic blocks and by forcing the critical sections to acquire a
single global lock, respectively. GLOCK version of the workload
serves as a good baseline for TM measurements, since it provides
the lower bound on performance while maintaining a similar pro-
gramming model.

Sphinx is a speech recognition program, which is part of ALP-
Bench [8] — a multithreaded benchmark suite from the University
of Illinois which utilizes thread-level, data-level, and instruction-
level parallelism. The sequential version of Sphinx was originally
written at the Carnegie Mellon University. We ported Sphinx to
our STM stack by converting critical sections guarded by pthread
mutexes into atomic blocks.

Genome, Kmeans, and Vacation are all part of STAMP [10],
a benchmark suite from the Stanford University developed specif-
ically for TM from the ground up. Genome is a gene sequencing
program, while Kmeans is a machine learning algorithm applied to
a set of data points. Vacation models the database transactions of
a travel agency. For comparison, we created a GLOCK version of
each STAMP program by replacing a transaction with a critical sec-
tion acquiring a single global lock. As directed in the benchmark
suite release, all the workloads were executed with the default in-
put parameters for the execution in a non-simulator environment,
except for Kmeans where the parameters were slightly adjusted to
induce meaningful execution time.

In Table 1, we also list two key statistics for each workload:
the number of transactions and the percentage of time spent inside
transactions. To collect these statistics, we manually instrumented
all the programs with profiling code. For STAMP programs and
GPE, the statistics were collected in single thread. Sphinx and SPH
were measured with two threads, since they generated no-lock code
for single thread.

3. PERFORMANCE BOTTLENECKS AND

SOLUTIONS
We evaluated our C/C++ STM with the workloads described in

Section 2.2. All the experiments were performed on an 8-way sys-
tem with dual-socket and 8 GBytes of memory. Each socket had an
Intel Xeon X5355 processor (quad-core, 2.66 GHz, 8 MB L2). The
OS was Red Hat Enterprise Linux AS 4 (kernel version 2.6.9) with
SMP support, and our TM compiler was a modified version of Intel
C/C++ compiler v 10.0.

The initial performance results were not optimal, which led us
to identify four major performance bottlenecks in our STM. We
then came up with a series of optimizations and tunings, which im-
proved the performance to a various extent. In the rest of this sec-
tion, we describe each performance bottleneck and its correspond-
ing solution, while validating the approach with in-depth analysis
of our experimental results.

3.1 False Conflicts
In the initial performance analysis, workloads Genome and Va-

cation did not scale particularly well. From the TM statistics col-
lected, we found that more than 99.9% of the data conflicts in
Genome and Vacation were false conflicts. The same STM run-
time, however, did not exhibit any scalability issues on SPLASH-2
[16] previously. As defined in [17], a false conflict occurs on an
STM when two different addresses are mapped to the same trans-
action record. We improved upon [17] by further classifying the
false conflicts in STAMP into 3 categories. Figure 2 shows the
breakdown.

Our STM implements cache line based conflict detection; it does
not distinguish two different addresses on the same cache line. This

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Genome Kmeans Vacation

false sharing

global-induced

local-induced

Figure 2: Breakdown of False Conflicts on STAMP

may lead to the first category of false conflicts, referred to as false

sharing in Figure 2.
False conflicts can also happen between addresses from different

cache lines, since the limited size of ownership table introduces
aliasing. For such a false conflict, if either of the two addresses
is thread-local, we categorized it as local-induced. If neither of
them are thread-local, we categorized the false conflict as global-

induced.
Figure 2 shows that for Genome and Vacation, more than 99%

of the false conflicts are from accesses to different cache lines. Un-
like the case of false conflicts induced from false sharing, those
false conflicts can be reduced by proper support from compiler and
runtime. More specifically, global-induced conflicts can be reduced
by modifying the hash function used to map memory addresses to
transaction records, and local-induced conflicts can be reduced by
avoiding instrumentation of thread-local memory accesses (as we
will discuss in Section 3.2). The figure also shows that most false
conflicts for Kmeans are false sharing; that is, due to the memory
accesses to the same cache lines. However, false conflicts only ac-
counted for 40.4% of the total conflicts observed in Kmeans, and
the workload scaled well even with those false conflicts.

In our original implementation, the hash function utilized 14 bits
out of 32 bit address to generate a hash value. Each ownership ta-
ble entry was cache line size (64 Bytes), and we stored only one
transaction record (4 Bytes) per table entry; the rest of the space
were reserved to avoid false sharing on transaction records. In our
new implementation, we still used the same 14 bits to hash into a
table entry, but we then used 4 additional bits to store 16 transaction
records into each table entry. These additional 4 bits are now used
to differentiate between different cache lines. Under this arrange-
ment, no two addresses that map to transaction records residing in
different table entries under the old hash function, would map to
transaction records located in the same table entry under the new
hash function. This way, we were able to cram in 16 times more
transaction records into the same memory space, while not increas-
ing false sharing.

Figure 3 shows the result of applying the new hash function to
Genome workload. In this figure, the STM with old hash function
exhibits serious scalability problem. The new hash function, on the
contrary, was very effective in making Genome scale. In Figure 4,
Vacation also benefits from the new hash function. Throughout the
rest of this paper, we only report the performance results of STM
with the new hash function.

0

2

4

6

8

10

12

1 2 4 8

#threads

E
x
e
c
u

ti
o

n
 T

im
e
 (

s
e
c
)

GLOCK STM (old hash) STM (new hash)

Figure 3: Application of New Hash Function on Genome

0

5

10

15

20

25

30

1 2 4 8

#threads

E
x
e
c
u

ti
o

n
 T

im
e
 (

s
e
c
)

GLOCK STM (old hash) STM (new hash)

Figure 4: Application of New Hash Function on Vacation

3.2 Over-Instrumentation
Figure 2 also shows that the percentage of local-induced false

conflicts is 99% for Vacation, and 19% for Genome. Thread-local
memory accesses should not be monitored for transactional con-
flicts in the first place, since no other thread would be trying to
write in that memory area. However, unless the results of whole-
program pointer analysis are available, it is difficult for a compiler
to differentiate thread-local memory accesses from regular shared
memory accesses. As a result, a compiler is likely to generate more
read / write barriers than necessary.

We quantified the barrier overhead of the compiler-driven ap-
proach with STAMP suite. STAMP workloads were originally tar-
geted for an API-based STM — read / write barriers were manually
annotated in the source code. So the original STAMP code repre-
sents the optimal number of barriers that are necessary to guar-
antee program correctness. To measure the barrier overhead from
compiler-driven approach, we first mapped those barriers into plain
read / write statements, and then let the compiler automatically gen-
erate barriers whenever it deems necessary. We then compared the
number of barriers executed by running both versions of STAMP
on our STM. Table 2 shows the results.

As evidenced by Genome and Vacation, the compiler-generated
code may execute significantly larger number of read / write bar-
riers. This over-instrumentation would directly attribute to higher
STM overheads for bookkeeping and conflict detection, and more
importantly, cause transactions to abort unnecessarily on false con-
flicts.

It turns out that the original STAMP code heavily relies on application-
level knowledge to annotate read / write barriers. More specifically,

Workload
Read Barriers Write Barriers Read Write

Manual Compiler Manual Compiler Overhead Overhead

Genome 58,701,959 624,073,490 2,252,291 19,078,705 10.6x 8.60x

Kmeans 86,666,710 255,662,754 86,666,710 88,666,711 2.95x 1.00x

Vacation 785,775,435 925,584,125 26,300,714 122,543,905 1.18x 4.66x

Table 2: Transactional Barrier Counts on STAMP

two common code patterns were repeatedly observed in STAMP,
where the compiler would over-instrument.

First, STAMP workloads use a transaction-aware memory allo-
cator. Under this allocator, each thread maintains its own memory
pool, and allocates memory only from the local pool. Obviously,
memory allocation routines manipulating the local pool need not
be instrumented with transactional barriers. However, without the
proper information, it would be difficult for the compiler to infer
this behavior.

Secondly, a shared data structure might remain constant during
a particular program execution phase. Many shared data structures
are typically initialized at program startup, and then remain con-
stant throughout the rest of program execution. Alternatively, they
could alternate between modification phase and constant phase.
This kind of memory access pattern is hard to detect without application-
level knowledge. For example, in Genome, a transaction measures
the size of a shared hash table that remains constant during the ex-
ecution of the transaction. Without knowing that the hash table
remains constant, the compiler would generate unnecessary trans-
actional barriers.

A practical solution to this over-instrumentation issue is to let the
programmer directly convey such application-level knowledge to
the compiler. For this purpose, we introduced a new language con-
struct pragma tm waiver. A block or function marked with pragma
tm waiver would not be instrumented by the compiler for memory
accesses inside.

In more detail, tm waiver pragma lexically overrides tm function
pragma. Hence, when a tm function annotated function is called
inside a function annotated with tm waiver, the function will be-
have as if itself was also denoted as tm waiver. As described in
Section 2.1, our compiler generates both regular version and its
transactional twin for a tm function annotated function, and the
runtime dynamically determines which version of the function to
call. Same overriding applies to the pragma tm waiver applied to
a statement block.

This allows programmers to gradually optimize a TM application
as their understanding of the application increases. However, the
inappropriate use of tm waiver can lead to incorrect transactional
code. Similar to the previously proposed early release feature [5],
tm waiver is an optimization technique that should be applied with
caution.

Figure 5 shows the performance result of applying tm waiver
to Genome. In annotating the code with tm waiver, thread-local
memory allocation routines and accesses to constant data struc-
tures were specifically targeted. From the figure it is clear that by
reducing the number of barriers, this approach improves the per-
formance of Genome even further after the aforementioned new
hash function (Section 3.1) was applied. Originally, the STM man-
aged to match the performance of GLOCK at 4 threads. After the
application of tm waiver, STM performance matches GLOCK at
2 threads, and continues to outperform GLOCK as the number of
threads is increased.

In Figure 6, we can see that Vacation also benefits from tm waiver,
where accesses to the thread-local random number generator were

denoted with tm waiver. On the contrary, Kmeans did not benefit
further from tm waiver since most of its false conflicts were due to
false sharing. Figure 7 shows the result.

0

2

4

6

8

10

12

1 2 4 8

#threads

E
x
e
c
u

ti
o

n
 T

im
e
 (

s
e
c
)

GLOCK STM STM + tm_waiver

Figure 5: Application of tm_waiver on Genome

0

5

10

15

20

25

30

1 2 4 8

#threads

E
x
e
c
u

ti
o

n
 T

im
e
 (

s
e
c
)

GLOCK STM STM + tm_waiver

Figure 6: Application of tm_waiver on Vacation

3.3 Privatization-Safety Cost
Privatization is a common programming idiom where a thread

privatizes a shared object inside a critical section — usually by
nullifying the global pointer to the shared object — then contin-
ues accessing the object outside the critical section. Privatization
is a favorable programming technique for STM because it reduces
the number of transactional memory accesses. However, privati-
zation can cause data races and generate unexpected results on an
optimistic-read STM [7]. Pessimistic-read STM [7] using reader
locks, on the contrary, can handle privatization correctly, but its
read barriers could be much slower than optimistic-read STM.

McRT-STM guarantees correctness for privatization by imple-
menting the quiescence algorithm [15, 6]. Under the algorithm, a
committing transaction waits before it starts executing non-transactional

0

5

10

15

20

25

1 2 4 8

#threads

E
x

e
c

u
ti

o
n

 T
im

e
 (

s
e

c
)

GLOCK STM STM + tm_waiver

Figure 7: Application of tm_waiver on Kmeans

code, until all other transactions acknowledge that their speculative
reads do not overlap with the committing transaction’s write set.
This way, isolation is provided over the privatized data between
non-transactional accesses from one thread and transactional ac-
cesses from another thread.

In our actual implementation, the quiescence algorithm is imple-
mented with timestamps. The STM maintains a global timestamp,
which is incremented whenever a transaction commits or aborts.
Each transaction also maintains a local timestamp. This timestamp
is updated to the latest global timestamp in post validation of every
transactional read or write.

After a transaction commits, it performs quiescence before the
thread enters non-transactional code. Specifically, the committing
transaction records the global timestamp at the moment it commits,
called committing timestamp, and compares it to the local times-
tamps of all other active transactions. If any of them is less than
the committing timestamp, the committing transaction waits until
all other local timestamps become greater than or equal to its com-
mitting timestamp.

From our performance results we observed that quiescence con-
sumed a significant amount of execution time for the workloads
we selected. In more detail, the cost of quiescence could be bro-
ken down into two. First, it caused coherent cache misses on local
timestamps which were written by each transaction and read by all
others. Secondly, it made transactions wait for each other.

Costly as it is, privatization is not used in many programs. For
those programs, quiescence is a pure overhead squandered in pre-
vention of a problem that would not even occur. As an optimization
feature, we introduced a new construct that allows the programmer
to annotate an atomic block as not using privatization, so that qui-
escence could be skipped. When the programmer is not certain
and leaves the atomic block unmarked, the runtime would perform
quiescence by default.

By carefully reviewing the source code of our selected work-
loads, we determined that privatization is not used in any of them.
Using the interface proposed above, those workloads have been in-
strumented not to enter quiescence phase upon transaction commit.
Figure 8 shows the performance improvement by applying such
optimization over the case where quiescence is performed.

We can see that the proposed quiescence optimization signifi-
cantly improves performance. On average (geometric mean), the
scheme improves performance by 15%, 26%, and 32% for 2, 4,
and 8 threads respectively, while the peak performance improve-
ment reaching 2.07x on Vacation with 8 threads. Except for SPH,
the benefit from the optimization tends to increase with increasing
number of threads, since the cost of quiescence loop itself increases
with more threads. SPH was suffering from a different serialization

0

0.5

1

1.5

2

2.5

GPE SPH Sphinx Genome Kmeans Vacation average

E
x
e
c
u

ti
o

n
 T

im
e
 S

p
e
e
d

u
p

2 threads

4 threads

8 threads

Figure 8: Performance Impact of Quiescence

issue, which we will explain in Section 3.4. It is also interesting
to note that quiescence assumes a significant amount of execution
time both for workloads that were specifically written for TM and
for workloads that were originally written to use mutual-exclusion
locks and then transactionized.

3.4 Amortizing Bookkeeping Cost
Current multithreaded workloads utilizing locks are written in

such a way that critical sections are as short as possible. When
transactionized, these critical sections amount to extremely short
transactions. Table 3 describes the load and store barrier counts per
committed transaction for SPH workload. (First column denotes
the number of threads.) Note that the code generates no-lock code
for 1 thread.

#t #commits TxLD TxST
LD ST

/txn /txn

1 0 0 0 N/A N/A

2 2,221,485 2,356,785 4,384,905 1.06 1.97

4 7,404,950 7,860,685 14,616,350 1.06 1.97

8 17,771,880 18,868,815 35,079,240 1.06 1.97

Table 3: Transactional Barrier Counts on SPH Workload

SPH workload is a particle simulation workload originally writ-
ten in pthread. The workload has been transactionized by convert-
ing each critical section into an atomic block. From Table 3 we can
see that a transaction in SPH on average comprises only 1 transac-
tional load and 2 transactional stores. Although small, those trans-
actions are executed millions of times. During the experiments,
transactions were rarely aborting: about 0.01%.

In an STM, there are fixed costs in executing a transaction: startup
costs and teardown costs. Startup costs are attributed to routines
that initialize transaction descriptor and logs. Teardown costs are
attributed to bookkeeping routines that are executed upon transac-
tion commit / abort.

We found that when transactions are extremely short, these fixed
costs of transaction startup and teardown get poorly amortized over
the length of the transaction. The problem is that these routines
are usually serial in their nature. For example, in an STM sys-
tem that maintains a global timestamp, increasing the timestamp at
commit / abort time is usually implemented with CAS instructions.

When transactions are very short, these CAS instructions become
the dominant overhead in executing a transaction.

To handle this type of short transactions, we implemented a spe-
cial execution mode in STM. Under this mode, transactions are
serialized with a scalable global lock implementation, while the
transaction startup / teardown routines and transactional barrier in-
vocations are neglected altogether. The compiler inserts a hint for
the runtime denoting that the length of transactions are below cer-
tain threshold. This threshold was empirically determined to suit
our particular STM implementation. The runtime then forces those
transactions to execute in the special execution mode.

Figure 9 shows the result of applying this special execution mode
to SPH. GLOCK trend line denotes the performance of the work-
load when all the critical sections are synchronized with a single
pthread lock. FGL trend line denotes the original workload with
Fine-Grained Locking, while the STM trend line denotes the STM
system without the special execution mode.

0

2

4

6

8

10

12

1 2 4 8

#threads

E
x
e
c
u

ti
o

n
 T

im
e
 (

s
e
c
)

GLOCK STM FGL STM + special_mode

Figure 9: Application of Special Execution Mode for Short

Transactions (SPH)

In the figure, we can observe that although transactions were
rarely aborting, the scaling of the baseline STM closely resembles
that of GLOCK. On the contrary, STM with special execution mode
significantly outperforms both the baseline STM and GLOCK. This
is due to the fact that the system does not suffer from transaction
startup / teardown costs and barrier overheads. However, after 4
threads the serial nature of the execution mode becomes prevalent,
hence rendering the performance trend more close to GLOCK.

4. DISCUSSIONS
In addition to the major performance bottlenecks we identified

in Section 3, in this section we describe the language design issues
we faced while porting large-scale workloads (Section 4.1 and 4.2),
and the statistics that were crucial in characterizing the complex
behavior of realistic transactional workloads (Section 4.3).

4.1 Condition Variables Inside Transactions
Condition variables are an instance of a signaling mechanism

used to deter the execution of a thread consulting the state of a con-
dition variable. In the pthread implementation of condition vari-
ables, each condition variable should be guarded with a mutex.

The top portion of Figure 10 depicts a typical use of
pthread cond wait() function to pause a thread’s execution. No-
tice that pthread cond wait() function is not an atomic function
unless the pthread library itself was annotated with pragma tm function.
Therefore, the critical section in the top portion of Figure 10 cannot
be transactionized.

pthread_mutex_lock (&mutex);

condition = ...;

if (! condition)

pthread_cond_wait(&cond, &mutex);

pthread_mutex_unlock (&mutex);

pthread_mutex_lock (&mutex);

...

pthread_mutex_unlock (&mutex);

Figure 10: Condition Variable Inside Transaction

Now let us consider another critical section which is also guarded
by the same mutex. The bottom part of Figure 10 shows such crit-
ical section. It could be tempting to transactionize the critical sec-
tion, but transactionizing the critical section would break the exclu-
sion with the previous critical section with condition variable wait.
More generally put, when a critical section is transactionized, all
the critical sections that synchronize against the same lock should
be transactionized. Conversely, if one critical section could not
be transactionized, all the other critical sections that synchronize
against the same lock should not be transactionized.

This all-or-nothing nature of critical section porting can some-
times significantly limit the degree to which an application could
be transactionized. In the worst case, this could lead to a situation
where un-transactionized portion of the code serializes the entire
workload regardless of the performance benefits obtained from the
transactionized portion of the code.

To allow more critical sections to be transactionized, pthread
library itself should be transaction-aware. For example,
pthread cond wait() function could be transactionized with retry
construct [3].

#pragma tm_function

int pthread_cond_wait (pthread_cond_t *cond,

pthread_mutex_t *mutex)

{

#pragma tm_atomic {

if (! IS_SET(cond)) retry;

}

}

#pragma tm_function

int pthread_cond_broadcast (pthread_cond_t *cond)

{

SET(cond);

}

Figure 11: Application of Retry Construct in Condition Vari-

able Synchronization

Figure 11 shows a possible implementation of transaction-aware
condition variable synchronization. In this figure, pthread cond wait()
has been replaced with a retry construct. The waiting transac-
tion would first transactionally read the condition variable, then
the retry construct would force the transaction to pause until the
condition variable gets updated by the opponent. The transaction

which calls pthread cond broadcast() will update the condition
variable, then the other transactions that paused execution at the
retry construct would resume to re-execute the atomic block.

Notice that there are some subtleties in the semantics of transaction-
aware condition variable synchronization. Especially, from the im-
plementation in Figure 11, the paused transactions would wake
up after the transaction enclosing the pthread cond broadcast()
commits, as opposed to the original semantic where paused threads
resume execution after the pthread cond broadcast() function re-
turns. Moreover, in the case of pthread cond signal(), the order in
which transactions resume would have to be defined.

4.2 Quantifying the Function Annotation Over-
head

As described in Section 2.1, in our compiler-based approach a
programmer has to manually annotate atomic functions with the
tm function pragma. This overhead would be negligible when the
code size is small. However, we found that the overhead could be
formidable for large-scale workloads. Table 4 shows the function
annotation ratio for the workloads described in Section 2.2.

Workload
Annotated Total Annotation

Functions Functions Ratio

GPE 14 1,691 1%

SPH 0 30 0%

Sphinx 22 376 6%

Genome 11 133 8%

Kmeans 0 38 0%

Vacation 74 183 40%

Table 4: Function Annotation Ratio for Workloads

In this table, most of the workloads exhibit less than 10% an-
notation ratio. For this type of workloads, the function annotation
approach would incur little overhead. However, the ratio could be
as high as 40% for Vacation.

For those workloads that exhibit high annotation ratio, we pro-
pose to utilize all double-versioned approach. Under all double-
versioned approach, a programmer would selectively turn on a com-
piler flag, then the compiler would generate transactional twin for
all the functions regardless of programmer annotation. The runtime
would then dynamically determine which version of the function to
call [15].

This approach would double the static code size, but we expect
the performance impact to be limited to a minimum degree since
the dynamic code size, which affects the instruction cache miss
rate, would remain about the same.

4.3 Per Atomic Block Statistics
In Section 3 we described the techniques necessary to obtain

adequate performance when executing complex workloads on a
compiler-based STM. In the process of devising these techniques,
we also noticed that traditional transactional characteristics, such
as execution time and overall abort rate, are not helpful in char-
acterizing the complex behavior of realistic TM workloads. More
specifically, we observed that “averaging” transactional statistics
could be quite deceiving. This was especially true for abort rates.
Figure 12 shows the execution time result for Sphinx.

Sphinx workload was originally written in GLOCK. The per-
formance of GLOCK and STM are equal at single thread, since
Sphinx generates no-lock code for 1 thread. However, neither GLOCK

0

0.5

1

1.5

2

2.5

1 2 4 8

#threads

E
x

e
c

u
ti

o
n

 T
im

e
 (

s
e

c
)

GLOCK STM

Figure 12: Execution Time on Sphinx

nor STM scales with increasing number of threads, although the
overall abort rate for STM was as low as 1.39% for 4 threads.

In our STM runtime, we implemented routines to collect per
atomic block transaction statistics. By measuring per atomic block
abort rate, we were able to pinpoint the specific atomic block that
was being the scalability bottleneck of the entire workload. Ta-
ble 5 shows the per atomic block transaction statistics collected for
Sphinx.

Atomic Tx Tx Tx Abort Code

Block Begin Commit Abort Rate Size (lines)

602 1,314 1,312 2 0.15% O(1)

542 222,481 221,043 1,438 0.65% O(1)

559 220,908 220,908 0 0.00% O(1)

601 12,306 6,194 6,112 49.67% O(1000)

571 42,917 42,889 28 0.07% O(1)

588 42,770 42,770 0 0.00% O(1)

301 1,313 1,312 1 0.08% O(1)

Table 5: Per Atomic Block Transaction Statistics for Sphinx (4

threads)

The first column gives the ID of each atomic block determined
by their location in the source code, while the last column gives the
size of each atomic block measured by the number of code lines.
In essence, most of the atomic blocks committed without problems,
except for atomic block 601 which was dominant in its size. Due
to the absolute size of atomic block 601, high commit rates in other
atomic blocks did not add to the scalability of the workload when
atomic block 601 suffered from high abort rate.

We found that those workloads that were not originally written
for TM tend to exhibit more irregular abort rates. For example,
short critical sections such as induction variable increments rarely
abort when converted into transactions. At the same time, these
transactions are too small to dominate the overall program execu-
tion time. On the contrary, complex critical sections, when transac-
tionized, usually suffer from high abort rates while being dominant
in determining the overall execution time and program scalability.

The problem is that simple transactions tend to be executed much
more frequently than complex transactions. When this happens,
the high abort rate for complex transactions are overshadowed by
the high commit rate of simple transactions. Blindly measuring
the overall transaction abort rate simply fails to account for this
fact. Figure 13 shows similar, but more subtle behavior observed
on GPE.

0

2

4

6

8

10

12

14

16

18

20

1 2 4 8

#threads

E
x
e
c
u

ti
o

n
 T

im
e
 (

s
e
c
)

GLOCK STM FGL

Figure 13: Execution Time on GPE

In this figure, FGL trend line stands for the performance of the
original Fine-Grained Locking. As can be seen, the workload does
not scale on the STM runtime. Nonetheless, when the overall trans-
action abort rate was measured, only 1.6% of the transactions were
aborting at 8 threads. Per atomic block breakdown of abort rates
could reveal the problem. Table 6 shows the breakdown of abort
rates for different number of threads.

In this table, the same as before, the Atomic Block column gives
the ID of each atomic block based on the location in source code.
Notice that atomic block 74 does not exhibit high abort rates when
the number of threads is small. However, with increasing number
of threads, atomic block 74 fails to scale. This scalability prob-
lem was shadowed by the sheer amount of transaction commits in
atomic block 215.

5. RELATED WORK
TM [4, 7] was originally proposed as a hardware component [4].

STM was first proposed by Shavit and Touitou in [12], which has
seen subsequent releases of more implementations [5, 11, 2, 9].
Under these API-based systems, however, a programmer had to
statically denote the set of memory locations accessed by trans-
actions. More recently, compiler-based STMs have been proposed
[15, 1]. Under such configuration, a compiler automatically gener-
ates transactional barriers for transactional memory accesses. How-
ever, previous STM research was mostly limited to small, kernel-
level workloads. This paper focuses on language supports and op-
timization techniques that are necessary for a complex workload to
perform well on compiler-based STM systems.

General discussions on the false conflict issues in STM can be
found in [17]. In the paper, discussions on similar hash function
improvements can also be found. However, in our current paper, we
discovered a new, compiler assisted performance optimization op-
portunity by further breaking down the categories of false conflicts.
Our tm waiver pragma is strictly aimed at this new opportunity.

Privatization issues in STMs are discussed in [15, 6, 14, 13].
Quiescence [11] is one way to solve the privatization problem.
However, the performance penalty of quiescence on real workloads
has not been quantified previously. Our paper identifies that quies-
cence routine is a significant overhead both for workloads specifi-
cally written for TM and for workloads obtained by transactioniz-
ing critical sections.

Moreover, we propose to expose an interface to allow program-
mers to selectively turn off quiescence routines when there are no
privatization instances. RSTM library [9] exposes similar but op-
posite functionality; the interface exposes functionality to selec-
tively turn on quiescence routines, while suppressing quiescence

Atomic Block
Tx Tx Tx Abort

Begin Commit Abort Rate

74 22,596 22,596 0 0.00%

1120 171,607 171,607 0 0.00%

1131 170,666 170,666 0 0.00%

215 10,296,420 10,296,420 0 0.00%

(a) 1 thread

Atomic Block
Tx Tx Tx Abort

Begin Commit Abort Rate

74 29,763 22,598 7165 24.07%

1120 171,658 171,658 0 0.00%

1131 170,716 170,716 0 0.00%

215 10,304,252 10,299,481 4771 0.05%

(b) 2 threads

Atomic Block
Tx Tx Tx Abort

Begin Commit Abort Rate

74 98,810 22,601 76,209 77.13%

1120 172,023 172,023 0 0.00%

1131 171,083 171,083 0 0.00%

215 10,327,854 10,321,462 6392 0.06%

(c) 4 threads

Atomic Block
Tx Tx Tx Abort

Begin Commit Abort Rate

74 156,165 22,599 133,566 85.53%

1120 172,094 172,094 0 0.00%

1131 171,155 171,155 0 0.00%

215 10,334,072 10,325,713 8,359 0.08%

(d) 8 threads

Table 6: Per Atomic Block Transaction Abort Rate for GPE

by default. To guarantee correctness, our implementation performs
quiescence by default.

6. CONCLUSION
In this paper we have shown that current compiler-based soft-

ware transactional memory techniques are not sufficient to obtain
performance from a complex, realistic transactional memory work-
load. We identified four bottlenecks that are specific to such config-
uration, and proposed novel solutions to address the issues. Espe-
cially, we introduced a new language construct to directly convey
program-level knowledge to compiler in an aim to reduce exces-
sive barrier generation. Moreover, we quantified the effect of qui-
escence on performance, and proposed a new interface to optimize
quiescence instances. Under this optimization the performance im-
provement was 32% on average, while the peak performance im-
provement reaching 2.07x. We also pointed out that traditional
transactional characteristics are not helpful in characterizing com-
plex transactional memory workloads, and proposed a new set of
metrics that we found crucial in characterizing the workload be-
havior.

7. ACKNOWLEDGEMENTS
This research was conducted under the Programming Systems

Lab Research Intern Program at Intel Corporation. Intel Corpora-
tion generously supplied all the software and experimental equip-
ment used in this work. We also thank Ravi Narayanaswamy and
Xinmin Tian for developing the compiler infrastructure used in this
study.

8. REFERENCES
[1] W. Baek, C. C. Minh, M. Trautmann, C. Kozyrakis, and

K. Olukotun. The OpenTM transactional application
programming interface. In Proceedings of the 16th Intl.

Conference on Parallel Architecture and Compilation

Techniques, September 2007.

[2] D. Dice, O. Shalev, and N. Shavit. Transactional locking II.
In Proceedings of the 20th International Symposium on

Distributed Computing, 2006.

[3] T. Harris, S. Marlow, S. P. Jones, and M. Herlihy.
Composable memory transactions. In Proceedings of the

10th ACM SIGPLAN Symposium on Principles and Practice

of Parallel Programming, 2005.

[4] M. Herlihy and J. E. B. Moss. Transactional memory:
Architectural support for lock-free data structures. In
Proceedings of the 20th Annual International Symposium on

Computer Architecture, pages 289–300, 1993.

[5] M. P. Herlihy, V. Luchangco, M. Moir, and W. N. Scherer,
III. Software transactional memory for dynamic-sized data
structures. In Proceedings of the 22nd Annual ACM

Symposium on Principles of Distributed Computing, July
2003.

[6] R. L. Hudson, B. Saha, A.-R. Adl-Tabatabai, and B. C.
Hertzberg. McRT-Malloc: A scalable transactional memory
allocator. In Proceedings of the 5th International Symposium

on Memory Management, 2006.

[7] J. R. Larus and R. Rajwar. Transactional Memory. Morgan &
Claypool, 2006.

[8] M.-L. Li, R. Sasanka, S. V. Adve, Y.-K. Chen, and E. Debes.
The ALPBench benchmark suite for complex multimedia
applications. In Proceedings of the 2005 IEEE International

Symposium on Workload Characterization, October 2005.

[9] V. J. Marathe, M. F. Spear, C. Heriot, A. Acharya,
D. Eisenstat, W. N. Scherer, III, and M. L. Scott. Lowering
the overhead of nonblocking software transactional memory.
In TRANSACT: First ACM SIGPLAN Workshop on

Languages, Compilers, and Hardware Support for

Transactional Computing, 2006.

[10] C. C. Minh, M. Trautmann, J. Chung, A. McDonald,
N. Bronson, J. Casper, C. Kozyrakis, and K. Olukotun. An
effective hybrid transactional memory system with strong
isolation guarantees. In Proceedings of the 34th Intl.

Symposium on Computer Architecture, June 2007.

[11] B. Saha, A.-R. Adl-Tabatabai, R. L. Hudson, C. C. Minh,
and B. Hertzberg. McRT-STM: A high performance software
transactional memory system for a multi-core runtime. In
Proceedings of the 11th ACM SIGPLAN Symposium on

Principles and Practice of Parallel Programming, 2006.

[12] N. Shavit and D. Touitou. Software transactional memory. In
Proceedings of the 14th Annual ACM Symposium on

Principles of Distributed Computing, pages 204–213, 1995.

[13] T. Shpeisman, V. Menon, A.-R. Adl-Tabatabai,
S. Balensiefer, D. Grossman, R. Hudson, K. F. Moore, and
B. Saha. Enforcing isolation and ordering in STM. In
Proceedings of the ACM SIGPLAN 2007 Conference on

Programming Language Design and Implementation, pages
78–88, 2007.

[14] M. F. Spear, V. J. Marathe, L. Dalessandro, and M. L. Scott.
Privatization techniques for software transactional memory.
In Proceedings of the 26th ACM Symposium on Principles of

Distributed Computing, 2007.

[15] C. Wang, W.-Y. Chen, Y. Wu, B. Saha, and A.-R.
Adl-Tabatabai. Code generation and optimization for
transactional memory constructs in an unmanaged language.
In Proceedings of the 2007 International Symposium on

Code Generation and Optimization, pages 34–48, March
2007.

[16] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta.
The SPLASH-2 programs: Characterization and
methodological considerations. In ISCA-22, pages 24–36,
1995.

[17] C. Zilles and R. Rajwar. Implications of false conflict rate
trends for robust software transactional memory. In
Proceedings of the 2007 IEEE International Symposium on

Workload Characterization, September 2007.

