
Chameleon: Virtualizing Idle Acceleration
Cores of A Heterogeneous Multicore
Processor for Caching and Prefetching
DONG HYUK WOO
Georgia Institute of Technology
JOSHUA B. FRYMAN and ALLAN D. KNIES
Intel Corporation
and
HSIEN-HSIN S. LEE
Georgia Institute of Technology

Heterogeneous multicore processors have emerged as an energy- and area-efficient architectural
solution to improving performance for domain-specific applications such as those with a plethora
of data-level parallelism. These processors typically contain a large number of small, compute-
centric cores for acceleration while keeping one or two high-performance ILP cores on the die to
guarantee single-thread performance. Although a major portion of the transistors are occupied by
the acceleration cores, these resources will sit idle when running unparallelized legacy codes or the
sequential part of an application. To address this underutilization issue, in this article, we intro-
duce Chameleon, a flexible heterogeneous multicore architecture to virtualize these resources for
enhancing memory performance when running sequential programs. The Chameleon architecture
can dynamically virtualize the idle acceleration cores into a last-level cache, a data prefetcher, or
a hybrid between these two techniques. In addition, Chameleon can operate in an adaptive mode
that dynamically configures the acceleration cores between the hybrid mode and the prefetch-
only mode by monitoring the effectiveness of the Chameleon cache mode. In our evaluation with
SPEC2006 benchmark suite, different levels of performance improvements were achieved in dif-
ferent modes for different applications. In the case of the adaptive mode, Chameleon improves the
performance of SPECint06 and SPECfp06 by 31% and 15%, on average. When considering only
memory-intensive applications, Chameleon improves the system performance by 50% and 26% for
SPECint06 and SPECfp06, respectively.

This online version fixes several typos of the original article published in ACM
Transactions on Architecture and Code Optimization, Vol. 7, No. 1, Article 3 (April
2010).
This research was supported by an NSF grant CCF-0811738, an NSF CAREER award CNS-
0644096, and gift from Intel Corporation.
Authors’ addresses: D. H. Woo, Georgia Institute of Technology; J. B. Fryman and A. D. Knies,
Intel Corporation; H.-H. S. Lee, Georgia Institute of Technology.
Permission to make digital or hard copies of part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
c© 2010 ACM 1544-3566/2010/04-ART3 $5.00

DOI 10.1145/1736065.1736068 http://doi.acm.org/10.1145/1736065.1736068

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 1, Article 3, Publication date: April 2010.

3:2 · D. H. Woo et al.

Categories and Subject Descriptors: B.3.2 [Memory Structures]: Design Styles—Cache memories;
C.1.2 [Processor Architectures]: Multiple Data Stream Architectures (Multiprocessors)—Array
and vector processors
General Terms: Design, Experimentation, Performance
Additional Key Words and Phrases: Heterogeneous multicore, idle core, cache, prefetching
ACM Reference Format:
Woo,D. H., Fryman, J. B.,Knies, A.D., Lee, H.-H. S. 2010. Chameleon: Virtualizing idle acceleration
cores of a heterogeneous multicore processor for caching and prefetching. ACM Trans. Architec.
Code Optim. 7, 1, Article 3 (April 2010), 35 pages.
DOI = 10.1145/1736065.1736068 http://doi.acm.org/10.1145/1736065.1736068

1. INTRODUCTION
Heterogeneous computing has emerged to address the growing concerns of en-
ergy efficiency [Woo and Lee 2008] and silicon area effectiveness [Hill and
Marty 2008]. Small-scale heterogeneous MPSoCs have been used in embed-
ded systems for years [Dutta et al. 2001; Artieri 2005]. Meanwhile, general-
purpose processor designers are also advocating such heterogeneous architec-
tures for future multicore or many-core processors to optimize a system’s en-
ergy efficiency (measured in performance per joule) or area effectiveness (mea-
sured in performance per mm2). For example, the first generation of the IBM
Cell Broadband Engine (Cell/BE) [Pham et al. 2005] integrated eight syner-
gistic processing elements along with a superscalar PowerPC processor on the
same die. CUDA [Buck 2007], CTM [Hensley 2007], RapidMind [McCool et al.
2006], OpenCL [Munshi 2008], PeakStream [Papakipos 2006], and Ct [Ghu-
loum et al. 2007] abstract the programming interface to enable heterogeneous
computing based on a cooperative computing model between the CPU(s) and
many-core graphics processing units (GPUs), shielding programmers from
managing the complexity of these heterogeneous components. Although some
heterogeneous computing platforms have their resources distributed across
multiple chips, the trend of future technology is toward integrating them all
onto the same die [Moore 2007].

Unlike a symmetric multicore processor in which all processor cores are
identical, a heterogeneous computing platform is composed of distinct classes
of processing cores: a high-performance host processor and an array of accel-
eration processing elements (PEs) [Pham et al. 2005; Moore 2007; Smith 2008;
Woo et al. 2008; Singh et al. 2000; Yeh et al. 2007; Mahesri et al. 2008]. The
high-performance host processor is mainly used for exploiting the sequential
performance of an application. In contrast, the acceleration PE cores, typi-
cally not designed with complex ILP techniques, are integrated to deliver high
throughput for parallelizable code with better energy and area efficiency. The
rationale behind such a heterogeneous multicore design is (i) to improve the
energy efficiency and manage its ensuing thermal issues when running data-
parallel workloads and (ii) not to lose sequential performance.

Unfortunately, while the host processor executes the sequential code of a
parallelized workload or unparallelized legacy applications, the acceleration
cores of a heterogeneous multicore processor become idle, contributing noth-
ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 1, Article 3, Publication date: April 2010.

Chameleon: Virtualizing Idle Cores for Caching and Prefetching · 3:3

ing to single-thread performance while consuming area and additional power
if not completely turned off. From the standpoints of area and energy effi-
ciency, the unused idle resources could dwarf the interests of adopting such a
heterogeneous platform for general-purpose computing. To address this under-
utilization problem during sequential computation, we envision that we could
better utilize these idle PE resources to accelerate the sequential execution on
the host processor. In this article, we introduce Chameleon, a flexible architec-
ture with low-cost enabling techniques to provide several dynamic operation
modes for better resource allocation. In addition to the parallel acceleration
mode, the PE cores in Chameleon can be configured into a last-level cache, a
data prefetcher, and variants of their combinations when running sequential
programs. The main contributions of this work are as follows.

—We propose the Chameleon heterogeneous multicore architecture, which vir-
tualizes otherwise unused acceleration cores to enable prefetching and addi-
tional cache space when running sequential workloads. We also show that
the extra hardware cost to realize Chameleon is not significant.

—We propose several different operation modes including a caching mode, a
data prefetching mode, and a hybrid mode to virtualize the acceleration cores
collectively for enhancing memory performance. In addition, we also propose
an adaptive mode to change these modes dynamically to adapt the memory
behavior of applications.

—We perform a case study using a heterogeneous multicore processor that con-
sists of a host processor integrated with an on-die massively parallel SIMD
accelerator. We justify the performance benefits given by Chameleon and
evaluate the hardware/power overheads and energy implications.

This article is organized as follows: Section 2 explains the architectural fea-
tures of our baseline heterogeneous multicore processor. Section 3 enumer-
ates different design issues for providing a virtualized last-level cache and a
virtualized prefetcher. It also describes the hybrid and the adaptive designs.
Section 4 evaluates the characteristics of these different design choices and
demonstrates single-thread performance improvement of SPEC 2006 bench-
mark suite. Section 5 discusses other issues of Chameleon’s implementation,
and Section 6 enumerates related work. Finally, Section 7 concludes the arti-
cle.

2. BASELINE MULTICORE ARCHITECTURE
Although the core concept of Chameleon, utilizing idle acceleration cores for
improving the performance of sequential workloads, can be generally applied
to many heterogeneous multicore processors, the detailed design as well as
its benefit and associated hardware overheads will vary for different heteroge-
neous architectures. In this article, we investigated a Chameleon architecture
based on a recently proposed accelerator architecture [Woo et al. 2008] and
evaluated its cost and performance potentials. We will later briefly discuss
how Chameleon can be applied to other architectures in Section 5.

Figure 1 illustrates our baseline heterogeneous multicore processor used
ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 1, Article 3, Publication date: April 2010.

3:4 · D. H. Woo et al.

RRQRRQ

RRQRRQ

RRQRRQ

RRQRRQ

RRQRRQ

RRQRRQ

RRQRRQ

RRQRRQ

Host ProcessorHost Processor

DRBDRB

DRBDRB

DRBDRB

DRBDRB

DRBDRB

DRBDRB

DRBDRB

DRBDRB

Sy
st

em
 m

em
or

y
Sy

st
em

 m
em

or
y

xTLBxTLB

L2$L2$

ARBARB

MCMC

MCMC

RRQRRQ

RRQRRQ

RRQRRQ

RRQRRQ

RRQRRQ

RRQRRQ

RRQRRQ

RRQRRQ

RRQRRQ

RRQRRQ

RRQRRQ

RRQRRQ

RRQRRQ

RRQRRQ

RRQRRQ

RRQRRQ

Host ProcessorHost Processor

DRBDRB

DRBDRB

DRBDRB

DRBDRB

DRBDRB

DRBDRB

DRBDRB

DRBDRB

DRBDRB

DRBDRB

DRBDRB

DRBDRB

DRBDRB

DRBDRB

DRBDRB

DRBDRB

Sy
st

em
 m

em
or

y
Sy

st
em

 m
em

or
y

xTLBxTLB

L2$L2$

ARBARB

MCMC

MCMC

IBus

ORTree

MBus
2D Mesh Network

PE

Row 7Row 7

Row 0Row 0

Column 0Column 0 Column 7Column 7

Fig. 1. Baseline heterogeneous multicore architecture.

throughout this article [Woo et al. 2008]. It consists of a state-of-the-art super-
scalar host processor and an array of 8 × 8 PE cores. The size of the PE array is
not fixed and can change depending on the design budget, process technology,
and market requirements. The host processor is responsible for the master
control of the entire computation. In addition to executing the sequential part
of an application, the host processor also dispatches and orchestrates the in-
structions executed on the PE array to enable high-throughput data parallel
processing. Each PE in the array is a three-wide VLIW machine with a fixed
instruction format composed of three pipelined operations: a G (generic), an X
(SSE), and an M (memory) operation. To manage local data during the parallel
execution phase, a 128KB scratchpad memory is provided for each individual
PE. To support if-then-else conditional statements, masking instructions are
also included to enable or disable each PE individually for given flag status.

To execute instructions in the PE array, the host processor needs to broad-
cast three-wide 96-bit VLIW instructions to the PEs via an instruction bus
(IBus) shown in Figure 1. On the other hand, the host processor can moni-
tor and obtain the status of PEs through ORTree (128-bit wide), which log-
ically combines the outcomes of PEs’ flag registers (64-bit RFLAGS and 64-
bit MXCSR [MMX/SSE Control/Status Register]). The host processor can also
read scalar values from PEs through a data return buffer (DRB) located on the
rightmost column of the PE array. Furthermore, a PE can write its computa-
tion results back to the virtual memory space, and the host processor can read
them through the regular memory hierarchy.
ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 1, Article 3, Publication date: April 2010.

Chameleon: Virtualizing Idle Cores for Caching and Prefetching · 3:5

PEs are connected to a Direct Memory Access (DMA) engine called Row
Response Queue (RRQ). An RRQ and all PEs in the same row are connected
through a memory bus (MBus), which consists of two unidirectional buses. One
bus streams data back from the main memory to the PEs in the row, and the
other bus streams data from the PEs in the row to the main memory. PEs can
also communicate with each other through a mesh network.1 Communication
is fully software controlled by a communication instruction, which allows each
PE to transfer 64-bit or 128-bit data to one of its four neighbor PEs. Because
all communication is fully controlled by explicit instructions and because all
execution is fully orchestrated by the host processor, communication patterns
are completely deterministic and exempt from issues caused by bus arbitra-
tion, congestion, deadlock, and live-lock. Furthermore, each PE only needs a
single 4:1 mux and 1:4 demux for its mesh communication. Therefore, no area-
and power-hungry router is required.

3. CHAMELEON ARCHITECTURE
Here, we describe our proposed architecture called Chameleon for future
heterogeneous multicore processors. To achieve better utilization of on-die
resources, we added low-cost configuration hardware that virtualizes idle
acceleration cores dynamically to improve sequential performance. With
Chameleon techniques, idle cores can be virtualized into (i) a unified last-level
cache, (ii) a data prefetcher, or (iii) a hybrid caching/prefetching component.
In addition, we propose an adaptive operation mode that changes Chameleon
among different modes to find the best possible performance by exploiting the
dynamic behavior of an application.

3.1 C-Mode: Virtualizing Idle Cores for Caching
As shown in Section 2, the original purpose of integrating a heterogeneous PE
array onto general-purpose processor cores is to exploit Data-Level Parallelism
(DLP) for maximizing energy and area efficiency. We call this operation mode
A-mode (or acceleration mode) to differentiate it from the new modes we will
introduce. Our first goal is to virtualize this idled heterogeneous PE array into
additional caching space when the A-mode is not in use. This virtualization
must be simple and should not affect the efficiency of the A-mode. The idea is
to configure the unused local scratchpad memories collectively into a last-level
cache by using PEs’ basic operations for caching control. We call this opera-
tion mode the C-mode (or caching mode). Similar to the A-mode, the PEs will
be responsible for decoding instructions received from the IBus, performing
corresponding local computation, and routing computation results back. For
example, to calculate the cache index bits, the PE is programmed to perform
an SHR (logical shift-right) to eliminate the cache line offset and an AND (logi-
cal and) to mask out tag bits. Using this calculated index bits, the PE can read
data from its local 128KB scratchpad memory with a load instruction.

1The mesh network can be reconfigured to a folded torus network using simple switches [Dally
and Towles 2001; Siegel et al. 1984].

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 1, Article 3, Publication date: April 2010.

3:6 · D. H. Woo et al.

L2$L2$ Host ProcessorHost Processor

Memory

A-mode path
C/P-mode path
Common path

A-mode path
C/P-mode path
Common path

Chameleon
controller

ORTree

L2$Memory

MSHR

IBus

Chameleon
microcode
memory

Prefetch
buffer

Chameleon
Virtualizer

IBus
(96 bit)

ORTree
(128 bit)

Fig. 2. Chameleon Virtualizer (not drawn to scale).

To control the PEs array and to have it function like a soft cache, we add
a new interface between the L2 cache of the host processor and the baseline
PE array. As shown in Figure 2, this new interface, called Chameleon Virtu-
alizer, is in charge of orchestrating memory management operations for im-
plementing the virtualized last-level cache using microcode stored inside the
Chameleon microcode memory. The microcode is written in the original PE
ISA, and it consists of tens of PE instructions. Upon a cache read miss in
the L2 cache, for example, the miss address is forwarded to the Chameleon
controller. Once receiving the address, the Chameleon controller forwards the
miss address to the PEs via IBus and starts to broadcast a cache read mi-
crocode to the PEs. To perform a cache read, PEs perform the following tasks:
(i) calculating cache index bits, (ii) matching valid and tag bits, and (iii) send-
ing a hit/miss signal to the Chameleon Virtualizer. Upon a cache hit, the hit PE
has to perform the following additional tasks: (iv) loading the cache line from
the scratchpad memory, (v) routing the line back to the Chameleon Virtualizer,
and (vi) updating the corresponding L2 LRU bits. Once the cache line reaches
the Chameleon Virtualizer, it is forwarded to the L2. On the other hand, upon
a cache miss, the Chameleon controller initiates an off-chip memory request
through the MSHR of the Chameleon Virtualizer. The Chameleon Virtualizer
also contains a prefetch buffer to support the virtualized prefetcher to be de-
tailed in Section 3.2. Note that the overhead of the Chameleon Virtualizer
is only incurred in the C-mode because the controller will be bypassed when
operating in the conventional A-mode.

To facilitate the mechanisms for a cache line that hits in the PEs, we reuse
the existing 128-bit wide ORTree bus, which was originally designed for ob-
taining the flag status of the PE array but will be idle when operating in the
C-mode. Hence, we hijack this bus to send hit/miss signals and transfer re-
quested cache lines. However, to use the ORTree bus for such purposes, we
need to add a new instruction called xferortree into the PE’s ISA. This special
ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 1, Article 3, Publication date: April 2010.

Chameleon: Virtualizing Idle Cores for Caching and Prefetching · 3:7

PE0 PE7

PE56 PE63set 8n

set 8n+7

way 0 way 7A cache line

Cache control array
(valid, tag, LRU, etc.) Cache data array

(a) Layout

Line
offsetIndex bitsTag bits

Local index bits
PE x-coordinate

63 1918 6 5 0

(b) Indexing

Fig. 3. Way-level parallelism (8-way cache, 4MB).

move instruction drives a register value onto the ORTree. This new instruction
requires adding a mux in each PE for selecting either the flag status (in the
A-mode) or the output operand of an xferortree instruction (in the C-mode) for
ORTree. On the other hand, the Chameleon Virtualizer is connected to the
other end of the ORTree. Note that, in our implementation, only one PE in
the same column can transfer data to the Chameleon Virtualizer at any given
time, and the ORTree output value of all other PEs in the column is zero. Thus,
ORTree can safely deliver the data to the Chameleon Virtualizer without being
corrupted by OR operations.

In the following sections, we will address the challenges with respect to the
styles of cache line layout across the PE array. We also detail these design al-
ternatives and evaluate and quantify their trade-offs in our experiments. Fur-
thermore, we investigate how we can optimize their access latency by adopting
nonuniform cache architecture (NUCA) and discuss the required architectural
support.

3.1.1 Design for Way-Level Parallelism. Our first design is to distribute
multiway cache lines of the same set across PEs in the same column. Fig-
ure 3 shows an example mapping of an 8-way set-associative 4MB cache. In
this example, eight cache lines (each 64 bytes) mapped to the same cache set
are distributed across eight PEs in the same column (e.g., PE0, PE8, to PE56).
Also shown in the figure is how to index this cache. Out of the global index bits,
three LSBs are used to find the x-coordinate of target PE column. The rest of
the index bits (10 bits) are used as the local index for finding the cache line
from the eight local scratchpad memories on the indexed column. (In this de-
sign, up to 1,024 cache lines can be stored inside each PE. This will be clarified
later in this section.) Mask instructions are used to disable the other 56 PEs
after the x-coordinate is calculated. In this particular design, all eight active
PEs on the same column will perform a tag comparison in parallel. Hence, we
say this design exploits Way-Level Parallelism (WLP).

One challenge for having a functional WLP cache is how to perform LRU
updates across PEs in the same column. To solve this issue, we chose to imple-
ment the counter LRU algorithm [Kadota et al. 1987] and program Chameleon
microcode to perform replacement operations. This software-based LRU re-
placement mechanism will read the LRU state of the hit line and broadcast the
outcome back to all PEs in the same column. The PEs will then update their
own LRU bits accordingly. Note that these updates simply use subtract and
ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 1, Article 3, Publication date: April 2010.

3:8 · D. H. Woo et al.

PE0 PE7

PE56 PE63

set n
way 0 way 7

(a) Layout

Line
offsetIndex bitsTag bits

Local index bits

63 1918 6 5 0

(b) Indexing

Fig. 4. Way- and subblock-level parallelism (8-way cache, 4MB).

compare instructions already provided by the PE ISA. Although a software-
based LRU may take longer than a hardware-based LRU update, we found
that properly scheduled microcode can hide much of this latency.

On the other hand, this WLP design has a space overhead for cache control
bits. To implement an 8-way 4MB cache with 64B line for a 64-bit host proces-
sor, we need one valid bit, one dirty bit, 45 tag bits, three LRU state bits, and
a few coherence protocol bits for each cache line. These control bits amount
to around 10% overhead. Thus, for N cache lines, the total storage needed
will be 1.1 × 64 × N bytes, and it should fit into a 128KB scratchpad space.
Furthermore, the number of sets stored in each PE should be a power of 2 for
cache indexing. This explains why each PE accommodates 1,024 cache lines in
our WLP design.

In this design, once the set is determined, only one corresponding column
is enabled to complete one cache operation. In other words, if the Chameleon
Virtualizer can provide eight instruction streams to different columns and de-
code eight returning messages, we can build a virtualized eight-bank cache. To
implement it, eight different IBuses and eight different ORTree buses should
be directly connected to the Chameleon Virtualizer instead of using fan-out
tree (IBus) and fan-in OR tree (ORTree), as in the baseline processor.

3.1.2 Design for Way- and Subblock-Level Parallelism. Since the 128-bit
ORTree bus and the 96-bit IBus are used for reading and writing cache lines
in the WLP-style cache, it will take four and eight cycles to transfer an entire
64B cache line on the buses.2 On the other hand, to prepare data transfer, four
SIMD load instructions (or eight regular store instructions) are used to load
each 16B chunk into the XMM registers (or store 8B chunk to general-purpose
registers), which adds extra overheads in accessing cache lines. This is an arti-
fact caused by mapping one entire cache line onto a single PE, as shown in Fig-
ure 3. To alleviate this issue, we investigate another design option in which
a 64B cache line is split across eight PEs on the same row, as shown in Fig-
ure 4. To read a cache line in this design, each PE in the same row will load
an 8B subblock of the requested cache line. All eight subblocks will be routed
back to the Chameleon Virtualizer simultaneously without modifying the PE
microarchitecture. We call this design exploiting Way- and subBlock-Level Par-

2The 96-bit IBus can only broadcast 64-bit data at each cycle due to instruction-encoding overhead.

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 1, Article 3, Publication date: April 2010.

Chameleon: Virtualizing Idle Cores for Caching and Prefetching · 3:9

set 8n

set 8n+7

way 0 way 6 PE56PE56

PE8PE8

PE0PE0

PE62PE62 PE63PE63

PE14PE14 PE15PE15

PE6PE6 PE7PE7

(a) Layout

Line
offsetIndex bitsTag bits

63 2019 6 5 0

Local index bits
PE x-coordinate

Local index bitsControl array:

Data array:

(b) Indexing

Fig. 5. Decoupled WLP cache (7-way cache, 7MB).

allelism (WBLP). Due to subblocking, we only need one load and one xferortree
instruction for reading an entire cache line and one 64-bit immediate broad-
cast instruction and one store for writing it. In this design, the Chameleon
Virtualizer is made to broadcast an immediate move operation with eight dif-
ferent immediate values and to retrieve eight different data return values. In
this design, as in the eight-bank WLP-style cache, eight different IBuses and
eight different ORTree buses should have direct connection to the Chameleon
Virtualizer instead of using fan-out IBus and fan-in ORTree, as in the baseline
processor.

The primary challenge of such a WBLP design is the area overhead in keep-
ing the cache control bits. As a cache line is split into eight subblocks, all
eight PEs that keep a subblock of the same cache line need to have redundant
valid, tag, LRU, and coherence bits. Otherwise, more delay will incur for com-
municating this information. We found that each PE can accommodate this
redundant information without sacrificing the overall cache capacity. As ex-
plained in Section 3.1.1, at most, 64-bit of overhead is required per 64B cache
line. In the WLP design, out of the 128KB scratchpad memory per PE, 64KB
is consumed by its data array, and less than 8KB is consumed by these cache
control bits (i.e., each 128KB scratchpad memory is quite underutilized.) In
the WBLP design, at most, 64-bit overhead is required per 8B subblock. Thus,
64KB is used by its data array, and at most 64KB is consumed by the cache
control array with no further implication to utilizing the maximally available
cache capacity.

3.1.3 Decoupled Design. The two designs discussed previously place the
cache control array and data array in one PE so that each PE can locally
detect whether the request is a hit or a miss and route the hit line back to
the Chameleon Virtualizer. Such a local decision mechanism allows these two
transfer operations to be pipelined so that the overall look-up latency can be
reduced. However, as explained previously, these designs cannot utilize the
memory space efficiently because the number of sets in each PE must be a
power of 2.

Instead, we study an alternative design style where the cache control array
and data array are spread across different PEs. In this design, the Chameleon
Virtualizer needs to read the hit/miss signal first from PEs that store the cache
control array, and then it needs to request the target PE that stores the hit line
ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 1, Article 3, Publication date: April 2010.

3:10 · D. H. Woo et al.

PE56PE56

PE8PE8

PE0PE0

PE62PE62 PE63PE63

PE14PE14 PE15PE15

PE6PE6 PE7PE7

set n
way 0 way 6

(a) Layout

Line
offsetIndex bitsTag bits

Local index bits

63 2019 6 5 0

Local index bits

Control array:

Data array:

(b) Indexing

Fig. 6. Decoupled WBLP cache (7-way cache, 7MB).

to route the line back to the Chameleon Virtualizer. Figures 5 and 6 show such
decoupled designs. As shown in the figures, the cache control array is stored
in seven PEs in row 0. The Chameleon Virtualizer needs to look up these
PEs’ local scratchpad memory space to see whether the requested block is a
cache hit or miss. Upon a hit, it also needs to request one (decoupled WLP)
or eight (decoupled WBLP) PEs out of 56 PEs (row 1 to row 7) to route the hit
data array back to the Chameleon Virtualizer. In our decoupled design, PEn

(0 ≤ n ≤ 6) keeps a cache control array for the data array of PEs in row n + 1.
For example, in case of a decoupled WBLP cache (Figure 6), PE6 stores the
cache control array of way 6, while the cache data array of way 6 is stored in
PEs of row 7 (PE56 to PE63). Although the look-up latency of this style cache
is longer than that of previous two designs, 7-way set-associative 7MB cache
(total 16K sets) can be stored in 64 PEs—each of seven PEs in row 0 stores
the cache control array of 16K cache lines of each way; each PE in other rows
stores the cache data array of 2K lines (the decoupled WLP cache (Figure 5))
or the 8B subblock of 16k lines (the decoupled WBLP cache (Figure 6)). Note
that these 63 PEs fully utilize their 128KB local scratchpad memory. The only
unused space is the local memory space of PE7, as shown in the figures.

3.1.4 NUCA Cache Design. In the conventional A-mode, for synchronizing
the computation for each PE, a PE located at row i (where i ranges from 0 to 7)
in an 8× 8 PE array contains an instruction queue with 7− i entries as shown
in Figure 7(a). Instructions are broadcast through IBus and queued prior to
the execution by its designated PE. The delay units (shown as D blocks) are
inserted to synchronize each instruction broadcast in a SIMD-style execution.
With the instruction queue and pipelined IBus, PEs in different rows will ex-
ecute the same instruction at the same cycle, fully synchronized. Similarly, a
pipelined ORTree and flag queue are used to synchronize flag status globally.
Such a strictly synchronized execution model keeps the architecture and its
programming models simple. For example, neither the processor architects
nor the programmers have to deal with complicated synchronization issues
such as live-locks or deadlocks.

However, if the PEs are collectively used as a virtualized last-level cache, it
will be beneficial to have nonuniform access latencies, that is, accessing each
PE row out-of-sync. As shown in previous studies [Kim et al. 2002; Huh et al.
2005; Chishti et al. 2003], a non-uniform cache architecture (NUCA) helps
ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 1, Article 3, Publication date: April 2010.

Chameleon: Virtualizing Idle Cores for Caching and Prefetching · 3:11

PE56PE56

PE48PE48

PE40PE40

PE32PE32

PE24PE24

PE16PE16

PE8PE8

PE0PE0

PE56PE56

PE48PE48

PE40PE40

PE32PE32

PE24PE24

PE16PE16

PE8PE8

PE0PE0

ORTree

IBus

DD

DD

DD

DD

DD

DD

DD

DD

DD

DD

DD

DD

DD

DD

Conventional path
NUCA path

(a) Conventional, Synchronized
Model

PE56PE56

PE48PE48

PE40PE40

PE32PE32

PE24PE24

PE16PE16

PE8PE8

PE0PE0

PE56PE56

PE48PE48

PE40PE40

PE32PE32

PE24PE24

PE16PE16

PE8PE8

PE0PE0

ORTree

IBus

DD

DD

DD

DD

DD

DD

DD

DD

DD

DD

DD

DD

DD

DD

Conventional path
NUCA path

(b) Pipelined Model to Support
NUCA

Fig. 7. Execution model (only Column 0 is shown.).

reduce the average cache access latency, thereby improving the overall perfor-
mance. As such, it will be more desirable to keep data with good temporal
locality in a nearby memory bank of a large NUCA structure. Although our
baseline PE array already has a partitioned array of 64 PEs that uses mesh
topology, it requires certain changes in the architecture to enable nonuniform
latencies across PE rows. To eliminate the strictly synchronized execution na-
ture of the baseline, the instruction and flag queues, originally designed for
synchronizing their broadcasting, are bypassed when the NUCA model is en-
abled. As shown in Figure 7(b), the NUCA path directly bypasses and does
not buffer any incoming cache access microcode instruction and outgoing re-
quested cache lines. Consequently, in this execution model, different PEs in
different rows execute different instructions at the same cycle. However, the
pipelined execution model could complicate the synchronization of the ORTree
values and that of northbound and southbound transfer instructions. This
is what we call time-zone effect. Fortunately, the ORTree time-zone effect is
not an issue in the C-mode as C-mode microcode uses the ORTree to obtain
a requested cache line. Furthermore, the Chameleon Virtualizer is allowed
to issue one memory look-up microcode at a time, so no data is corrupted be-
tween distinct memory accesses. The northbound transfer instruction can be
synchronized by adding one more pipeline register in the northbound output
mesh driver, while the southbound transfer instruction can be synchronized by
ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 1, Article 3, Publication date: April 2010.

3:12 · D. H. Woo et al.

PE16PE16

PE8PE8

PE0PE0

PE24PE24 Line 2

Line 1

Line 0

PE32PE32 Line 3

(a) Cache Line
Location before
Reading Line 2

PE24PE24

PE16PE16

PE8PE8

PE0PE0

Line 2

Line 0

PE32PE32 Line 3

Line 1

(b) Cache Line
Movement Upon
Hitting Line 2

PE24PE24

PE16PE16

PE8PE8

PE0PE0

Line 1

Line 0

Line 2

PE32PE32 Line 3

(c) Cache Line
Location after
Reading Line 2

PE0PE0 PE1PE1 PE2PE2 PE3PE3 PE4PE4 PE5PE5 PE6PE6 PE7PE7

Cache
Control
Bits of
Line 0

Cache
Control
Bits of
Line 1

Cache
Control
Bits of
Line 3

Cache
Control
Bits of
Line 2

Cache
Control
Bits of
Line 5

Cache
Control
Bits of
Line 6

Cache
Control
Bits of
Line 4

(d) Cache Control Array Movement on Hitting Line 2

Fig. 8. LRU management of a NUCA C-mode (decoupled WLP cache).

architecting the latency of this instruction as two cycles. More details on the
time-zone effect can be found in Appendix A.

Another NUCA design issue is with respect to how to implement the LRU
policy efficiently. Figure 8 illustrates an instance for our decoupled WLP
cache. In this example, the host processor issues to read line 2, and seven
PEs have seven different cache lines mapped to the same set, as shown in Fig-
ure 8(a). Upon detecting the requested line 2 in PE24, PE24 transfers it to the
Chameleon Virtualizer, and those PEs whose row numbers are smaller than
PE24 will transfer their cache lines to the north (Figure 8(b)). This movement
allows PEs to maintain more recently used cache lines closer to the Chameleon
Virtualizer, as shown in Figure 8(c).

The final design consideration of our NUCA C-mode is the placement of the
cache control array. In a decoupled design, the cache control array is located in
row 0, nearest to the Chameleon Virtualizer, reducing the tag look-up latency
significantly. Our NUCA design adopts a decoupled design as its base so that
the Chameleon Virtualizer can detect the location of the target data line early
in its look-up stage. By moving the cache control bits across PEs in row 0,
as shown in Figure 8(d), we can force the y-coordinate of a PE that keeps the
ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 1, Article 3, Publication date: April 2010.

Chameleon: Virtualizing Idle Cores for Caching and Prefetching · 3:13

target data line to be always bigger by one than the x-coordinate of a PE that
keeps the target control bits. For example, if the x-coordinate of the PE that
has the control bits of the requested cache line is 3, the Chameleon Virtualizer
can find corresponding data line in row 4.

Furthermore, we added another special move instruction to optimize the ac-
cess latency of NUCA designs. This instruction is executed by PEs in row 1 but
ignored by PEs in other rows. Upon decoding this instruction, the PEs in row
1 snoop the ORTree bus and store the values of the ORTree into a destination
register. With this instruction, the PEs in row 1 can obtain the hit line di-
rectly when the line is transferred to the Chameleon Virtualizer. Without this
instruction, the Chameleon Virtualizer has to read back this cache line and
write it to the PEs using IBus, which takes at least eight cycles in our baseline
architecture.

3.2 P-Mode: Virtualizing Idle Cores as a Prefetcher
In addition to the C-mode that supplies a virtualized last-level cache, we also
investigate the enabling mechanisms to reconfiguring idle PEs to work as a
data prefetcher. The rationale behind this is from the following observation—
the off-chip bandwidth of a heterogeneous multicore processor is typically very
large for fulfilling the heavy input demand of the acceleration cores. This band-
width, when running single-thread applications, may be left unused. Reusing
this bandwidth resource to perform data prefetching can potentially improve
performance. Even in the scenarios when the prefetches issued are less accu-
rate, they would unlikely affect the overall memory performance if the amount
of off-chip bandwidth can satisfy both demand fetches and prefetches. We call
this prefetching operation mode of the PE array P-mode (or prefetching mode).

In this article, we evaluate two data prefetchers for Chameleon P-mode: a
Markov prefetcher [Joseph and Grunwald 1997] and a program counter (PC)-
indexed delta correlation prefetcher [Kandiraju and Sivasubramaniam 2002;
Nesbit and Smith 2004]. We chose these prefetchers because they use reason-
ably large prefetch tables to track miss addresses. These are nontrivial over-
heads to the hardware if implemented exclusively for prefetching purposes.
Hence, even state-of-the-art processors do not adopt such implementations,
rather, they implemented a simpler next-line prefetcher [Hegde 2008] or a
stride prefetcher [Tendler et al. 2001]. We will demonstrate that Chameleon
can realize such area-consuming schemes by virtualizing the resources in P-
mode.

In the P-mode, the prefetch table is virtually laid out across PEs. Upon
an L2 cache miss, the Chameleon Virtualizer checks its prefetch buffer first
(Figure 2). If the requested line is not found, then the Chameleon Virtual-
izer broadcasts microcode to look up the virtualized prefetch table. This mi-
crocode drives each PE to perform index hashing, to match tag bits, and to
route a target prefetch table entry back to the Chameleon Virtualizer. Then,
the Chameleon Virtualizer decodes the table entry and generates prefetch re-
quests. To support P-mode, we added a small data prefetch buffer (a 32-entry
buffer in this article) in the Chameleon Virtualizer, as shown in Figure 2. A
prefetched cache line is temporarily stored in this buffer, which is checked on
ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 1, Article 3, Publication date: April 2010.

3:14 · D. H. Woo et al.

Tag bits
(64 bits)

Tag bits
(64 bits)

Next Addr0
(64 bits)

Next Addr0
(64 bits)

Next Addr1
(64 bits)

Next Addr1
(64 bits)

Next Addr2
(64 bits)

Next Addr2
(64 bits)

bit 5 ~ bit 0: unused bits (line offset bits)

bit m ~ bit 6: unused bits (table index bits; total 2m+1 entries)

(a) A table entry of a Markov prefetcher

PE0 PE7

PE24 PE31

entry 32n

entry 32n+7

entry 32n+24

entry 32n+31

Prefetch table

(b) Table layout (when only 32 PEs
are used)

Tag bits
(64 bits)

Tag bits
(64 bits)

Last Miss Addr
(64 bits)

Last Miss Addr
(64 bits)

bit 5 ~ bit 0: unused bits (line offset bits)

bit m ~ bit 0: unused bits (table index bits; total 2m+1 entries)

Delta[0]
(32 bits)
Delta[0]
(32 bits)

Delta[1]
(32 bits)
Delta[1]
(32 bits)

Delta[0]
(32 bits)
Delta[0]
(32 bits)

Delta[1]
(32 bits)
Delta[1]
(32 bits)

Delta[1]
(32 bits)
Delta[1]
(32 bits)

Delta[2]
(32 bits)
Delta[2]
(32 bits)

Delta[1]
(32 bits)
Delta[1]
(32 bits)

Delta[2]
(32 bits)
Delta[2]
(32 bits)

Delta[2]
(32 bits)
Delta[2]
(32 bits)

Delta[3]
(32 bits)
Delta[3]
(32 bits)

Delta[2]
(32 bits)
Delta[2]
(32 bits)

Delta[3]
(32 bits)
Delta[3]
(32 bits)

Delta[3]
(32 bits)
Delta[3]
(32 bits)

Delta[4]
(32 bits)
Delta[4]
(32 bits)

Delta[3]
(32 bits)
Delta[3]
(32 bits)

Delta[4]
(32 bits)
Delta[4]
(32 bits)

Delta[3]
(32 bits)
Delta[3]
(32 bits)

Delta[4]
(32 bits)
Delta[4]
(32 bits)

Delta[4]
(32 bits)
Delta[4]
(32 bits)

Delta[5]
(32 bits)
Delta[5]
(32 bits)

Delta[4]
(32 bits)
Delta[4]
(32 bits)

Delta[5]
(32 bits)
Delta[5]
(32 bits)

Delta[4]
(32 bits)
Delta[4]
(32 bits)

Delta[5]
(32 bits)
Delta[5]
(32 bits)

Delta[5]
(32 bits)
Delta[5]
(32 bits)

Delta[6]
(32 bits)
Delta[6]
(32 bits)

Delta[5]
(32 bits)
Delta[5]
(32 bits)

Delta[6]
(32 bits)
Delta[6]
(32 bits)

Delta[5]
(32 bits)
Delta[5]
(32 bits)

Delta[6]
(32 bits)
Delta[6]
(32 bits)

(c) A table entry of a Delta correlation prefetcher

Fig. 9. P-mode prefetcher.

every L2 cache miss.

3.2.1 Virtualized Markov Prefetcher. Figure 9(a) shows the prefetch table
design for a virtualized Markov prefetcher. Although the original Markov
prefetcher paper [Joseph and Grunwald 1997] showed that a prefetch table
with four next-miss addresses provides a reasonable balance between coverage
and accuracy, implementing a virtualized Markov prefetcher with four next-
miss addresses per entry is challenging because the number of entries per PE
should be a power of 2 for simpler PE indexing and because an entry with four
next-miss addresses requires at least 40B (larger than 32B but significantly
smaller than 64B). In other words, an entry with four next-miss addresses
requires 64B with 24B of unused bits, which results in area inefficiency. Thus,
we evaluate a Markov prefetcher with three (instead of four) next-miss ad-
dresses. As shown in the figure, the size of the prefetch table entry is 32B,
and one entry consists of the 8B current-miss address in the tag and three 8B
next-miss addresses. Clearly, this design contains unused bits, that is, table
index bits and line offset bits (Figure 9(a)), which results in area inefficiency.
However, we cannot compact the table entry because a 8B load or a 8B store
instruction of a PE is aligned at an 8B boundary. In our proposed design, 4,096
entries can be stored in each PE’s local scratchpad memory space.

The P-mode Markov prefetcher is indexed by taking a group of bits (e.g.,
17 bits on 32 PEs) from a miss address. These index bits consist of PE ID bits
(e.g., 5 LSBs on 32 PEs) and local index bits (e.g., 12 MSBs). The PE ID bits are
used to select only one PE that has the target prefetch table entry, while the
local index bits are used to generate the memory address of the selected PE’s
local scratchpad memory. Mapping between the logical table entries and PEs
is shown in Figure 9(b). In this example, each prefetch table entry is stored in
one of the 32 PEs using the five LSBs of the table index, as shown in the figure.
One design issue is the trade-off between the size and latency of the P-mode
ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 1, Article 3, Publication date: April 2010.

Chameleon: Virtualizing Idle Cores for Caching and Prefetching · 3:15

prefetcher. If there is no need for a large prefetch table, it would be better off
to enable only eight PEs in the first row to reduce the look-up latency. In this
article, we vary the size of the prefetch table (one, two, four, and eight rows)
and perform a sensitivity study in our result section.

The overall procedure is as follows: Upon an L2 cache miss, the Chameleon
Virtualizer broadcasts the current data miss address followed by microcode to
perform table look-up. This microcode retrieves the hit-prefetch table entry
along with its three next-miss addresses. Then, the Chameleon Virtualizer
decodes this return message and generates three prefetch requests.

3.2.2 Virtualized Delta Correlation Prefetcher. In addition to a Markov
prefetcher, we also evaluate a delta correlation prefetcher [Kandiraju and Siva-
subramaniam 2002; Nesbit and Smith 2004] that keeps the seven latest ad-
dress delta values. In this delta correlation prefetcher, we compare a pair of
two consecutive delta values, (δi, δi+1) (2 ≤ i ≤ 5), with the pair of two latest
consecutive delta values, (δ0, δ1), where δn is the nth latest delta value. Fig-
ure 9(c) shows a prefetch table entry of a P-mode delta correlation prefetcher.
The size of each entry is 64B: 8B for tag bits, 8B for the last miss address,
and six pairs of 4B delta values. As shown in the figure, instead of keeping
seven distinct delta values, our implementation keeps six pairs of two consec-
utive delta values. In other words, we keep redundant delta values between
neighboring pairs. For example, the first pair consists of δ0 and δ1 while the
second pair consists of δ1 and δ2 (Figure 9(c)). Clearly, such data layout is
inefficient in terms of area. However, we found that with this layout, we can
accelerate the correlation matching process by performing an 8B comparison
operation instead of performing two 4B comparison operations or concatenat-
ing two delta values. Furthermore, this layout is not perfect in terms of the
number of bits due to those unused bits, that is, table index bits and line offset
bits (Figure 9(c)). However, due to the same reason as the P-mode Markov
prefetcher, the overall table size will be no larger even if we compact the table
entry.

As mentioned earlier, the P-mode delta correlation prefetcher is indexed
by taking several LSBs from the PC. As in the P-mode Markov prefetcher,
these index bits are used to locate a target PE and to locate a target table
entry within the selected PE’s local scratchpad memory. Upon an L2 miss,
the Chameleon Virtualizer broadcasts the instruction’s PC followed by the mi-
crocode to perform the table look-up. This microcode retrieves a corresponding
prefetch table entry from one of the PEs, and the Chameleon Virtualizer calcu-
lates the next miss address(es) based on the miss address and the delta values
stored in this table entry.

3.3 HybridCP-Mode: Virtualizing Idle Cores for Caching and Prefetching
Instead of dedicating all idle cores as either a last-level cache or a prefetcher, in
this section, we propose a hybrid design that virtualize idle cores as a last-level
cache backed by a prefetcher. We call this operation mode the HybridCP-mode.

Figure 10(a) shows a design of the HybridCP-mode based on a 7MB NUCA
WBLP cache and a 128KB prefetch table. As explained earlier, in a NUCA
ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 1, Article 3, Publication date: April 2010.

3:16 · D. H. Woo et al.

Prefetch tableControl array Data array

(a) 7-Way 7MB NUCA WBLP
Cache + 128KB delta correlation
prefetcher

Prefetch tableControl array Data array

(b) 6-Way 6MB NUCA WBLP
Cache + 1MB delta correlation
prefetcher

Fig. 10. Hybrid design (cache + prefetcher).

design, 7 PEs in row 0 are filled with cache control bits, while PEs in row 1
to row 7 are filled with cache data. The example shown in the figure places
its prefetch table in PE7, which is not utilized in the NUCA WBLP cache.
In this example, upon an L2 cache miss, the Chameleon Virtualizer broad-
casts cache look-up microcode to all PEs, and it handles returning messages.
Once it detects a miss in a virtualized last-level cache, it looks up its prefetch
buffer first and broadcasts prefetch table look-up microcode if the target line
has not been prefetched. However, because the C-mode microcode and the P-
mode microcode share IBus bandwidth, their operations cannot be overlapped.
Figure 10(b) shows another example of the HybridCP-mode in which a 6-way
6MB cache is co-located with a 1MB delta correlation prefetcher table. In this
example, the virtualized last-level cache is shrunk, but the prefetch table is en-
larged. Note that certain partitioning such as a 4MB cache and a 3MB prefetch
table may be infeasible due to PE indexing.

3.4 AdaptiveCP-Mode: Mode Adaptation in Chameleon
Although we have a wide spectrum of Chameleon design space, it is unlikely
that any single design choice will prevail in performance for all applications
due to the unpredictability of the characteristics in the algorithms and their
workloads. A hybrid design will perform better when the host processor runs
an application with good locality and a reasonable size of working set. How-
ever, when the host processor runs a streaming application (high L3 miss rate),
due to its additional cache look-up latency, a hybrid design may perform worse
than one with data prefetching capability only. Furthermore, some applica-
tions are purely computation-intensive, thus Chameleon will not help to im-
prove the overall performance but consume more power. To obtain the best
breed of all, we propose an adaptive mode that dynamically selects one of these
Chameleon modes. As Chameleon itself is built on microcode-controlled PEs,
ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 1, Article 3, Publication date: April 2010.

Chameleon: Virtualizing Idle Cores for Caching and Prefetching · 3:17

Prefetch
Only
Mode

Cache +
Prefetch

Mode

Power
Saving
Mode

Hit r
ate

 <
h thr

es
ho

ld
L2 MPKC < m

threshold

Reset

Fig. 11. AdaptiveCP-Mode (MPKC: misses per kilo cycles).

an adaptive mode can be implemented at mild hardware cost: Changing the
microcode PC to be executed, adding a couple of performance counters, and
adding additional control logic in the Chameleon Virtualizer.

Figure 11 shows an example of mode transition for our adaptive mechanism.
Once an application is launched, Chameleon is operated in the HybridCP-
mode. If the application does not show good locality or has a large working set
resulting in a low hit rate, then Chameleon will disable its cache functionality
completely and use only its data prefetching functionality. If the application
does not have many L2 cache misses (i.e., measured by MPKC, misses per kilo
cycles), then Chameleon disables both caching and prefetching to save power.
We do not include cache-only mode as the P-mode prefetcher does not harm
the overall performance, as will be shown in Section 4, because it does not
pollute the regular cache hierarchy. To implement an adaptive mechanism,
two performance counters are added: an L3 cache hit counter and an L3 cache
access counter (equivalent to the L2 cache miss counter). After launching a
new process and warming up the C-mode cache, the Chameleon Virtualizer
can monitor these two performance counters to make a decision of what mode
is more appropriate for the running application. Furthermore, we can perform
such sampling regularly by reseting the state diagram to find a better mode
when a program phase changes.

4. EXPERIMENTAL RESULTS
4.1 Simulation Environment
Two simulators were used in our analysis. The first one is a cycle-level simu-
lator we developed for the baseline SIMD engine. In addition to an accurate
model of PE microarchitecture pipeline, it models latency and bandwidth of the
interconnection network among PEs including the IBus, ORTree, MBus, and
mesh network. Additionally, we integrated the Chameleon functionality into
this simulator. The second simulator is SESC [Renau et al. 2005], a cycle-level
architectural simulator. SESC is used to model the host processor, its conven-
tional cache hierarchy, and the off-chip DRAM memory. SESC retrieves latency
and throughput3 information measured by the baseline SIMD simulator and

3In this article, throughput is defined as the number of cycles a cache port is occupied by a cache
operation. For example, the throughput of a fully pipelined cache is one, while the throughput of
an nonpipelined cache is generally equal to its access latency.

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 1, Article 3, Publication date: April 2010.

3:18 · D. H. Woo et al.

Table I. Host Processor Configuration.
Clock frequency 3.0GHz
Processor model out-of-order
Machine width 3 (fetch) / 3 (issue) / 3 (retire)
The number of pipeline stages 1 (fetch) / 4 (decode) / 2 (rename) / 4 (wakeup) / 1 (schedule)
ROB size 128
Physical register file size 96 (INT) / 96 (FP)
Branch predictor Hybrid branch predictor (16K global / local / meta tables),

2K BTB, 32-entry RAS
ITLB dual-port, 4-way set-associative, 64-entry
DTLB dual-port, 4-way set-associative, 64-entry
L1 instruction cache dual-port, 2-way set-associative, 32KB cache with 64B line;

1 cycle hit latency; 1 cycle throughput
L1 data cache dual-port, 2-way set-associative, 32KB cache with 64B line;

1 cycle hit latency; 1 cycle throughput
L2 cache single-port, 8-way set-associative, 512KB (1MB, 2MB)

cache with 64B line; 15 cycle hit latency; 3 cycle through-
put; a stride prefetcher with a 256 entry prefetch table

Memory Four 64-bit channels, 800MHz double data rate, 350 cycle
latency

uses them to simulate the entire heterogeneous architecture. Table I lists the
configuration of the simulated host processor. Unless otherwise stated, the ca-
pacity of our baseline L2 cache is 512KB. We also show simulation results with
1MB and 2MB baseline models later. Throughout this article, the baseline per-
formance is measured with this host processor model without any Chameleon
capability.

To evaluate the effectiveness of the Chameleon architecture for improving
sequential performance, we used the SPEC2006 benchmark suite. The en-
tire SPEC2006 benchmark suite was used except 434.zeusmp, 465.tonto, and
470.lbm, which incurred issues such as cross-compiling failure and unsup-
ported system calls in our simulators. For all simulations, we fast-forwarded
the first 10 billion instructions and simulated next 2 billion instructions.

4.2 Evaluation of C-Mode
First, we measured the latency and throughput for each C-mode design. Un-
like a conventional cache where its latency and throughput are solely deter-
mined by the characteristics of transistors and wires, the latency and through-
put of a C-mode cache are determined by the number of instructions that con-
trol PEs and the order of these instructions. For example, for a cache read
operation, a read latency can be reduced if instructions that route a read-hit
line back to the Chameleon Virtualizer are scheduled earlier than instructions
that update LRU bits. On the other hand, the number of the instructions to
perform a single cache operation will determine the throughput of a C-mode
cache (in a single-bank design) because they consume the IBus bandwidth for
the same number of clock cycles. In this work, we wrote microcode using PE
assembly code to implement different designs and scheduled them carefully to
minimize the latency. The throughput is measured by counting the number
of PE instructions to perform a cache operation, and the latency is measured
ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 1, Article 3, Publication date: April 2010.

Chameleon: Virtualizing Idle Cores for Caching and Prefetching · 3:19

Table II. Latency and Throughput of Different C-Mode Designs.

Legend Description LRU State of
the Hit Line

Read Write Replace
Latency Throughput Latency Throughput Throughput

Hit Miss Hit Miss Hit Miss Hit Miss

wlp WLP-style
8-way 4MB

MRU
43 40

44
40 40 40

44
40 37non-MRU 46 49

wblp WBLP-style
8-way 4MB

MRU
37 36

37
36 36 36

37
36 18non-MRU 42 42

wlp nuca
Decoupled
WLP-style
7-way 7MB

row1 (MRU) 39

21

29

21 20 20

43

20 45

row2 41 44

57

row3 43 46
row4 45 48
row5 47 50
row6 49 52

row7 (LRU) 51 54

wblp nuca
Decoupled

WBLP-style
7-way 7MB

row1 (MRU) 35

20

24

20 20 20

25

20 23

row2 37 37

36

row3 39 39
row4 41 41
row5 43 43
row6 45 45

row7 (LRU) 47 47

wlp 8banks 8-bank wlp Latency and throughput of each bank is same as wlp

by monitoring the time when a hit/miss signal or a requested cache line is re-
turned to the Chameleon Virtualizer. We assume the PE array operated in the
A-mode and C-mode runs at the same frequency of the host processor, 3GHz.

Table II summarizes each cache design and their latency/throughput studied
in this section. As shown in Table II, the latency and throughput of NUCA
models vary depending on which row an access hits.4 Furthermore, even in
non-NUCA designs, the throughput can vary depending on whether a hit line
is located at an MRU position or not. When hitting an MRU line, we do not
need to update the LRU bits, so the Chameleon Virtualizer does not need to
broadcast instructions to update the LRU state.

Not surprisingly, the latency of a WBLP-style cache is lower than that of its
WLP-style counterpart. In the case of a WLP-style cache, if the row number of
a hit PE is greater than three, the latency of the NUCA design will be worse.
In a WBLP-style cache, this threshold will be two. The sophisticated LRU
management of NUCA designs is found to be the main reason for this effect.

Table II also shows the read throughput of each design. As shown, there ex-
ists a trade-off in throughput between a NUCA design and its counterpart. In
the WLP- and WBLP-style caches, not updating the LRU status upon hitting
an MRU line helps reduce their throughput by two and five cycles, respectively.
A similar trend is observed for the latency and throughput of a write and re-
placement operation as well.

Now we evaluate and quantify the performance potential for single-thread

4In this article, we use an expression, a hit PE, to address a PE that has a requested cache line in
its local scratchpad memory space. Similarly, a hit row is defined as the number of a row to which
the hit PE belongs.

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 1, Article 3, Publication date: April 2010.

3:20 · D. H. Woo et al.

4.
85

2.
75

2.
60

2.
05

2.
00

2.
00

2.
21

1.
71

1.
75

1.
88

6.
64

2.
93

0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5

400.
perlbench

401.
bzip2

403.
gcc

429.
mcf

445.
gobmk

456.
hmmer

458.
sjeng

462.
libquantum

464.
h264ref

471.
omnetpp

473.
astar

483.
xalancbmk

GMean
(all)

GMean
(mem_int)

Sp
ee

du
p

(S
PE

C
in

t0
6)

0 140

wlp wlp_8banks wblp wlp_nuca wblp_nuca perfect2.
23

4.
33

2.
89

1.
79

3.
13

1.
55

2.
10

1.
50

0.
78

0.
79

0.
790.8

0.9
1.0
1.1
1.2
1.3
1.4
1.5

410.
bwaves

416.
gamess

433.
milc

435.
gromacs

436.
cactusADM

437.
leslie3d

444.
namd

447.
dealII

450.
soplex

453.
povray

454.
calculix

459.
GemsFDTD

481.
wrf

482.
sphinx3

GMean
(all)

GMean
(mem_int)

Sp
ee

du
p

(S
PE

C
fp

06
)

0 160

wlp wlp_8banks wblp wlp_nuca wblp_nuca perfect

Fig. 12. Relative performance of different C-mode designs.

applications by using the C-mode on a heterogeneous multicore processor. Fig-
ure 12 shows the performance impact of different C-mode designs. To show the
theoretical limit, we also simulated a perfect memory model in which the L2
cache is assumed perfect. This model also reveals those benchmark programs
that are memory intensive. In this article, we define memory-intensive appli-
cations as applications whose performance can be improved more than 10%
with a perfect L2.

Not surprisingly, the C-mode improves the performance of memory-intensive
applications, such as 401.bzip2, 429.mcf, 464.h264ref, 471.omnetpp, 473.as-
tar, 483.xalancbmk, 450.soplex, 454.calculix, and 482.sphinx3. For example,
the NUCA WBLP-style (wblp nuca) C-mode improves the performance of
483.xalancbmk by 175%. Overall, it is found that the NUCA WBLP-style C-
mode is the most effective design. On average (geometric mean), it improves
the performance of SPECint06 applications and SPECfp06 by 18% and 7%,
respectively. For the memory-intensive application category, the average per-
formance improvements for them are 27% and 10%, respectively.

However, the performance of some memory-intensive applications was
degraded including 462.libquantum, 410.bwaves, 433.milc, 437.leslie3d, and
459.GemsFDTD. We found that the hit rates of the C-mode cache were very
low when the host processor runs these applications, so an additional cache
level will only introduce extra latency in bringing data back.

Apparently, the NUCA models are effective despite their longer latency when
a hit PE is located far from the Chameleon Virtualizer. Figure 13 shows
the distribution of hit rows. Note that 416.gamess is extremely computation-
intensive and generates a small number of cold misses, which results in a 100%
L3 miss rate. Therefore, no bar is shown in Figure 13 for it. As shown in Fig-
ure 13, most of the cache hits are found in the PEs close to the Chameleon Vir-
tualizer, which justifies the hardware/software effort for addressing the time-
zone effect.
ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 1, Article 3, Publication date: April 2010.

Chameleon: Virtualizing Idle Cores for Caching and Prefetching · 3:21

0%
20%
40%
60%
80%

100%

40
0.p

erl
be

nc
h

40
1.b

zip
2

40
3.g

cc

42
9.m

cf

44
5.g

ob
mk

45
6.h

mmer

45
8.s

jen
g

46
2.l

ibq
ua

ntu
m

46
4.h

26
4re

f

47
1.o

mne
tpp

47
3.a

sta
r

48
3.x

ala
nc

bm
k

41
0.b

wave
s

41
6.g

am
es

s

43
3.m

ilc

43
5.g

rom
ac

s

43
6.c

ac
tus

ADM

43
7.l

es
lie3

d

44
4.n

am
d

44
7.d

ea
lII

45
0.s

op
lex

45
3.p

ov
ray

45
4.c

alc
ulix

45
9.G

em
sF

DTD
48

1.w
rf

48
2.s

ph
inx

3

row 1 row 2 row 3 row 4 row 5 row 6 row 7

Fig. 13. Distribution of hit rows.

Table III. Latency and Throughput of Different P-Mode Designs.
Legend Description Latency Throughput

Markov1 1MB Markov prefetcher table on 8 PEs in row 0 21

22Markov2 2MB Markov prefetcher table on 16 PEs in row 0 and 1 23
Markov4 4MB Markov prefetcher table on 32 PEs in row 0 to 3 27
Markov8 8MB Markov prefetcher table on 64 PEs in row 0 to 7 35

delta1 1MB delta correlation prefetcher table on 8 PEs in row 0 37

29delta2 2MB delta correlation prefetcher table on 16 PEs in row 0 and 1 39
delta4 4MB delta correlation prefetcher table on 32 PEs in row 0 to 3 43
delta8 8MB delta correlation prefetcher table on 64 PEs in row 0 to 7 51

Another interesting result is that a multibanked WLP-style cache (wlp 8banks)
is not as effective as its counterpart: a single-bank WBLP-style cache (wblp).
As shown in Figure 12, the performance improvement by a single-bank WBLP-
style cache is always higher than or close to that of its multibanked WLP-style
counterpart. This implies that a C-mode cache is accessed infrequently so that
designing a faster C-mode cache is more favorable than designing a slower but
multibanked C-mode cache.

We also performed simulations with a baseline with a larger L2 cache. On
average (geometric mean), when a 1MB L2 cache is used, a NUCA WBLP-
style cache improves the performance of SPECint06 and SPECfp06 by 14%
and 3%, respectively (21% and 5% for memory-intensive applications). When a
2MB L2 cache is used, the NUCA WBLP-style cache improves the performance
of SPECint06 and SPECfp06 by 11% and 2%, respectively (17% and 3% for
memory-intensive applications).

4.3 Evaluation of P-Mode
Table III describes each prefetcher design used in this section and shows its
table look-up latency and throughput. As expected, we found a trade-off be-
tween the table look-up latency and the table size. For example, the look-up
latency is 21 cycles for a 1MB Markov prefetcher table while it is 35 cycles
for an 8MB table. This trade-off is represented in the overall performance
graphs shown in Figure 14. For brevity, we show only the performance result of
some prefetcher designs that reveal the trade-off well. For the P-mode Markov
prefetcher, a large table is more useful as shown in the simulation results of
483.xalancbmk. This is intuitive because a Markov prefetcher is indexed by a
ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 1, Article 3, Publication date: April 2010.

3:22 · D. H. Woo et al.

2.
93

3.
25

3.
18

6.
64

1.
88

1.
75

4.
85

1.
71

2.
21

0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5

400.
perlbench

401.
bzip2

403.
gcc

429.
mcf

445.
gobmk

456.
hmmer

458.
sjeng

462.
libquantum

464.
h264ref

471.
omnetpp

473.
astar

483.
xalancbmk

GMean
(all)

GMean
(mem_int)

Sp
ee

du
p

(S
PE

C
in

t0
6)

0 140

markov1 markov4 markov8 delta1 delta8 perfect2.
23

4.
33

2.
89

1.
79

1.
69

1.
69

3.
13

1.
55

2.
10

0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5

410.
bwaves

416.
gamess

433.
milc

435.
gromacs

436.
cactusADM

437.
leslie3d

444.
namd

447.
dealII

450.
soplex

453.
povray

454.
calculix

459.
GemsFDTD

481.
wrf

482.
sphinx3

GMean
(all)

GMean
(mem_int)

Sp
ee

du
p

(S
PE

C
fp

06
)

0 160

markov1 markov4 markov8 delta1 delta8 perfect

Fig. 14. Relative performance of different P-mode designs.

miss address, so a larger table will be able to cover more miss addresses. How-
ever, we found that a 1MB P-mode delta correlation prefetcher is sufficiently
large because it is indexed by a PC.

In most cases, a P-mode delta correlation prefetcher performs better than
a P-mode Markov prefetcher. Seven exceptions are 445.gobmk, 471.omnetpp,
473.astar, 483.xalancbmk, 435.gromacs, 447.dealII, and 454.calculix. However,
we also found that the performance improvements achieved by a P-mode
Markov prefetcher on these applications are actually lower than those by a C-
mode cache. In brief, the P-mode Markov prefetcher is less appealing compared
to other C-mode caches or the P-mode delta correlation prefetcher. On aver-
age, the 1MB P-mode delta correlation prefetcher improved the performance
of SPECint06 and SPECfp06 applications by 16% and 13%, respectively. Their
average improvements for memory-intensive applications are 25% and 23%.

4.4 Evaluation of HybridCP-Mode and AdaptiveCP-Mode
As shown previously, certain applications benefit more from a C-mode cache
while some show more improvement when a P-mode prefetcher is used. For
example, the NUCA WBLP-style C-mode cache improves the performance of
483.xalancbmk by 175%, but no improvement is obtained with a 1MB P-mode
delta correlation prefetcher. In contrast, the 1MB P-mode delta correlation
prefetcher improves the performance of 462.libquantum by 225%, but using the
NUCA WBLP-style C-mode cache degrades it by 7%. More interestingly, Fig-
ure 15 shows that the HybridCP-mode and the AdaptiveCP-mode can provide
reasonable performance improvement across applications with different char-
acteristics. For easier comparisons, the figure also shows their best performing
C-mode (wblp nuca) and P-mode (delta1).

Two HybridCP-mode designs were evaluated: a hybrid design with a
7MB NUCA WBLP cache and a 128KB delta correlation prefetcher (hy-
brid 7MB 128KB of Figure 10(a)) and a hybrid design with a 6MB NUCA
ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 1, Article 3, Publication date: April 2010.

Chameleon: Virtualizing Idle Cores for Caching and Prefetching · 3:23

2.
93

3.
25

2.
96

2.
93

3.
21

6.
64

1.
88

1.
75

2.
75

2.
75

2.
55

2.
75

4.
85

1.
71

2.
21

1.
50

0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5

400.
perlbench

401.
bzip2

403.
gcc

429.
mcf

445.
gobmk

456.
hmmer

458.
sjeng

462.
libquantum

464.
h264ref

471.
omnetpp

473.
astar

483.
xalancbmk

GMean
(all)

GMean
(mem_int)

Sp
ee

du
p

(S
PE

C
in

t0
6)

0 140

wblp_nuca delta1 hybrid_7MB_128KB hybrid_6MB_1MB adaptive_7MB_128KB perfect 2.
10

1.
55

3.
13

1.
75

1.
69

1.
69

1.
79

1.
55

1.
79

2.
89

1.
55

1.
61

1.
50

4.
33

2.
23

0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5

410.
bwaves

416.
gamess

433.
milc

435.
gromacs

436.
cactusADM

437.
leslie3d

444.
namd

447.
dealII

450.
soplex

453.
povray

454.
calculix

459.
GemsFDTD

481.
wrf

482.
sphinx3

GMean
(all)

GMean
(mem_int)

Sp
ee

du
p

(S
PE

C
fp

06
)

0 160

wblp_nuca delta1 hybrid_7MB_128KB hybrid_6MB_1MB adaptive_7MB_128KB perfect

Fig. 15. Relative performance of HybridCP-mode and AdaptiveCP-mode.

WBLP cache and a 1MB delta correlation prefetcher (hybrid 6MB 1MB of Fig-
ure 10(b)). In most cases, the performance difference between these two hybrid
designs is small except two applications: 483.xalancbmk and 482.sphinx. As
shown in Figure 12, their performance is improved a lot with a bigger cache,
and that is why their performance is improved more with the hybrid design
with a 7MB NUCA WBLP cache and a 128KB delta correlation prefetcher.
On average, this hybrid design improves the performance of SPECint06 and
SPECfp06 by 31% and 15%. The average performance improvements for
memory-intensive ones are 49% and 24%. (For the remainder of the article,
the HybridCP-mode refers to the hybrid design with a 7MB cache and 128KB
prefetcher unless explicitly stated otherwise.)

On the other hand, we found an AdaptiveCP-mode can perform as well as the
HybridCP-mode. This adaptive one is based on the previous HybridCP-mode
with a 7MB NUCA WBLP cache and a 128KB delta correlation prefetcher.
However, we disable its cache functionality to behave as a 128KB delta corre-
lation prefetcher based on the algorithm shown in Figure 11. In this evalu-
ation, we modeled the AdaptiveCP-mode to make decisions after warming up
the cache during the first 30 million cycles (0.1 ms) and then monitoring the
number of cache accesses and hits for the next 30 million cycles. In this set of
simulations, we perform this sampling every 600 million cycles (2ms) to find
a better Chameleon mode just in case a program phase changes. The model
in Figure 15 uses 30% for the threshold of the cache hit rate and 0.5 for the
number of L2 misses (= L3 accesses) per kilo cycles (MPKC), which are found
to provide the highest average improvement (although not significantly) ac-
cording to our sensitivity study. As shown in the figure, the AdaptiveCP-mode
performs at least as well as the HybridCP-mode. In particular, it prevails
when the host processor runs applications favoring a prefetcher, for example,
462.libquantum and 433.milc. On average, the AdaptiveCP-mode improves the
ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 1, Article 3, Publication date: April 2010.

3:24 · D. H. Woo et al.

performance of SPECint06 and SPECfp06 by 31% and 15%, repectively. For
memory-intensive applications, it improves by 50% and 26%, on average. Fur-
thermore, this adaptive design does not degrade the performance of any appli-
cation. (Note that the only application whose performance is degraded by the
HybridCP-mode is 433.milc with a 7% degradation.)

We also performed a sensitivity study with different L2 sizes and summarize
their average performance improvements as follows. Using a 1MB L2 cache
baseline, the AdaptiveCP-mode improved the performance of SPECint06 and
SPECfp06 by 27% and 12%, respectively (43% and 23% for memory-intensive
applications). When increasing the capacity to 2MB, it improved the per-
formance of them by 25% and 11%, respectively (40% and 21% for memory-
intensive applications).

4.5 Hardware and Power Overhead
The hardware overhead to support Chameleon is insignificant. First of all,
the Chameleon Virtualizer requires a prefetch buffer, an MSHR, a Chameleon
microcode memory, and corresponding control logic changes. In our simula-
tions, we modeled a 32-entry prefetch buffer and an 8-entry MSHR. In case of
the HybridCP-mode, for example, less than 128 PE instructions are required.
Thus, a 128-entry Chameleon microcode memory is sufficient to implement
both the cache and the prefetcher. Conservatively assuming that supplemen-
tary control logic requires the same amount of space of these memory compo-
nents, the area overhead compared to a baseline SIMD engine is estimated
to be 0.01%. In this estimation, we used Intel’s data [Hamzaoglu et al. 2008]
and Penryn die to estimate the sizes of the Chameleon Virtualizer and the
baseline SIMD engine. Second, to support Chameleon, we added two new
special “move” instructions explained in Sections 3.1 and 3.1.4. Third, to pro-
vide a NUCA model, we added two sets of mux and demux, as shown in Fig-
ure 7(b), as well as additional pipeline registers to solve the time-zone effect
of the northbound transfer instruction. Fourth, to widen the datapath in a
WBLP-style cache, we directly connected IBus and ORTree to the Chameleon
Virtualizer without using conventional fan-out and fan-in trees. Note that this
new wiring does not require any wiring change in each PE. Lastly, to support
the AdaptiveCP-mode, we need to add two performance counters that count
the number of accesses and the number of hits in the Chameleon cache.

We also evaluated the extra dynamic power dissipation for the AdaptiveCP-
mode using Wattch [Brooks et al. 2000] model. We additionally modeled the
global interconnect (IBus, ORTree, Mesh) power consumption using the Berke-
ley Predictive Technology Model [Cao et al. 2000]. We conservatively modeled
the power by assuming the worst-case power consumption in the cache and
prefetch operations. For example, if a cache read hits in row 0 of the NUCA
model, no data and cache control array migration is required. However, for
convenience, we conservatively modeled that all 56 PEs are active regardless
of the LRU state of a hit line.

Figure 16 shows the relative power consumption and performance per joule
of the Adaptive-CP mode. Note that the performance improvement is also
shown for easier reference. Although Chameleon consumes a considerable
ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 1, Article 3, Publication date: April 2010.

Chameleon: Virtualizing Idle Cores for Caching and Prefetching · 3:25

5.
52

3.
02

3.
52

3.
26

0.0
0.5
1.0
1.5
2.0
2.5
3.0

400.
perlbench

401.
bzip2

403.
gcc

429.
mcf

445.
gobmk

456.
hmmer

458.
sjeng

462.
libquantum

464.
h264ref

471.
omnetpp

473.
astar

483.
xalancbmk

GMean
(all)

GMean
(mem_int)

0

Relative performance Relative power Relative performance/joule 3.
99

5.
27

0.0
0.5
1.0
1.5
2.0
2.5
3.0

410.
bwaves

416.
gamess

433.
milc

435.
gromacs

436.
cactusADM

437.
leslie3d

444.
namd

447.
dealII

450.
soplex

453.
povray

454.
calculix

459.
GemsFDTD

481.
wrf

482.
sphinx3

GMean
(all)

GMean
(mem_int)

0

Relative performance Relative power Relative performance/joule

Fig. 16. Performance, power, and performance per joule of the AdaptiveCP-mode.

amount of energy by running microcode on 64 PEs, because Chameleon is ac-
cessed very infrequently (on an L2 miss), Chameleon will consume only 69%
(SPECint06) and 37% (SPECfp06) more power (Figure 16) than the baseline
host processor with a conventional L1 and L2 caches. Note that the baseline
SIMD engine is already designed to accommodate the power consumption of
64 active PEs. Thus, the power consumption of the AdaptiveCP-mode is still
below the total chip power budget. This indicates that Chameleon is more
power-efficient than other thread-level speculation techniques for improving
sequential performance [Agarwal et al. 2007; Liu et al. 2006]. Although power
overhead analysis was not reported in these prior works, their power overhead
is likely to exceed the power overhead of Chameleon due to their full utiliza-
tion of all high-performance cores while Chameleon is only accessed upon an
L2 cache miss.

Figure 16 also shows the energy efficiency represented in performance per
joule, which represents achievable speed-up under the same energy bud-
get or energy efficiency. Overall, the AdaptiveCP-mode degrades the perfor-
mance per joule of SPECint06 and SPECfp06 by 2% and 5% (0.98x and 0.95x
in the geomeans). Interestingly, there are some applications whose perfor-
mance per joule is improved a lot, such as 462.libquantum, 483.xalancbmk, and
437.leslie3d. In other words, as their performance is improved a lot, their en-
ergy efficiency can be improved in spite of Chameleon’s power overhead. An-
other interesting observation is that if the application does not get any benefits
using Chameleon, their energy efficiency is not affected as well for Chameleon
is rarely accessed. However, energy efficiency of some applications, such as
429.mcf, 456.hmmer, 471.omnetpp, 450.soplex, and 482.sphinx3, is degraded,
as shown in Figure 16. We found that they prefer the HybridCP-mode, so they
consume much energy upon an L2 cache miss. If one is particularly interested
in energy efficiency rather than the performance itself, she or he can tune the
threshold values of the adaptive Chameleon so that Chameleon is not turned
ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 1, Article 3, Publication date: April 2010.

3:26 · D. H. Woo et al.

on when the host processor runs other applications. However, optimizing for
energy efficiency is out of scope of this article, and it remains as our future
work.

5. IMPLICATIONS TO THE OVERALL DESIGN
In this section, we discuss several issues of Chameleon that are not discussed
in the main text, but necessary for completeness.

Context switching. The C-mode cache evaluated in this article is based on a
write-through policy. By using a write-through policy, we can avoid the over-
head of context switching, a massive data movement from scratchpad mem-
ories to the main memory when a newly scheduled data-parallel application
wants to use scratchpad memories. Because ample memory bandwidth is
left unused due to idleness of acceleration cores, one traditional disadvantage
of a write-through policy, consuming more bus bandwidth, is not critical in
the Chameleon architecture. All our simulation results account for all write-
through traffic.

Coherence support. Although it is not completely evaluated in this article,
cache coherence can be supported by the Chameleon Virtualizer. Upon receiv-
ing a coherence message, the Chameleon Virtualizer broadcasts microcode to
look up coherence bits stored in one of the PEs (PEs in row 0 in the NUCA de-
sign). A state machine needs to be implemented in the Chameleon Virtualizer
so that it can perform a correct coherence action upon receiving coherence bits
from a PE.

Usage model. Although the baseline PE array is typically used as an ac-
celerator for data-parallel applications, Chameleon enhances it so that it can
work better than a conventional superscalar processor, especially for memory
intensive applications. If Chameleon is used in an accelerator board on a sys-
tem bus, for example, PCIe, or integrated onto a CPU chip, a smart OS can
schedule memory-intensive workloads on Chameleon rather than on a conven-
tional CPU if it fails to find a data-parallel application. Moreover, Chameleon
can enhance the performance of data-parallel applications as well because it
improves the performance of their sequential portion of the code.

Dynamic voltage and frequency scaling. Instead of using Chameleon, while
PEs are idle, the host processor can exploit remaining power budget by dy-
namically increasing its clock frequency and supply voltage [Kim et al. 2008;
Kumar and Hinton 2009]. Because idle PEs consume a small amount of idle
power, the host processor can run at a higher clock frequency without exceed-
ing the overall power budget of the chip. Nonetheless, this method will not
be able to improve the performance of memory-intensive, single-thread appli-
cations, which are typically unscalable and insensitive to the clock frequency.
Chameleon provides an attractive alternative to improve the single-thread per-
formance of memory-intensive applications, as shown in previous sections.

Extension to other architecture. Although we used a heterogeneous multi-
core processor integrated with an acceleration PE array to demonstrate our
techniques, the general idea of virtualzing idle cores is not limited to such
platforms but applicable to other similar types of multicore or many-core ar-
ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 1, Article 3, Publication date: April 2010.

Chameleon: Virtualizing Idle Cores for Caching and Prefetching · 3:27

chitectures. Although it is impossible to address all different architecture-
specific design issues in a single article, here we briefly describe how our idea
can be applied to other architectures. For example, to provide a virtualized
last-level cache in the IBM Cell/BE, an interface similar to the Chameleon
Virtualizer can be implemented between a power processing element (PPE)
and synergetic processing elements (SPEs), forwarding L2 miss traffic to the
SPEs instead of sending it directly to the off-chip DRAMs. The new interface
may need to broadcast only an L2 miss address along with a small amount of
control signals, since IBM Cell SPEs store their code internally. Depending on
the look-up outcome, the new interface can route the return message either
to the PPE L2 or to the main memory. As Cell SPEs can be used for MIMD
processing, they are more suitable to have a highly concurrent multibanked
cache than SIMD PEs. The current capacity of the Cell PPE’s L2 is 512KB
while the aggregate capacity of all local stores of eight SPEs is 2MB. When
the number of SPEs scales in the future, the aggregate capacity of local stores
will be proportionally larger, making Chameleon on the future Cell processors
more attractive. Another potential platform to apply Chameleon is on-chip
integrated GPUs. An interface similar to the Chameleon Virtualizer can be
added between an L2 cache and the integrated GPU, and it can forward an
L2 miss address to the GPU. Although a GPU does not have much cache or
scratchpad memory space, it has very large register files to enable massive
multithreading for hiding a cache miss latency. Thus, instead of relying on a
scratchpad memory space, we can record prefetch history in the register file
of the GPU. This usage model has been demonstrated in a recent article [Woo
and Lee 2010].

6. RELATED WORK
Prior studies investigated speculative multithreading or helper thread type of
techniques [Sohi et al. 1995; Hammond et al. 1998; Dundas and Mudge 1997;
Collins et al. 2001; Luk 2001; Annavaram et al. 2001; Liao et al. 2002; Mutlu
et al. 2003] to boost single-thread performance by utilizing idle cores. However,
these techniques require acceleration cores to be completely redesigned to sup-
port them, which could lead to severe performance degradation when running
conventional data-parallel applications. An event-driven helper thread emu-
lates the behavior of a hardware prefetcher on a closely-coupled homogeneous
idle core [Ganusov and Burtscher 2006]. Others implemented a technique that
exploits remaining power budget by scaling the clock frequency and the supply
voltage of an active core while the other cores are idle [Kim et al. 2008; Kumar
and Hinton 2009].

On the other hand, Cong et al. [2007] proposed core spilling when resources
on one core are exhausted. Similarly, Core Fusion [Ipek et al. 2007] was pro-
posed to group independent cores to form a larger CPU dynamically as needed
by applications. A flexible heterogeneous multicore processor [Pericas et al.
2007] dynamically adds or removes a processor from the system to adapt to
the requirement of the applications.

Software caching techniques have been used by many systems. To im-
ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 1, Article 3, Publication date: April 2010.

3:28 · D. H. Woo et al.

prove the programmability of SPEs on IBM Cell/BE, IBM provided a soft-
ware cache library as a part of their SDK [Arevalo et al. 2008; Eichenberger
et al. 2005]. The MIT Raw processor used software caching to emulate both
instruction [Miller and Agarwal 2006] and data cache [Moritz et al. 1999],
while the Stanford VMP multiprocessor handled cache misses using software
techniques [Cheriton et al. 1986]. Furthermore, with advanced compiler tech-
niques, a software cache memory can be better managed [Udayakumaran et al.
2006; Kandemir et al. 2001; Chen et al. 2008]. The goal of all these prior works
is to improve the programmability or performance of a processor with local
scratchpad memory, while the goal of our work is to provide a virtualized last-
level cache to the host processor to improve single-thread performance of the
host processor. On the other hand, several studies proposed a reconfigurable
memory architecture that can be configured to behave either as a cache mem-
ory or as a scratchpad memory [Mai et al. 2000; Sankaralingam et al. 2003;
Firoozshahian et al. 2009]. These memory architectures require both a data
and a tag array to function as a cache memory.

To use on-chip memory resources more efficiently, researchers have focused
on managing shared cache memories [Kim et al. 2004; Zhang and Asanovic
2005; Chang and Sohi 2006; Harris 2005; Hsu et al. 2006; Qureshi and Patt
2006; Guo et al. 2007]. Zhang and Asanovic [2005] proposed a new cache man-
agement policy called victim replication, which combines the advantage of pri-
vate and shared schemes in a tiled CMP. Chang and Sohi [2006] used private
cache memories for both dynamic sharing and performance isolation. Harris
[2005] proposed a synergistic caching policy, which groups neighboring cores
into a cluster to have shared memory space among them. These prior studies
try to address the problems of shared cache management while our work tries
to address the underutilization issue of a heterogeneous multicore processors
by virtualizing the unused PEs.

On the other hand, a NUCA cache structure has been studied to tackle
a long latency problem of the last-level cache. Kim et al. [2002] proposed
an adaptive, nonuniform cache structure. Based on a NUCA model, Huh
et al. [2005] studied an optimal degree of cache sharing. Unlike the original
NUCA proposal, NuRAPID decouples tag and data array to enable flexible
data placement [Chishti et al. 2003]. Although this article adopts an idea
of a NUCA cache, we propose an architectural solution called time-zoning to
provide nonuniform cache access latencies on a SIMD PE engine that has a
strictly synchronized execution model.

Memory-Mapped I/O (MMIO) is a well-known technique that allows a CPU
to assign a part of its memory space to an I/O device and maps it to the mem-
ory space of the I/O device. MMIO is mainly used for communication between
CPU and I/O devices. The PPE of IBM Cell/BE also has limited capability
of accessing the memory space mapped to the local store of SPEs through its
MMIO interface, but this is far less efficient than using DMA, and this opera-
tion is not synchronized with SPE execution [Kistler et al. 2006]. Chameleon is
completely different from MMIO. Chameleon is targeted to improve the perfor-
mance of the host processor by virtualizing idle cores collectively into a cache
ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 1, Article 3, Publication date: April 2010.

Chameleon: Virtualizing Idle Cores for Caching and Prefetching · 3:29

and/or a prefetcher. There is no static address mapping involved in Chameleon.

7. CONCLUSION
In this article, we propose Chameleon, a flexible heterogeneous multicore
processor that virtualizes idle acceleration cores for improving the memory
performance of sequential code. To address the underutilization issue when
these cores are not used for DLP processing, Chameleon can virtualize these
idle cores collectively into a last-level cache (C-mode) or a table-based data
prefetcher (P-mode) for single-thread applications running on the host pro-
cessor. We studied the trade-off between performance and architectural com-
plexity of several caching designs. For data prefetching, we demonstrated the
mechanisms to reconfiguring these acceleration cores into a Markov prefetcher
and a delta correlation prefetcher. Moreover, we introduce a hybrid mode to
enable caching and data prefetching simultaneously using the collective accel-
eration cores. To achieve the highest efficiency for performance versus energy,
we devise an adaptive mode to migrate the functionality of Chameleon between
the hybrid mode and prefetch-only mode by monitoring the cache behavior.

We used a heterogeneous multicore processor that consists of one high-
performance processor core and an array of SIMD-capable processing elements
for the case study to demonstrate our techniques in this article. Using the
SPEC2006 benchmark suite, we found that, on average, the Chameleon C-
mode can improve the performance of SPECint06 and SPECfp06 by 18% and
7% while the Chameleon P-mode can improve them by 16% and 13%. Further-
more, our hybrid mode shows a 31% and 15% improvement, respectively. In the
adaptive mode, 31% and 15% are observed for SPECint06 and SPECfp06. Fi-
nally, when accounting for memory-intensive applications only from the suite,
the average speed-ups of the adaptive mode are 50% and 26% for SPECint06
and SPECfp06, respectively.

APPENDIX
A. TIME-ZONE EFFECT
In this appendix, we explain the time-zone effect (mentioned in Section 3.1.4)
in detail. Unlike the strictly synchronized execution model of the baseline
architecture, to support the NUCA model, the instruction and flag queues,
originally designed for synchronizing their broadcasting, are bypassed. In this
execution model, different PEs in different rows execute different instructions
at the same cycle. However, such a pipelined execution model could complicate
the synchronization of the ORTree values and that of northbound and south-
bound transfer instructions, which we call time-zone effect.

Fortunately, the ORTree time-zone effect is not an issue in the C-mode be-
cause C-mode microcode uses the ORTree to obtain a requested cache line. Fur-
thermore, the Chameleon Virtualizer is allowed to issue one memory look-up
microcode at a time, so there is no concern of data corruption between distinct
memory accesses.

The next problem is synchronizing the northbound transfer instruction. This
problem is depicted in Figure 17 in which processor pipeline stages of two PEs
ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 1, Article 3, Publication date: April 2010.

3:30 · D. H. Woo et al.

PE48

PE56

xfer.n r1=r0WB
xfer.n r1=r0EX

xfer.n r1=r0DEC/RF
xfer.n r1=r0Buffer0

xfer.n r1=r0DEC/RF
xfer.n r1=r0EX

cycle n
xfer.n r1=r0WB
cycle n+3 cycle n+2cycle n+1

PE48

PE56

xfer.n r1=r0WB
xfer.n r1=r0EX

xfer.n r1=r0DEC/RF
xfer.n r1=r0Buffer0

xfer.n r1=r0DEC/RF
xfer.n r1=r0EX

cycle n
xfer.n r1=r0WB
cycle n+3 cycle n+2cycle n+1

(a) Conventional, strictly synchronized execution model

PE48

PE56

xfer.n r1=r0WB
xfer.n r1=r0EX

xfer.n r1=r0DEC/RF

xfer.n r1=r0DEC/RF
xfer.n r1=r0EX

cycle n
xfer.n r1=r0WB
cycle n+3 cycle n+2cycle n+1

PE48

PE56

xfer.n r1=r0WB
xfer.n r1=r0EX

xfer.n r1=r0DEC/RF

xfer.n r1=r0DEC/RF
xfer.n r1=r0EX

cycle n
xfer.n r1=r0WB
cycle n+3 cycle n+2cycle n+1

(b) Time-Zone effect of the pipelined execution model

PE48

PE56

D-flipflop

xfer.n r1=r0WB
xfer.n r1=r0EX

xfer.n r1=r0DEC/RF

xfer.n r1=r0DEC/RF
xfer.n r1=r0EX

cycle n
xfer.n r1=r0WB
cycle n+3 cycle n+2cycle n+1

PE48

PE56

D-flipflop

xfer.n r1=r0WB
xfer.n r1=r0EX

xfer.n r1=r0DEC/RF

xfer.n r1=r0DEC/RF
xfer.n r1=r0EX

cycle n
xfer.n r1=r0WB
cycle n+3 cycle n+2cycle n+1

(c) Solution for the pipelined execution model

Fig. 17. Conventional and NUCA execution model of xfer.n instruction.

are shown. Note that Buffer0 stage of PE48 is a pipeline stage introduced by
the one-entry instruction queue of PE48. The xfer.n instruction is a special
type of move instruction that copies a register value of a PE into a register
of its northern neighbor PE. In synchronized execution (Figure 17(a)), the r0
value of PE48 reaches PE56 at cycle n + 3 when the xfer.n instruction being
executed by PE56 is in the write-back (WB) stage. In this example, PE56 ex-
pects to have its r1 value from PE48 as the same xfer.n instruction is decoded
ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 1, Article 3, Publication date: April 2010.

Chameleon: Virtualizing Idle Cores for Caching and Prefetching · 3:31

PE48

PE56

xfer.s r1=r0WB
xfer.s r1=r0EX

xfer.s r1=r0DEC/RF
xfer.s r1=r0Buffer0

xfer.s r1=r0DEC/RF
xfer.s r1=r0EX

cycle n
xfer.s r1=r0WB
cycle n+3 cycle n+2cycle n+1

PE48

PE56

xfer.s r1=r0WB
xfer.s r1=r0EX

xfer.s r1=r0DEC/RF
xfer.s r1=r0Buffer0

xfer.s r1=r0DEC/RF
xfer.s r1=r0EX

cycle n
xfer.s r1=r0WB
cycle n+3 cycle n+2cycle n+1

(a) Conventional, strictly synchronized execution model

PE48

PE56

xfer.s r1=r0WB
xfer.s r1=r0EX

xfer.s r1=r0DEC/RF

xfer.s r1=r0DEC/RF
xfer.s r1=r0EX

cycle n
xfer.s r1=r0WB
cycle n+3 cycle n+2cycle n+1

PE48

PE56

xfer.s r1=r0WB
xfer.s r1=r0EX

xfer.s r1=r0DEC/RF

xfer.s r1=r0DEC/RF
xfer.s r1=r0EX

cycle n
xfer.s r1=r0WB
cycle n+3 cycle n+2cycle n+1

(b) Time-Zone effect of the pipelined execution model

PE48

PE56

xfer.s r1=r0

xfer.s r1=r0

xfer.s r1=r0WB

xfer.s r1=r0
EX

xfer.s r1=r0DEC/RF

xfer.s r1=r0DEC/RF
xfer.s r1=r0

EX

cycle n
WB

cycle n+3 cycle n+2cycle n+1

PE48

PE56

xfer.s r1=r0

xfer.s r1=r0

xfer.s r1=r0WB

xfer.s r1=r0
EX

xfer.s r1=r0DEC/RF

xfer.s r1=r0DEC/RF
xfer.s r1=r0

EX

cycle n
WB

cycle n+3 cycle n+2cycle n+1

(c) Solution for the pipelined execution model

Fig. 18. Conventional and NUCA execution model of xfer.s instruction.

and being executed by PE56 itself. Therefore, PE56 will set up control signals
prior to the reception of the value. However, in the pipelined execution model
(Figure 17(b)), the r0 reaches PE56 at cycle n+2 when the same xfer.n instruc-
tion is in the EX stage. In other words, PE56 has not set up control signals
to read the transferred value from PE48, and to update its r1. Without any
support, the r1 of PE56 will not be correctly updated. To address this issue,
we propose virtually synchronizing this xfer.n instruction by adding one more
ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 1, Article 3, Publication date: April 2010.

3:32 · D. H. Woo et al.

pipeline register in the northbound output mesh driver of PE48, so that the r0
value can reach PE56 at cycle n + 3 (Figure 17(c)).

A similar problem is present in synchronizing the southbound transfer xfer.s
instruction. Figure 18(a) shows the synchronized execution model. However,
in the pipelined execution model (Figure 18(b)), the r0 of PE56 reaches PE48
at cycle n + 3. At this moment, the xfer.s is no longer in the pipeline of PE48.
As such, the r1 of PE48 will not be correctly updated. Fortunately, as shown
in Figure 18(c), this problem can easily be solved by architecting the latency
of this instruction as two cycles. Any instruction that is dependent on the
destination register of the xfer.s instruction should be scheduled one cycle later,
and this is the responsibility of a programmer or a compiler.

REFERENCES
AGARWAL, M., MALIK, K., WOLEY, K. M., STONE, S. S., AND FRANK, M. I. 2007. Exploiting

postdominance for speculative parallelization. In Proceedings of the 13th International Sympo-
sium on High-Performance Computer Architecture. IEEE, Los Alamitos, CA, 295–305.

ANNAVARAM, M., PATEL, J. M., AND DAVIDSON, E. S. 2001. Data prefetching by dependence
graph precomputation. In Proceedings of the 28th International Symposium on Computer Ar-
chitecture. ACM, New York, 52–61.

AREVALO, A., MATINATA, R., PANDIAN, M., PERI, E., RUBY, K., THOMAS, F., AND ALMOND,
C. 2008. Programming the Cell Broadband Engine Architecture: Examples and Best Practices.
IBM Redbooks, Armonk, NY.

ARTIERI, A. 2005. Nomadik: an MPSoC solution for advanced multimedia. In Proceedings of the
5th International Forum on Application-Specific Multi-Processor SoC. IEEE, Los Alamitos, CA.

BROOKS, D., TIWARI, V., AND MARTONOSI, M. 2000. Wattch: A framework for architectural-
level power analysis and optimizations. In Proceedings of the 27th International Symposium on
Computer Architecture. ACM, New York, 83–94.

BUCK, I. 2007. GPU Computing with NVIDIA CUDA. In Proceedings of the International Con-
ference on Computer Graphics and Interactive Techniques (SIGGRAPH ’07). ACM, New York,
6.

CAO, Y., SATO, T., ORSHANSKY, M., SYLVESTER, D., AND HU, C. 2000. New paradigm of pre-
dictive MOSFET and interconnect modeling for early circuit simulation. In Proceedings of the
2000 Custom Integrated Circuits Conference. IEEE, Los Alamitos, CA, 201–204.

CHANG, J. AND SOHI, G. S. 2006. Cooperative caching for chip multiprocessors. In Proceedings
of the 33rd International Symposium on Computer Architecture. IEEE, Los Alamitos, CA, 264–
276.

CHEN, T., ZHANG, T., SURA, Z., AND TALLADA, M. G. 2008. Prefetching irregular references for
software cache on cell. In Proceedings of the 6th International Symposium on Code Generation
and Optimization. ACM, New York, 155–164.

CHERITON, D. R., SLAVENBURG, G. A., AND BOYLE, P. D. 1986. Software-controlled caches in
the VMP multiprocessor. In Proceedings of the 13th International Symposium on Computer
Architecture. IEEE, Los Alamitos, CA, 366–374.

CHISHTI, Z., POWELL, M. D., AND VIJAYKUMAR, T. N. 2003. Distance associativity for high-
performance energy-efficient non-uniform cache architectures. In Proceedings of the 36th Inter-
national Symposium on Microarchitecture. IEEE, Los Alamitos, CA, 55.

COLLINS, J. D., WANG, H., TULLSEN, D. M., HUGHES, C., LEE, Y.-F., LAVERY, D., AND SHEN,
J. P. 2001. Speculative precomputation: Long-range prefetching of delinquent loads. In Proceed-
ings of the 28th International Symposium on Computer Architecture. ACM, New York, 14–25.

CONG, J., GUOLING, H., JAGANNATHAN, A., REINMAN, G., AND RUTKOWSKI, K. 2007. Accelerat-
ing sequential applications on CMPs using core spilling. IEEE Trans. Paral. Distrib. Syst. 18, 8,
1094–1107.

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 1, Article 3, Publication date: April 2010.

Chameleon: Virtualizing Idle Cores for Caching and Prefetching · 3:33

DALLY, W. J. AND TOWLES, B. 2001. Route packets, not wires: On-chip interconnection networks.
In Proceedings of the 38th Design Automation Conference. ACM, New York, 684–689.

DUNDAS, J. AND MUDGE, T. 1997. Improving data cache performance by pre-executing instruc-
tions under a cache miss. In Proceedings of the 11th International Conference on Supercomput-
ing. ACM, New York, 68–75.

DUTTA, S., JENSEN, R., AND RIECKMANN, A. 2001. Viper: a multiprocessor SOC for advanced
set-top box and digital TV systems. IEEE Des. Test Comput. 18, 5, 21–31.

EICHENBERGER, A. E., O’BRIEN, K., O’BRIEN, K., WU, P., CHEN, T., ODEN, P. H., PRENER,
D. A., SHEPHERD, J. C., SO, B., ET AL. 2005. Optimizing compiler for the CELL processor.
In Proceedings of the 14th International Conference on Parallel Architectures and Compilation
Techniques. IEEE, Los Alamitos, CA, 161–172.

FIROOZSHAHIAN, A., SOLOMATNIKOV, A., SHACHAM, O., ASGAR, Z., RICHARDSON, S.,
KOZYRAKIS, C., AND HOROWITZ, M. 2009. A memory system design framework: creating smart
memories. In Proceedings of the 36th International Symposium on Computer Architecture. ACM,
New York, 406–417.

GANUSOV, I. AND BURTSCHER, M. 2006. Efficient emulation of hardware prefetchers via event-
driven helper threading. In Proceedings of the 15th International Conference on Parallel Archi-
tectures and Compilation Techniques. ACM, New York, 144–153.

GHULOUM, A., SMITH, T., WU, G., ZHOU, X., FANG, J., GUO, P., SO, B., RAJAGOPALAN, M.,
CHEN, Y., ET AL. 2007. Future-proof data parallel algorithms and software on IntelTM multi-
core architecture. Intel Tech. J. 11, 4.

GUO, F., SOLIHIN, Y., ZHAO, L., AND IYER, R. 2007. A framework for providing quality of service
in chip multi-processors. In Proceedings of the 40th International Symposium on Microarchitec-
ture. IEEE, Los Alamitos, CA, 343–355.

HAMMOND, L., WILLEY, M., AND OLUKOTUN, K. 1998. Data speculation support for a chip
multiprocessor. In Proceedings of the 8th International Conference on Architectural Support for
Programming Languages and Operating Systems. ACM, New York, 58–69.

HAMZAOGLU, F., ZHANG, K., WANG, Y., AHN, H., BHATTACHARYA, U., CHEN, Z., NG, Y.,
PAVLOV, A., SMITS, K., ET AL. 2008. A 153Mb-SRAM design with dynamic stability enhance-
ment and leakage reduction in 45nm high-K metal-gate CMOS technology. In Proceedings of
the IEEE International Solid-State Circuits Conference. IEEE, Los Alamitos, CA, 376–621.

HARRIS, S. 2005. Synergistic caching in single-chip multiprocessors. Ph.D. thesis, Stanford Uni-
versity.

HEGDE, R. 2008. Optimizing application performance on Intel R© CoreTM microarchitecture using
hardware-implemented prefetchers. Intel Software Network. http://software.intel.com/en-
us/articles/optimizing-application-performance-on-intel-coret-microarchitecture-using-
hardware-implemented-prefetchers.

HENSLEY, J. 2007. AMD CTM overview. In Proceedings of the International Conference on Com-
puter Graphics and Interactive Techniques (SIGGRAPH’07). ACM, New York, 7.

HILL, M. AND MARTY, M. 2008. Amdahl’s law in the multicore era. Computer 41, 7, 33–38.
HSU, L. R., REINHARDT, S. K., IYER, R., AND MAKINENI, S. 2006. Communist, utilitarian, and

capitalist cache policies on CMPs: caches as a shared resource. In Proceedings of the 15th In-
ternational Conference on Parallel Architectures and Compilation Techniques. ACM, New York,
13–22.

HUH, J., KIM, C., SHAFI, H., ZHANG, L., BURGER, D., AND KECKLER, S. W. 2005. A NUCA
substrate for flexible CMP cache sharing. In Proceedings of the 19th International Conference
on Supercomputing. ACM, New York, 31–40.

IPEK, E., KIRMAN, M., KIRMAN, N., AND MARTINEZ, J. F. 2007. Core fusion: accommodating
software diversity in chip multiprocessors. In Proceedings of the 34th International Symposium
on Computer Architecture. ACM, New York, 186–197.

JOSEPH, D. AND GRUNWALD, D. 1997. Prefetching using Markov predictors. In Proceedings of
the 24th International Symposium on Computer Architecture. ACM, New York, 252–263.

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 1, Article 3, Publication date: April 2010.

3:34 · D. H. Woo et al.

KADOTA, H., MIYAKE, J., OKABAYASHI, I., MAEDA, T., OKAMOTO, T., NAKAJIMA, M., AND KA-
GAWA, K. 1987. A 32-bit CMOS microprocessor with on-chip cache and TLB. IEEE J. Solid-
State Circuits 22, 5, 800–807.

KANDEMIR, M., RAMANUJAM, J., IRWIN, J., VIJAYKRISHNAN, N., KADAYIF, I., AND PARIKH, A.
2001. Dynamic management of scratch-pad memory space. In Proceedings of the 38th Design
Automation Conference. ACM, New York, 690–695.

KANDIRAJU, G. B. AND SIVASUBRAMANIAM, A. 2002. Going the distance for TLB prefetching:
an application-driven study. In Proceedings of the 29th International Symposium on Computer
Architecture. IEEE, Los Alamitos, CA, 195–206.

KIM, C., BURGER, D., AND KECKLER, S. W. 2002. An adaptive, non-uniform cache structure for
wire-delay dominated on-chip caches. In Proceedings of the 10th International Conference on
Architectural Support for Programming Languages and Operating Systems. ACM, New York,
211–222.

KIM, S., CHANDRA, D., AND SOLIHIN, Y. 2004. Fair cache sharing and partitioning in a chip
multiprocessor architecture. In Proceedings of the 13th International Conference on Parallel
Architectures and Compilation Techniques. IEEE, Los Alamitos, CA, 111–122.

KIM, W., GUPTA, M., WEI, G., AND BROOKS, D. 2008. System level analysis of fast, per-core
DVFS using on-chip switching regulators. In Proceedings of the 14th International Symposium
on High Performance Computer Architecture. IEEE, Los Alamitos, CA, 123–134.

KISTLER, M., PERRONE, M., AND PETRINI, F. 2006. Cell multiprocessor communication network:
built for speed. IEEE MICRO 26, 3, 10–23.

KUMAR, R. AND HINTON, G. 2009. A family of 45nm IA processors. In Proceedings of the IEEE
International Solid-State Circuits Conference. IEEE, Los Alamitos, CA, 58–59.

LIAO, S. S., WANG, P. H., WANG, H., HOFLEHNER, G., LAVERY, D., AND SHEN, J. P. 2002.
Post-pass binary adaptation for software-based speculative precomputation. In Proceedings of
the ACM SIGPLAN Conference on Programming Language Design and Implementation. ACM,
New York, 117–128.

LIU, W., TUCK, J., CEZE, L., AHN, W., STRAUSS, K., RENAU, J., AND TORRELLAS, J. 2006. POSH:
a TLS compiler that exploits program structure. In Proceedings of the 11th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming. ACM, New York, 158–167.

LUK, C.-K. 2001. Tolerating memory latency through software-controlled pre-execution in si-
multaneous multithreading processors. In Proceedings of the 28th International Symposium on
Computer Architecture. ACM, New York, 40–51.

MAHESRI, A., JOHNSON, D., CRAGO, N., AND PATEL, S. J. 2008. Tradeoffs in designing acceler-
ator architectures for visual computing. In Proceedings of the 41st International Symposium on
Microarchitecture. IEEE, Los Alamitos, CA, 164–175.

MAI, K., PAASKE, T., JAYASENA, N., HO, R., DALLY, W. J., AND HOROWITZ, M. 2000. Smart
memories: A modular reconfigurable architecture. In Proceedings of the 27th International
Symposium on Computer Architecture. ACM, New York, 161–171.

MCCOOL, M. D., WADLEIGH, K., HENDERSON, B., AND LIN, H.-Y. 2006. Performance evalua-
tion of GPUs using the RapidMind development platform. In Proceedings of the ACM/IEEE
Conference on Supercomputing. ACM, New York, 181.

MILLER, J. E. AND AGARWAL, A. 2006. Software-based instruction caching for embedded proces-
sors. In Proceedings of the 12th International Conference on Architectural Support for Program-
ming Languages and Operating Systems. ACM, New York, 293–302.

MOORE, C. 2007. The role of accelerated computing in the multi-core era. In Proceedings of the
Workshop on Manycore and Multicore Computing: Architectures, Applications And Directions.

MORITZ, C. A., FRANK, M., LEE, W., AND AMARASINGHE, S. 1999. Hot pages: software caching
for raw microprocessors. Tech. rep. MIT-LCS-TM-599, Massachusetts Institute of Technology.

MUNSHI, A. 2008. OpenCL: parallel computing on the GPU and CPU. In Proceedings of the
International Conference on Computer Graphics and Interactive Techniques (SIGGRAPH ’08).
ACM, New York.

MUTLU, O., STARK, J., WILKERSON, C., AND PATT, Y. N. 2003. Runahead execution: an alter-
native to very large instruction windows for out-of-order processors. In Proceedings of the 9th

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 1, Article 3, Publication date: April 2010.

Chameleon: Virtualizing Idle Cores for Caching and Prefetching · 3:35

International Symposium on High-Performance Computer Architecture. IEEE, Los Alamitos,
CA, 129.

NESBIT, K. AND SMITH, J. 2004. Data cache prefetching using a global history buffer. In Proceed-
ings of the 10th International Symposium on High Performance Computer Architecture. IEEE,
Los Alamitos, CA, 96–106.

PAPAKIPOS, M. 2006. PeakStream platform. In Proceedings of
the ACM/IEEE Conference on Supercomputing Tutorial on GPGPU.
http://www.gpgpu.org/sc2006/slides/12.papakipos.peakstream.pdf.

PERICAS, M., CRISTAL, A., CAZORLA, F. J., GONZALEZ, R., JIMENEZ, D. A., AND VALERO, M.
2007. A flexible heterogeneous multi-core architecture. In Proceedings of the 16th International
Conference on Parallel Architecture and Compilation Techniques. IEEE, Los Alamitos, CA, 13–
24.

PHAM, D., ASANO, S., BOLLIGER, M., DAY, M. N., HOFSTEE, H. P., JOHNS, C., KAHLE, J.,
KAMEYAMA, A., KEATY, J., ET AL. 2005. The design and implementation of a first-generation
CELL processor. In Proceedings of the IEEE International Solid-State Circuits Conference.
IEEE, Los Alamitos, CA.

QURESHI, M. K. AND PATT, Y. N. 2006. Utility-based cache partitioning: a low-overhead, high-
performance, runtime mechanism to partition shared caches. In Proceedings of the 39th Inter-
national Symposium on Microarchitecture. IEEE, Los Alamitos, CA, 423–432.

RENAU, J., FRAGUELA, B., TUCK, J., LIU, W., PRVULOVIC, M., CEZE, L., SARANGI, S., SACK,
P., STRAUSS, K., ET AL. 2005. SESC simulator. http://sesc.sourceforge.net.

SANKARALINGAM, K., NAGARAJAN, R., LIU, H., KIM, C., HUH, J., BURGER, D., KECKLER, S. W.,
AND MOORE, C. R. 2003. Exploiting ILP, TLP, and DLP with the polymorphous TRIPS archi-
tecture. In Proceedings of the 30th International Symposium on Computer Architecture. ACM,
New York, 422–433.

SIEGEL, H. J., SCHWEDERSKI, T., NATHANIEL J. DAVIS, I., AND KUEHN, J. T. 1984. PASM: a
reconfigurable parallel system for image processing. SIGARCH Comput. Archit. News 12, 4,
7–19.

SINGH, H., LEE, M.-H., LU, G., BAGHERZADEH, N., KURDAHI, F. J., AND FILHO, E. M. C. 2000.
MorphoSys: an integrated reconfigurable system for data-parallel and computation-intensive
applications. IEEE Trans. Comput. 49, 5, 465–481.

SMITH, S. L. 2008. Intel roadmap overview. Intel Developer Forum.
SOHI, G. S., BREACH, S. E., AND VIJAYKUMAR, T. N. 1995. Multiscalar processors. In Proceed-

ings of the 22nd International Symposium on Computer Architecture. ACM, New York, 414–425.
TENDLER, J., DODSON, S., FIELDS, S., LE, H., AND SINHAROY, B. 2001. POWER4 system mi-

croarchitecture. IBM Technical white paper.
UDAYAKUMARAN, S., DOMINGUEZ, A., AND BARUA, R. 2006. Dynamic allocation for scratch-pad

memory using compile-time decisions. ACM Trans. Embed. Comput. Syst. 5, 2, 472–511.
WOO, D. H., FRYMAN, J. B., KNIES, A. D., ENG, M., AND LEE, H.-H. S. 2008. POD: a 3D-

integrated broad-purpose acceleration layer. IEEE Micro 28, 4, 28–40.
WOO, D. H. AND LEE, H.-H. S. 2008. Extending Amdahl’s law for energy-efficient computing in

the many-core era. IEEE Comput. 41, 12, 24–31.
WOO, D. H. AND LEE, H.-H. S. 2010. COMPASS: a programmable data prefetcher using idle

GPU shaders. In Proceedings of the 15th International Conference on Architectural Support for
Programming Languages and Operating Systems. ACM, New York, 297–310.

YEH, T. Y., FALOUTSOS, P., PATEL, S. J., AND REINMAN, G. 2007. ParallAX: an architecture for
real-time physics. In Proceedings of the 34th International Symposium on Computer Architec-
ture. ACM, New York, 232–243.

ZHANG, M. AND ASANOVIC, K. 2005. Victim replication: maximizing capacity while hiding wire
delay in tiled chip multiprocessors. In Proceedings of the 32nd International Symposium on
Computer Architecture. IEEE, Los Alamitos, CA, 336–345.

Received December 2008; revised September 2009; accepted September 2009

ACM Transactions on Architecture and Code Optimization, Vol. 7, No. 1, Article 3, Publication date: April 2010.

