
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 7, JULY 2006 1289

Profile-Guided Microarchitectural Floor Planning
for Deep Submicron Processor Design

Mongkol Ekpanyapong, Member, IEEE, Jacob Rajkumar Minz, Student Member, IEEE,
Thaisiri Watewai, Student Member, IEEE, Hsien-Hsin S. Lee, Member, IEEE, and

Sung Kyu Lim, Member, IEEE

Abstract—As very large scale integration (VLSI) process tech-
nology migrates to nanoscale with a feature size of less than
100 nm, global wire delay is becoming a major hindrance in
keeping the latency of intrachip communication within a sin-
gle cycle, thus substantially decaying performance scalability. In
addition, an effective microarchitectural floor planning algorithm
can no longer ignore the dynamic communication patterns of
applications. This article, using the profile information acquired
at the microarchitecture level, proposes a “profile-guided microar-
chitectural floor planner” that considers both the impact of wire
delay and the architectural behavior, namely, the intermodule
communication, to reduce the latency of frequent routes inside a
processor and to maintain performance scalability. Based on the
simulation results here, the proposed profile-guided method shows
a 5%–40% average instructions per cycle (IPC) improvement
when the clock frequency is fixed. From the perspective of instruc-
tion throughput in billion instructions per second (BIPS), the floor
planner is much more scalable than the conventional wirelength-
based floor planner.

Index Terms—Floor planning, microarchitectural design.

I. INTRODUCTION

ACCORDING to the projection of the International Tech-
nology Roadmap for Semiconductors (ITRS), deep sub-

micron process technology will soon be able to integrate more
than one billion transistors onto a single monolithic die. Given
the continuing and fast miniaturization of transistor feature size,
global wirelength is becoming a major hindrance in keeping
performance scalable since its relative delay to the gate delay
gradually worsens as technology continues to shrink. Local
wirelength, on the other hand, will scale with a marginal impact
in adding an extra delay with respect to the same process
technology [1]. Despite the use of different materials, device
structures, circuit techniques, and novel architectures including
nanotechnology, this global interconnect limit still persists due
to the nature of device physics and inflicts a substantial per-
formance impact for chips manufactured with deep submicron
technology. In particular, microprocessors that keep pushing the

Manuscript received July 30, 2004; revised December 30, 2004. This work
was supported by the National Science Foundation under Grants CCF-0326396,
CNS-0325536, and CNS-0411149. This paper was recommended by Associate
Editor M. D. F. Wong.

M. Ekpanyapong, J. R. Minz, H.-H. S. Lee, and S. K. Lim are with the School
of Electrical and Computer Engineering, Georgia Institute of Technology,
Atlanta, GA 30332 USA.

T. Watewai is with the Department of Industrial Engineering and Operations
Research, University of California, Berkeley, CA 94720 USA.

Digital Object Identifier 10.1109/TCAD.2005.855971

envelope of high performance as the primary design objective
are especially more vulnerable to the wire delay problem.

For the last decade, due to the dramatic advancement of
microelectronics and manufacturing technology, computer ar-
chitects were able to improve processor performance simply
by adding more computing capability and increasing resource
capacity by, for example, increasing cache sizes and hierarchy,
enlarging reorder buffer, widening issue width, improving spec-
ulation with very complex branch predictors, to name a few.
All of these architecture enhancements effectively resulted in
higher processor performance in the past. On the other hand,
computer-aided design (CAD) tool developers and circuit de-
signers try to reduce the clock period as much as possible, pay-
ing little attention to the entire design at the architectural level.
With an increasing impact of global wirelength, however, such
design methods could lead to less optimal designs, if not totally
ineffective, due to the huge intrachip communication latency,
and need to be largely changed by taking the wires into account.
While it is true that many modern CAD tools consider the
impact of interconnect on area, performance, power, and signal
integrity, these tools fail to consider the dynamic behavior
of applications running on target designs. This approach in turn
may mislead the optimization process by letting it focus on
a set of wires that are not used often during the execution of
applications.

In this article, we advocate the coalition of architecture de-
sign and physical design. By considering both simultaneously,
we expect to achieve a much better overall performance im-
provement for microprocessors designed using deep submicron
technology. Here, we propose profile-guided microarchitectural
floor planning for architectural designers to consider physical
location information during the design phase. The contribution
of this article is twofold.

1) We propose a design methodology that builds a bridge
between microarchitectural design and physical design
to address wire delay issues more effectively. Our de-
sign flow identifies a set of wires that are frequently
used during a cycle-accurate architectural simulation and
guides the subsequent module floor planning process to
effectively optimize these critical wires.

2) Our profile-guided floor planner obtains a) 5%–40% av-
erage instructions per cycle (IPC) improvement when the
clock frequency is fixed, and b) higher throughput, mea-
sured in terms of billion instructions per second (BIPS),
than the conventional wirelength-based floor planner.

0278-0070/$20.00 © 2006 IEEE

1290 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 7, JULY 2006

The rest of this article is organized as follows. Section II
discusses some related work. Section II-B overviews the im-
plication of IPC and clock speed, and FF insertion. Section III
presents the overall design flow and problem formulation.
Section IV introduces our profile-guided floor planning and
its mathematical foundation. A description of our microarchi-
tectural framework follows in Section V. Then we show our
experimental results in Section VI. Finally, we conclude this
work in Section VII.

II. PRELIMINARIES

A. Related Work

With a growing concern in global wire delay, there exists
a number of research efforts focusing on different aspects
including circuits, microarchitectures, and a collaboration be-
tween logic synthesis and physical design. Agarwal et al. [2]
raised an issue of wirelength impact in designing conventional
microarchitecture. They showed that reducing the feature size
and increasing the clock rate do not necessarily imply an overall
performance improvement for deep submicron processor de-
signs. Cong et al. [3] confirmed their observation and showed
that without considering clock speed, IPC, a widely used per-
formance metric in architecture research, can be misleading
in evaluating the performance of next-generation processors.
Thus, the number of flip-flops used for interconnect pipelining
has been estimated at the full-chip level in [4] and [5] in order
to address wire problems effectively.

More recently, Sankaralingam et al. [6] proposed a new
data-bypassing mechanism that enhances the performance
when multicycle bypassing delays are needed in a processor.
Cong et al. [7] proposed a grid-based microarchitecture that
supports multicycle on-chip communication. They also pro-
posed layout-driven architectural synthesis algorithms for mul-
ticycle communication, including scheduling-driven placement
and placement-driven simultaneous scheduling with rebind-
ing. In logic synthesis, novel techniques [8] were proposed
to improve the performance by applying wiring-aware logic
synthesis. These techniques provide a location information in
the phase of logic synthesis, leading to an overall performance
improvement. However, postponing the optimization until the
end of the logic synthesis phase can be time consuming and
inapplicable to custom designs. Casu and Macchiarulo [9]
performed FF insertion for throughput improvement using
a distance-based cost function in simulated-annealing-based
floor planning. Long et al. [10] developed an efficient table-
lookup-based model to quickly estimate IPC with intercon-
nect pipelining to guide their simulated-annealing-based floor
planner.

B. Wire Delay Issues

Ho et al. [1] classified wires into three categories based
on their delay impact: 1) wires that scale in length, such as
local wires within logic blocks; 2) wires that do not scale in
length and is superlinear when the feature size is reduced; and
3) repeated wires, i.e., long wires with repeated buffers inserted

Fig. 1. Impact of wire delay and FF insertion on module access latency.
Moving module 2 from left to right causes the length of wire to increase. This
requires more FFs to be inserted in order to meet the clock period constraint,
which in turn causes the access latency to increase.

on them. The propagation delay of a repeated wire can be
represented by

D = 0.7n
[
Rd [w(β + 1)(Cd + Cg) + lCw]

w

+ l2
RwCw

2
+ lRww(β + 1)Cg

]

where Rd is the driver resistance, w is the width of the driver
transistor,Cd andCg are diffusion and gate capacitance per unit
width, Rw and Cw are wire resistance and capacitance per unit
length, l is the repeater segment length, and β is the pMOS to
nMOS sizing ratio.

In next-generation deep submicron processor design, it is
likely that repeaters will be inserted frequently on global wires
to prevent the wire delays from becoming nonlinear. In this
article, we assume that repeated wires are dominant, and we
examine their performance impact from the perspective of
floor planning. Based on the predicted values of resistance,
capacitance, and other parasitic parameters from [1] and [11],
repeated wire delay is approximated to be 80 pS/mm for the
30-nm technology. This is used as the baseline for our discus-
sion in Section IV-A. Note that a FO4 gate delay for 30 nm is
approximately 17 pS.

Flip-flop insertion is a technique to alleviate the impact of
wire delay for achieving the target clock frequency. A deeper
pipelining enabled by flip-flop insertion results in a higher clock
frequency and higher BIPS [5]. Nevertheless, the improvement
cannot always be anticipated especially for designs with a small
feature size. The reason is that flip-flop insertion may cause
IPC degradation from its increased latency, as shown in Fig. 1.
Therefore, inserting flip-flops without a meticulous measure
does not guarantee an overall performance improvement. It is
possible that a change in the number of flip-flops on wires
may require a redesign of the control units and an update on
the microarchitectural floor planning. We solve this problem by
allocating a larger size for the control units such that there is
a room to accommodate any additional change on the control
unit design.

EKPANYAPONG et al.: MICROARCHITECTURAL FLOOR PLANNING FOR DEEP SUBMICRON PROCESSOR DESIGN 1291

Fig. 2. Overview of our profile-guided microarchitectural floor planning
framework.

III. PROBLEM FORMULATION

A. Design Flow

An overview of our profile-guided microarchitectural floor
planning is shown in Fig. 2. Our framework combines technol-
ogy scaling parameters and the execution profiling information
of applications to guide the floor planning step of a given
microarchitecture design. First, a machine description is pro-
vided as an input to the microarchitecture simulator, in which
profiling counters were instrumented for bookkeeping module-
to-module communication. Then, a cycle-accurate simulation is
performed to collect and extract the amount of interconnection
traffic between modules for a given benchmark program. For
cache-like or buffer-like structures, the area and module delay
are estimated using an industry tool from HP Western Research
Labs called CACTI [12]. For scaling other structures such as
ALUs, we use GENESYS [13] developed at Georgia Institute
of Technology.

After the timing and area information of each module is
collected, we feed the module-level netlist, statistical intercon-
nection traffic, and a processor target frequency into our profile-
guided floor planner. The purpose is to generate a floor plan
from which all the intermodule latency values of the given
microarchitecture are derived. With the new latency values,
the architecture performance simulation is performed to obtain
more realistic and accurate IPC and BIPS data.1

CACTI is an integrated simulator for estimating access time,
cycle time, area, aspect ratio, and power model for cache/buffer-

1Note that this entire design flow can be repeated multiple times to evaluate
multiple microarchitectural designs in terms of IPC, BIPS, and clock cycle,
thereby enabling microarchitectural design space exploration. This is the focus
of our ongoing work.

like structures. The inputs of CACTI include cache size, block
size, number of associativity, number of read/write ports, and
technology parameters. By exploiting technology parameters,
CACTI can observe the impact of different technologies on
performance. GENESYS is also developed to study the impact
on each architectural module under different technology scal-
ings. However, unlike the cache structure, a noncache structure
is harder to model, and the corresponding circuit itself can
be changed based on a different transistor size. GENESYS
assumes no change in circuit design and estimates module area
and delay based on a set of empirical modeling equations. The
inputs of GENESYS include the number of transistors, critical
path delay, and technology parameters. We use the Verilog
model of ARM processor to access the number of transistors
in each module. We collect the scaling improvement ratio from
GENESYS and store it in our internal table. Note that CACTI
and GENESYS are used because of its simplicity in finding
module size and delay. More importantly, they allow us to
study the impact of technology scaling on the performance of
microarchitectural designs.

For profiling, we use the Simplescalar 3.0 tool suite [14] to
collect the number of accesses when each module is accessed
by another module. After the profiling is completed, we normal-
ize the traffic values so that they range from [0, 1]. The inputs
of the profiling simulator include a target application and a train
input set. Note that we could use multiple input sets to collect
multiple access patterns and use their average behavior for more
accurate frequency values.

B. Problem Formulation

Given a set of microarchitectural modules and a netlist that
specifies the connectivity among these modules, our profile-
guided microarchitectural floor planner tries to place each
module such that 1) there is no overlap among the modules
and 2) a user-specified clock period constraint is satisfied. Our
objective is to minimize the overall execution time of a given
processor. We use BIPS for this purpose, which is an average
number of billion instructions that can be issued in 1 s. IPC
represents an average number of instructions that can be issued
in one clock cycle. In very large scale integration (VLSI) circuit
design, clock period is used to evaluate the quality of logic
synthesis and physical design solutions, which equals to the
longest path delay from these solutions. F (clock frequency),
which denotes the total number of cycles per second, is the
reciprocal of clock period. Finally, BIPS = IPC × F if F
is in the gigahertz range. In this article, we maximize IPC
under a clock frequency constraint so that the overall BIPS is
maximized.

IV. PROFILE-GUIDED FLOOR PLANNING

In this section, we present mathematical programming mod-
els for our profile-guided microarchitectural floor planner. First,
we present a mixed integer nonlinear programming (MINP)
model that minimizes the weighted wirelength under a per-
formance constraint. Since finding an optimal solution for
an MINP model is NP-hard, we apply various techniques to

1292 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 7, JULY 2006

Fig. 3. MINP formulation of our profile-guided microarchitectural floor planning.

convert the MINP model to a mixed integer linear program-
ming (MILP) model and then to a linear programming (LP)
model.

A. Mixed Integer Programming Model

We model the input module-level netlist with a directed graph
G(N,E), where N denotes the set of all flexible modules and
E denotes the set of directed edges. A directed edge (i, j)
represents a wire from module i to module j. Each multipin net
in the netlist is decomposed into a set of source–sink module
pairs. Let α be the repeated wire delay per 1 mm as discussed in
Section II-B, and λij be the statistical traffic on wire (i, j), i.e.,
the normalized access counts from module i to module j. gi is
the delay of module i. wmin,i and wmax,i denote the minimum
and maximum half width of module i. The area of module i is
denoted by ai. Finally, fij is the number of flip-flops on wire
(i, j) in the given netlist.

Let L (= 1/clock_frequency) denote the target cycle period
of the given microarchitectural design, which is an input to our
floor planner. In the MINP model, we need to determine the
values for the following decision variables: xi, yi, wi, hi, and
zij . Let (xi, yi) denote the location of the center of module
i in R

2
+ space. Xij and Yij represent |xi − xj | and |yi − yj |

between module i and j, respectively. zij is the number of
flip-flops on wire (i, j) after FF insertion. wi and hi denote
the half width and the half height of module i. To avoid
overlapping between two modules i and j, where i < j, we

need a set of binary variables so that at least one of the following
holds:

xi + wi ≤xj − wj , i is on the left of j

xi − wi ≥xj + wj , i is on the right of j

yi +
ai

4wi
≤ yj − aj

4wj
, i is below j

yi − ai

4wi
≥ yj +

aj

4wj
, i is above j.

We thus let cij and dij be the binary variables such that

(cij , dij) =




(0, 0), if i is on the left of j
(0, 1), if i is on the right of j
(1, 0), if i is below j
(1, 1), if i is above j.

Fig. 3 shows the MINP formulation of our profile-guided
microarchitectural floor planning. A weighted delay of an edge
(i, j) is defined to be λij × zij , where the weight λij is based
on module access frequency. zij is the number of FFs on the
wire. Xm and Ym are the maximum values among all xi and
yi, respectively. A = Ym/Xm is the aspect ratio of the chip.
Since the area objective Xm · Ym is nonlinear, we linearize
it by minimizing Xm while maintaining A · Ym > yi for all
modules. Thus, the objective of our MINP formulation [= (1)
in Fig. 3] is to minimize the weighted sum of the 1) weighted

EKPANYAPONG et al.: MICROARCHITECTURAL FLOOR PLANNING FOR DEEP SUBMICRON PROCESSOR DESIGN 1293

Fig. 4. Number of FF constraint. The numbers on the wires represent their
delay values. Assuming that the clock period constraint is 4, constraint (2)
decides to put two FFs on both wires [�(3 + 4)/4 = 2� and �(2 + 3)/
4 = 2�]. FF3 and FF4 are added so that they provide their values to module
3 at the same time (= input synchronization).

delay among all wires, 2) total wirelength, and 3) total area. U1,
U2, and U3 are user-specified weighting constants.

Constraint (2) in Fig. 3 is obtained from the definition of
latency (Fig. 4). If there is no FF on a wire (i, j), the delay
of this wire is calculated as d(i, j) = α(Xij + Yij). Then, gi +
d(i, j) represents the latency of module i accessing module j.
Since L denotes the clock period constraint, (gi + d(i, j))/L
denotes the minimum number of FFs required on (i, j) in order
to satisfy the clock period constraint.2 Nonoverlapping con-
straints are given in (3)–(6). Constraint (7) requires that we do
not remove any existing FFs from the wires. Constraints (8) and
(9) are related to area minimization as mentioned previously.
Constraints (10)–(13) represent relative positions among the
modules. Constraint (14) specifies the possible range of the
half width of each module. Constraint (15) is a nonnegative
constraint for the module location. Constraint (16) states that
(cij , dij) are binary variables. Finally, constraint (17) specifies
that the number of flip-flops must be an integer. Also note that
M is a sufficiently large number.

In our floor planning, we allow wi (half-width) and hi (half-
height) to vary but require that ai (area) remain fixed, i.e., 4wi ·
hi = ai. We linearize this nonlinear relation [= constraint (12)
and (13)] by letting hi = mi · wi + ki instead of hi = ai/4wi,
where mi = ai/(4wmin,i · wmax,i) and ki = ai/(4wmax,i +
4wmin,j). An illustration is shown in Fig. 5. Note that this
approximation guarantees that the solution in the approximated
model is feasible due to an overapproximation. It is possible
to better approximate hi by using multiple linear lines instead
of one. However, this more accurate model comes at a cost
of more constraints in our MILP model. Since area is not our
primary concern, we do not attempt this more accurate model

2In fact, this formula includes one extra FF that is inserted at the end of
the wire unlike the conventional retiming [15]. In case a module has multiple
fan-in wires, these extra FFs will ensure that the data transfer on these wires
are synchronized so that the input values for the module are available at the
same time.

Fig. 5. Module height approximation for MINP to MILP conversion, where
mi = ai/(4wmin,i · wmax,i) and ki = ai/(4wmax,i + 4min,j).

Fig. 6. MILP formulation of our profile-guided microarchitectural floor
planning.

during our optimization. However, we perform compaction as
a postprocess as discussed in Section IV-B to fine tune the
overall floor plan area. The resulting MILP formulation is
shown in Fig. 6.

B. LP Model

Even with the MILP conversion, the floor planning problem
still remains NP-hard. Specifically, zij , cij , and dij are integer
variables. To remedy this problem, we further relax MILP into
the LP model.3 We adopt a partitioning method similar to the
one described in [16]. To relax the integrality while maintaining
the feasibility and staying close to the optimal solution, we first
relax the integrality of zij to be a real number. We also solve
several LP problems to determine the relative positions among
the modules, i.e., cij and dij . If these cij and dij are known
and zij can take real values, our MILP model shown in Fig. 6
becomes LP.

Our LP-based slicing floor planning algorithm consists of
multiple iterations, where at each iteration a cutline is in-
serted to divide a region (alternatively called a block) into two
subblocks. We start the algorithm by creating a large block
containing all modules. At each iteration, we choose a block,
divide it into two subblocks, and perform module floor planning
again so that the objective is further minimized. After the floor
plan, the modules in the chosen block should be enclosed by

3If a near-optimal solution is required, MILP is the better approach than
LP. However, MILP in general requires an excessive amount of computational
power to solve.

1294 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 7, JULY 2006

Fig. 7. Description of our LP-based slicing floor planning algorithm. We
perform a top-down recursive bipartitioning and solve LP-based floor planning
at each iteration. We then solve MILP again after the last iteration using the
slicing floor planning result.

the block boundaries and the area-weighted mean (= center of
gravity) among all modules in each subblock should correspond
to the center location of the subblock. In addition, the user-
specified clock period L constraint needs to be satisfied, i.e.,
the longest combinational path delay should be less than L.
We terminate the iteration when each block contains exactly
one module. Lastly, we obtain the relative positions among
the modules from the slicing floor planning result and solve
MILP (shown in Fig. 6) again. This time, however, the MILP
formulation becomes an LP since cij and dij are already
determined and zij are still allowed to have noninteger values.
Note that each iteration can be repeated multiple times to
obtain different slicing floor plans. This is due to the fact that
there exists multiple solutions that satisfy the boundary and
center of gravity constraints during each bipartitioning. Thus,
we perform each bipartitioning several times and pick the best
solution in terms of the total wirelength for the next iteration.

Fig. 7 shows a description of our LP-based slicing floor
planning algorithm. B(u) denotes the set of all blocks at
iteration u and Mj(u) denotes the set of all modules currently
in block j at iteration u. Sjk(u) is the set of modules assigned
to the center of subblock k (k ∈ {1, 2}) contained in block j
at iteration u. We denote the center of subblock k contained in
block j by (x̄jk, ȳjk). We note that balancing the area of the
two subblocks at each bipartitioning helps reduce the overall
floor plan area. Thus, each cutline bisects the initial block,
and x̄jk and ȳjk correspond to the center location of the two
subblocks. Finally, let rj , lj , tj , bj denote the right, left, top, and
bottom boundary of block j. Fig. 8 shows the LP formulation
we solve at each iteration of the slicing floor planning.4 The
block boundary constraints (20)–(23) require that all modules
in the block be enclosed by these block boundaries. The center
of gravity constraints (24), (25) require that the area-weighted
mean (= center of gravity) among all modules in each subblock

4Note that we dropped the area objective (= U3 · Xm in Fig. 6) from
our LP formulation. Having three competing objectives may distract the op-
timization process, so we focus on performance and wirelength during the
optimization and handle area with our compaction scheme during a postprocess.
We observed that this approach produced better results than optimizing three
objectives simultaneously.

Fig. 8. LP formulation of our profile-guided microarchitectural floor plan-
ning. This LP is used to perform floor planning at iteration u of the main
algorithm shown in Fig. 7.

corresponds to the center of the subblock. Fig. 9 shows an
example of our LP-based floor planning algorithm.

The main objective of our slicing floor planning is to
determine cij and dij , i.e., the relative position among the
modules. Note that the recursive bipartitioning scheme may
cause multiple relative positions between a pair of modules. In
Fig. 10, module a can be either on the left of module b, i.e.,
(cab, dab) = (0, 0), or above module b, i.e., (cab, dab) = (1, 1).
However, one has to choose between (0, 0) and (1, 1) to be used
in our MILP formulation (see Fig. 6). Note that this decision
has a nontrivial impact on the overall floor plan area and thus
needs to be done carefully. In our area compaction heuristic, we
make a decision based on the first cut that separates a pair of
module. Modules a and b are first separated by the vertical cut
(cut n− 1) in Fig. 10, and then by the horizontal cut (cut n).
In this case, we choose (cab, dab) = (0, 0), i.e., a is on the
left of b since it is the vertical cut that first separates a and b
during the top-down recursive bipartitioning process. Our re-
lated experiment indicates that this scheme generates highly a
compact floor plan.

V. SIMULATION INFRASTRUCTURE

Simplescalar 3.0 tool suite [14] was used as our architecture
simulator for both communication profile collection and perfor-
mance simulation. The detailed microarchitecture is illustrated
in Fig. 11 and four microarchitecture configurations used in
our experiments are listed in Table I.5 Each functional block
in Fig. 11 represents a module used by our floor planner. In
order to facilitate the physical-design-driven microarchitectural
exploration, a few new features were introduced on top of the
baseline machine model. First, the pipeline depth was made
configurable. The instruction fetch unit of the simulator was

5We believe that architects will use more and more on-chip L3 caches [17]
in future designs due to the ever-increasing number of transistors available and
the ever-increasing disparity between memory access and on-chip cache access
latency. Our cfg6 and cfg7 are designed to study the impact of on-chip L3 cache.

EKPANYAPONG et al.: MICROARCHITECTURAL FLOOR PLANNING FOR DEEP SUBMICRON PROCESSOR DESIGN 1295

Fig. 9. Illustration of recursive bipartitioning for the relaxation of integer constraint. Recursive bipartitioning is performed until each module is placed in one
block. The objective is to minimize the weighted wirelength under the boundary, center of mass, and clock period constraints. After the recursive bipartitioning is
done, the relative positions among the modules (left, right, above, and below) are fed to our integer programming for the final iteration.

Fig. 10. Illustration of our area compaction scheme.

modified to accommodate any desired pipeline depth, providing
a capability to study the effects of lengthening the processor
pipeline. In terms of performance, the pipeline depth has a
direct impact on the operational frequency of the processor. For
example, depending on the placement of each functional block
by the floor planner, signal routing might take more than one
pipeline stage to complete. The number of pipeline stages is
also affected by our extension of the functional units. In this
work, the pipeline depth is varied from 15 to 22 stages. In the
modified simulator, the functional units or execution resources
are completely configurable in terms of operation and issue
latency, and can be specified as a configuration input. For in-
stance, the same functional unit design (e.g., integer ALU) can

have nonuniform latencies depending on each individual unit’s
final placement. In addition, a third-level cache was added.
The primary microarchitectural parameters are elaborated as
follows.

• Machine width: The maximum number of issuable IPC.
• Bpred: The branch predictor. In this study, we used a

hybrid branch predictor containing a 2-bit counter-based
predictor and a Gshare predictor with a choice meta pre-
dictor [18]. Each number of Bpred entry in Table I is
the number of entries (2N) of the 2-bit counter array and
the meta table, where N is the size of the global branch
history.

• BTB: The branch target buffer. Indexed by the program
counter, each BTB entry keeps the branch instruction
address and its associated branch target address for accel-
erating instruction fetching.

• RUU: The register update unit [19], which combines the
functionality of a register alias table, a reservation station,
and a reorder buffer for maintaining instruction ordering
and supporting precise interrupt. Each RUU entry also
contains a physical register for enabling register renaming.

• Caches: The first level cache contains a split instruction
and data cache while the second and third levels are both
unified caches.

• TLB: The translation look-aside buffer for fast address
translation. Split instruction and data TLBs are assumed.

• ALU and FPU: The ALU only executes integer operations
while the FPU performs floating-pointing arithmetic.

1296 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 7, JULY 2006

Fig. 11. Processor microarchitecture model.

TABLE I
MICROARCHITECTURE CONFIGURATIONS USED IN OUR STUDY

• LSQ: The load/store queue for enabling load speculation
and disambiguating memory addresses.

• Mem port: The number of ports available in the first level
data cache.

Some applications exploit some particular microarchitecture
components (e.g., caches, TLBs, or BTB) better than the others,
but there is no guarantee that increasing the sizes of these
modules will lead to an overall execution time improvement
measured in billions of instructions per second (BIPS). Note
that the IPC is an architectural metric while the clock period
is determined largely by both the degree of pipelining and the
targeted process technology. Increasing the sizes of BTBs and
TLBs may improve IPC; nevertheless, it could also lengthen
the clock period due to the elongated wires of larger structures,
thus leading to an overall increase in the total execution time.
In order to have a simultaneous view of the frequency and
the IPC for attaining optimal performance, we must explore
the floor plan and processor’s microarchitecture configuration
together.

For accurate performance prediction and optimization, wires
can no longer be isolated from architecture-level evaluation
but must be modeled as units that consume power and have

delays. Therefore, provisions were also made to consider wire
delays in our simulator. The existing simulator assumes that
the communication latency between functional blocks is always
one cycle, which no longer holds while operating at extremely
high frequency given the increased wire delays and ever-
growing die areas. For example, the Pentium 4 processor design
has dedicated two pipeline stages for moving signal across
the chip due to wire delay [20]. The wire parameters can be
captured for architectural optimization through floor planning
to a reasonable degree of accuracy.

As aforementioned, in our modified simulator, the inter-
communication latencies between function units or data for-
warding latencies among different pipeline stages were made
configurable, enabling a more realistic IPC projection. For
performance evaluation, we use the information provided by
the floor planner to derive essential simulation parameters such
as pipeline depth and communication/forwarding latencies.
The interfunctional unit latency is a function of the distance
between units in the floor plan and the number of flip-flops
between modules. If the floor plan has been optimized for clock
speed, the pipeline depth of the processor reflects it. In our
experiments, we expect an improvement in performance (in
architectural simulation) if the frequency of forwarding traffic
between units is included in our floor plan formulation. The
forwarding frequency-driven floor planning tries to place highly
communicated units closer together, minimizing their latencies
as a function of distance.

Table II illustrates the range of intermodule access latency
values measured in terms of clock cycle. These values are
averaged over the wire latency values we obtained from mul-
tiple profile-guided floor planning solutions. Let li denote the
total number of possible latency values wire i can have. For
example, v1 for the first communication wire (= branch predic-
tor penalty) from Table II is 7. Then, the size of the solution
space for module floor planning is

∏M
i=1 li forM wires. There-

fore, a brute-force-based search for finding an optimal solution
proves to be nonpractical due to the exponential size of the
solution space.

EKPANYAPONG et al.: MICROARCHITECTURAL FLOOR PLANNING FOR DEEP SUBMICRON PROCESSOR DESIGN 1297

TABLE II
ACCESS LATENCY RANGE (IN CLOCK CYCLES) AMONG

THE MICROARCHITECTURE MODULES

VI. EXPERIMENTAL RESULTS

Our floor planning algorithms are implemented in C, com-
piled with gcc with -O3, integrated with Simplescalar tool
set, and executed on Pentium IV 2.4-GHz machines. We use
lp_solve [21] to solve our linear programs. We performed
experiments on ten SPEC2000 benchmarks (gzip, vpr, mcf, gap,
bzip2, twolf, swim, art, equake, lucas), six from the integer suite
and four from the floating point one. The training input set was
used for profile collection while IPC performance results were
gathered using the reference input set. Each simulation was
fast-forwarded by 200 million instructions and then simulated
for 100 million instructions. The maximum execution time
spent in both floor planning and simulation was less than 1 h
for each benchmark. We use the following algorithms in our
experiment.

1) WL: wirelength-driven floor planning. We obtain this
algorithm by setting U1 = 0 and U2 > 0 in Fig. 8. Area
compaction is not used.

2) AWL: area/wirelength-driven floor planning. We use area
compaction as a postprocess.

3) PGFi: pure profile-guided floor planning. We obtain this
algorithm by setting U1 > 0 and U2 = 0 in Fig. 8. Area
compaction is not used.

4) PGF: profile-guided floor planning with area/wirelength
optimization. We obtain this algorithm by setting U1 > 0
and U2 > 0 in Fig. 8. Area compaction is used.

We report the average IPC, BIPS, wirelength, and area results
among all ten benchmark applications for each of the seven
microarchitectural configurations shown in Table I.

Fig. 12 shows the IPC comparison between WL and PGFi
floor planning algorithms. We observe that PGFi consistently
obtains higher IPC values than WL for all seven configurations,
where the improvement ranges from 11%–39%. In addition, the
IPC improvement is more visible from more complex designs
(cfg6 and cfg7). This is a strong evidence that exploiting the
dynamic intermodule interconnect traffic information during
floor planning is crucial in improving the performance of
microarchitecture designs measured by IPC. The main reason
behind this success is the shorter access latency among heavily
communicated functional modules. Fig. 13 shows the IPC
comparison between AWL and PGF floor planning algorithms,
where we use area compaction for both algorithms. We note that
the IPC advantage of PGF over AWL is reduced to 7%–19%

Fig. 12. IPC comparison between wirelength-driven (WL) and profile-guided
(PGFi) floor planning algorithm. Area compaction is not used.

Fig. 13. IPC comparison between area/wirelength-driven (AWL) and pro-
file/area/wirelength optimization (PGF) floor planning algorithm. Area com-
paction is used.

compared with PGFi versus WL. This is due to the tradeoff
existing between performance and area, where PGF lost more
performance than AWL did from the additional area/wirelength
objectives. In fact, PGF obtained 40% better wirelength and
50% better area results compared to PGFi as revealed in the
following discussions.

Fig. 14 shows wirelength comparison among WL, AWL,
and PGF floor planners. These results are normalized to the
PGFi algorithm. From the PGF results, we see that the wire-
length has reduced by almost 40% on average compared to
PGFi. This is primarily due to the wirelength objective used
in PGF. In addition, area compaction had a positive impact on
reducing the wirelength further. It is interesting to note that
AWL obtained approximately 10% better wirelength results
than WL, suggesting a positive correlation between area and
wirelength in microarchitectural floor planning. Compared with
AWL, our PGF obtained wirelength results within a tolerable
range: 10%–30% worse on average.

Fig. 15 shows area comparison among WL, AWL, and PGF
floor planners. These results are normalized to the PGFi algo-
rithm. From the PGF results, we see that area has reduced by
almost 50% on average compared to PGFi. This is primarily
due to the area compaction we used. In addition, our wirelength
objective had a positive impact on reducing the area further.

1298 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 7, JULY 2006

Fig. 14. Wirelength comparison among wirelength-driven (WL), area/
wirelength-driven (AWL), and profile/area/wirelength-driven (PGF) floor plan-
ners. These results are normalized to profile-only (PGFi) algorithm.

Fig. 15. Area comparison among wirelength-driven (WL), area/wirelength-
driven (AWL), and profile/area/wirelength-driven (PGF) floor planners. These
results are normalized to profile-only (PGFi) algorithm.

Our area compaction scheme worked well with AWL and
generated consistent area improvement. From the AWL versus
PGF comparison, we note that PGF obtained better area results
for the small configurations (cfg1 to cfg3) while loosing on
big configurations (cfg4 to cfg7). However, the gap between
AWL and PGF for big configuration is decreasing as the design
size increases. We note that the module size is better balanced
in a bigger configuration, which helps ease the burden of the
floor planner for area optimization. This leads us to believe that
partitioning bigger modules into smaller submodules may help
on area optimization.

Fig. 16 shows the BIPS comparison among AWL, PGF,
and OPT for several future technologies. These results are
normalized to the WL algorithm for 5-GHz design. In our
OPT algorithm, the delay of all wires are set to zero to obtain
upper bounds on BIPS. OPT is not based on any floor planning
since the wire delay is completely ignored. The overall trend
indicates that the gap between AWL and PGF (BIPS advantage
of our PGF) increases as the clock frequency increases. This
clearly indicates that the profile information of the target appli-
cation must be considered to improve the overall throughput of
the system. When we move into a higher clock frequency, the
gap between PGF and OPT also increases. This shows that there

Fig. 16. BIPS comparison among area/wirelength-driven (AWL), profile/area/
wirelength-driven (PGF), and lower bound with no wire-delay (LOW) for
several future technologies. These results are normalized to wirelength-only
(WL) algorithm for 5-GHz design.

TABLE III
RUNTIME BREAKDOWN IN SECONDS

is still a room for improvement either by better floor planning
algorithm or additional circuit techniques that alleviate the ever-
worsening wire problem.

Table III show a breakdown of the average runtime among
various steps involved in our framework. The “size estimation”
is the runtime of CACTI and GENESYS combined. The “profil-
ing” is the runtime for collecting access frequency information
using a cycle-accurate simulation. The “floor planning” is the
runtime for our LP-based floor planning algorithm. Finally, the
“simulation” is the runtime for computing the final IPC values
from another cycle-accurate simulation. All runtime results are
reported in seconds. A snapshot of the final PGF floor plan is
shown in Fig. 17.

VII. CONCLUSION

An effective microarchitectural floor planning algorithm can
no longer ignore the dynamic communication patterns of ap-
plications and the impact of wires on the overall performance.
In this article, we proposed a profile-guided microarchitectural
floor planner that considers both the impact of wire delay
and architectural behavior to reduce the latency of frequent
routes inside a processor and to maintain performance scal-
ability. Results show that our profile-guided method obtains
huge improvement on IPC and BIPS under the clock period
constraint compared to the conventional area/wirelength-based
floor planner.

One future research direction is to further optimize the
performance by partitioning each functional module into finer
submodules. For example, one can partition the register file into
several disjoint modules based on the access frequency acquired
from the execution profiling. With this partitioning, our floor
planner could potentially generate a floor plan with different

EKPANYAPONG et al.: MICROARCHITECTURAL FLOOR PLANNING FOR DEEP SUBMICRON PROCESSOR DESIGN 1299

Fig. 17. Snapshot of PGF floor plan.

access latencies to these submodules while attempting to mini-
mize the latency of the most frequently accessed registers. This
leads to a new opportunity to explore the tradeoff in latency,
area, and partitioning for processor resources. The tradeoff
study and its overall impact can be performed for the other
microarchitecture components such as the reorder buffer, the
branch target buffer, and caches. In addition, resource allocation
with respect to what-to-allocate in the faster submodules will
also be a subject of many research interests.

Some wires at microarchitectural level are “invisible,” such
as control wires among the modules and wires connecting
Power/Ground (= P/G) pins of the module to global P/G pins.
The implication of these invisible control wires is not yet
known. Some recent studies [22], [23], however, show that
considering the P/G connection at circuit module floor planning
is important to guarantee high-quality power supply. Thus, we
plan to consider this issue for microarchitectural modules. In
addition, we plan to use our PGF result as an initial solution
for a subsequent iterative improvement with an efficient IPC
estimation [10]. Lastly, we are developing a more efficient
compaction algorithm for area minimization.

REFERENCES

[1] R. Ho, K. W. Mai, and M. A. Horowitz, “The future of wires,” Proc.
IEEE, vol. 89, no. 4, pp. 490–504, Apr. 2001.

[2] V. Agarwal, M. S. Hrishikesh, S. W. Keckler, and D. Burger, “Clock rate
versus IPC: The end of the road for conventional microarchitectures,” in
Proc. IEEE Int. Conf. Computer Architecture, Vancouver, Canada, 2000,
pp. 248–259.

[3] J. Cong, A. Jagannathan, G. Reinman, and M. Romesis, “Microarchitec-
ture evaluation with physical planning,” in Proc. ACMDesign Automation
Conf., Anaheim, CA, 2003, pp. 32–35.

[4] P. Cocchini, “Concurrent flip-flop and repeater insertion for high per-
formance integrated circuits,” in Proc. IEEE Int. Conf. Computer-Aided
Design, San Jose, CA, 2002, pp. 268–273.

[5] W. Liao and L. He, “Full-chip interconnect power estimation and
simulation considering concurrent repeater and flip-flop insertion,” in
Proc. IEEE Int. Conf. Computer-Aided Design, San Jose, CA, 2003,
pp. 574–580.

[6] K. Sankaralingam, V. A. Singh, S. W. Keckler, and D. Buger, “Routed
inter-ALU networks for ILP scalability and performance,” in Proc. IEEE
Int. Conf. Computer Design, San Jose, CA, 2003, pp. 170–177.

[7] J. Cong, Y. Fan, G. Han, X. Yang, and Z. Zhang, “Architecture and
synthesis for on-chip multi-cycle communication,” IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., vol. 23, no. 4, pp. 550–564, Apr. 2004.

[8] W. Gosti et al., “Wireplanning in logic synthesis,” in Proc. IEEE Int. Conf.
Computer-Aided Design, San Jose, CA, 1998, pp. 26–33.

[9] M. Casu and L. Macchiarulo, “Floorplanning for throughput,” in Proc.
Int. Symp. Physical Design, Phoenix, AZ, 2004, pp. 62–69.

[10] C. Long, L. Simonson, W. Liao, and L. He, “Floorplanning optimization
with trajectory piecewise-linear model for pipelined interconnects,” in
Proc. ACMDesign Automation Conf., San Diego, CA, 2004, pp. 640–645.

[11] SIA, National Technology Roadmap for Semiconductors, 2001.
[12] P. Shivakumar and N. P. Jouppi, “CACTI 3.0: An integrated cache timing,

power, and area model,” HP Western Research Labs, Palo Alto, CA, Tech.
Rep. 2001.2, 2001.

[13] J. C. Eble, V. K. De, D. S. Wills, and J. D. Meindl, “A generic system
simulator (GENESYS) for ASIC technology and architecture beyond
2001,” in Proc. Int. Application-Specific Integrated Circuit (ASIC) Conf.,
Rochester, NY, 1996, pp. 193–196.

[14] T. M. Austin, SimpleScalar Tool Suite. [Online]. Available: http:/www.
simplescalar.com

[15] C. E. Leiserson and J. B. Saxe, “Retiming synchronous circuitry,” Algo-
rithmica, vol. 6, no. 1, pp. 5–35, 1991.

[16] J. M. Kleinhans, G. Sigl, F. M. Johannes, and K. J. Antreich, “GORDIAN:
VLSI placement by quadratic programming and slicing optimization,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 10, no. 3,
pp. 356–365, Mar. 1991.

[17] D. Weiss, J. Wuu, and V. Chin, “The on-chip 3-MB subarray-based third-
level cache on an Itanium microprocessor,” IEEE J. Solid-State Circuits,
vol. 37, no. 11, pp. 1523–1529, Nov. 2002.

[18] S. McFarling, “Combining branch predictors,” Western Research Lab.,
Digital Equipment Corp., Palo Alto, CA, Tech. Rep. TN-36, Jun. 1993.

[19] G. Sohi and S. Vajapeyam, “Instruction issue logic for high performance
interruptable pipelined processors,” in Proc. 14th Annu. Int. Symp. Com-
puter Architecture, Pittsburgh, PA, 1987, pp. 27–34.

[20] P. N. Glaskowsky, “Pentium 4 (partially) previewed,” Microprocess. Rep.,
vol. 14, no. 8, pp. 11–13, Aug. 2000.

[21] E. U. of Technology, LP_solve. [Online]. Available: ftp:/ftp.es.ele.tue.nl/
pub/lp_solve/

[22] S. Zhou, S. Dong, X. Wu, and X. Hong, “Integrated floorplanning and
power supply planning,” in Proc. Int. Conf. Application-Specific Inte-
grated Circuit (ASIC), Shanghai, China, 2001, pp. 194–197.

[23] I. Liu, H.-M. Chen, T.-L. Chou, A. Aziz, and D. Wong, “Integrated
power supply planning and floorplanning,” in Proc. Asia and South Pacific
Design Automation Conf., Yokohama, Japan, 2001, pp. 589–594.

1300 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 7, JULY 2006

Mongkol Ekpanyapong (S’03–M’05) received the
B.E. degree from the Computer Engineering De-
partment, Chulalongkorn University, Bangkok, Thai-
land, in 1997, the M.E. degree from the Computer
Science Department, Asian Institute of Technology,
Pathumthani, Thailand, in 2000, the M.S. degree
from the School of Electrical and Computer Engi-
neering, Georgia Institute of Technology, Atlanta,
in 2003, and is currently working toward the Ph.D.
degree in physical design for microarchitectures at
the Georgia Institute of Technology.

He is a Graduate Research Assistant at the School of Electrical and Computer
Engineering, Georgia Institute of Technology. His research interests include
physical very large scale integration (VLSI) design, VLSI design, computer
architecture, and compiler.

Jacob Rajkumar Minz (S’05) received the B.Tech.
degree in computer science and engineering from
the Indian Institute of Technology, Kharagpur, India,
in 2001, and is currently working toward the Ph.D.
degree at the School of Electrical and Computer En-
gineering, Georgia Institute of Technology, Atlanta.

He was with the Advanced VLSI Design Lab, IIT,
Kharagpur, India, for a year, where he was involved
in the design of digital chips. His areas of interest
are physical design automation and algorithms for
electronic computer-aided design (CAD).

Thaisiri Watewai (S’05) received the B.Eng. degree
(summa cum laude) in industrial engineering from
Chulalongkorn University, Bangkok, Thailand, in
2001, the LL.B. degree from Ramkhamraeng Univer-
sity, Thailand, in 2001, the M.S. degree in operations
research from the Georgia Institute of Technology,
Atlanta, in 2002, the M.A. degree in statistics from
the University of California, Berkeley, in 2005, and
is currently working toward the Ph.D. degree in
industrial engineering and operations research at the
University of California, Berkeley.

His current research interests include stochastic control and optimization,
robust dynamic optimization, ambiguity modeling, financial engineering, and
statistical learning.

Mr. Watewai was awarded the Anandamahidol Foundation Fellowship, the
most prestigious fellowship in Thailand, by His Majesty the King of Thailand
to pursue graduate studies in the USA.

Hsien-Hsin S. Lee (M’96) received the Ph.D. degree
in computer science and engineering from the Uni-
versity of Michigan, Ann Arbor, in 2001.

Prior to joining the academia, he was a Se-
nior Computer Architect at Intel Corporation
(1995–2001), and later an Architecture Manager of
the StarCore DSP Technology Center, Agere Sys-
tems (2001–2002). He is an Assistant Professor at
the School of Electrical and Computer Engineering,
Georgia Institute of Technology, Atlanta. He holds
four U.S. patents. His research interests include

computer architecture, low power circuits, information security, and design
optimization tools.

Dr. Lee is a member of Tau Beta Pi, Sigma Xi, and the Association for
Computing Machinery (ACM). His Ph.D. dissertation was awarded the Horace
H. Rackham School Distinguished Dissertation Award at the University of
Michigan. He has authored two papers that won the Best Paper Award at the
International Symposium on Microarchitecture (2000) and the International
Conference on Compilers, Architecture, and Synthesis for Embedded Systems
(2004).

Sung Kyu Lim (M’01) received the B.S., M.S.,
and Ph.D. degrees all from the Computer Science
Department, University of California, Los Angeles
(UCLA), in 1994, 1997, and 2000, respectively.

From 2000 to 2001, he was a Post-Doctoral
Scholar at UCLA and a Senior Engineer at Aplus De-
sign Technologies, Inc. He joined the School of Elec-
trical and Computer Engineering, Georgia Institute
of Technology, Atlanta, as an Assistant Professor in
August 2001, and the College of Computing as
an Adjunct Assistant Professor in September 2002.

He is currently the Director of the Georgia Tech Computer Aided Design
Laboratory. His research focus is on the physical design automation for
three-dimensional (3-D) circuits, 3-D system-on-packages, microarchitectural
physical planning, field programmable analog arrays, and quantum cell
automata.

Dr. Lim has been on the advisory board of the Association for Computing
Machinery (ACM)/SIGDA since 2003. He is currently serving the technical
program committee of the IEEE International Symposium on Circuits and Sys-
tems, ACM Great Lakes Symposium on VLSI, IEEE International Conference
on Computer Design, ACM International Symposium on Physical Design, and
ACM/IEEE Asia and South Pacific Design Automation Conference. He has
been awarded the ACM/SIGDA DAC Graduate Scholarship in June 2003.

