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Abstract—In order to bridge the gap of the growing speed disparity between processors and their memory subsystems, aggressive

prefetch mechanisms, either hardware-based or compiler-assisted, are employed to hide memory latencies. As the first-level cache

gets smaller in deep submicron processor design for fast cache accesses, data cache pollution caused by overly aggressive prefetch

mechanisms will become a major performance concern. Ineffective prefetches not only offset the benefits of benign prefetches due to

pollution but also throttle bus bandwidth, leading to an overall performance degradation. In this paper, we propose and analyze a

number of hardware-based prefetch pollution filtering mechanisms to differentiate good and bad prefetches dynamically based on

history information. We designed three prefetch pollution filters organized as a one-level, two-level, or gshare style. In addition, we

examine two table indexing schemes: Per-Address (PA) based and Program Counter (PC) based. Our prefetch pollution filters work in

tandem with both hardware and software prefetchers. As our analysis shows, the cache pollution filters can reduce the ineffective

prefetches by more than 90 percent and alleviate the excessive memory bandwidth induced by them. Also, the performance can be

improved by up to 16 percent when our filtering mechanism is incorporated with aggressive prefetch filters as a result of reduced cache

pollution and less competition for the limited number of cache ports. In addition, a number of sensitivity studies are performed to

provide more understandings of the prefetch pollution filter design.

Index Terms—Prefetch, memory subsystems, microarchitecture.
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1 INTRODUCTION

THE growing speed disparity between CPU and main
memory poses a great challenge for the scalability and

design effectiveness of modern processors. Even though
data caches can somehow bridge this gap, data references
that miss caches still suffer from long memory lead-off
latencies if there is not a large enough number of
independent instructions to mask the delay. The problem
is exacerbated in static machines, e.g., Intel/HP’s Itanium,
where missed data dependent instructions will stall the
entire pipeline processing. Prefetching, either hardware-
based or compiler-assisted, has been extensively studied
and shown to be an effective means for hiding memory
latency. Instead of waiting for actual memory requests
issued by load/store instructions, an effective prefetching
scheme can bring data into the memory hierarchy closer to
the processor prior to their needs.

1.1 Data Prefetching

Most prefetch techniques are prediction-based, the accuracy

and potential performance gain highly depend on the

predictability of memory reference behavior. Simple hard-

ware-based prefetching techniques proposed in [1], [2], [3]

attempt to identify and capture regular data access patterns

with unit strides. More sophisticated hardware-based

schemes [4], [5] can issue prefetches for sequential data
accesses with arbitrary but constant strides. In [6], [7], Chen
and Baer proposed a reference prediction table to monitor
data reference patterns and issue prefetches dynamically.
Correlation-based prefetching [8], [9], [10] keeps prior cache
miss addresses and triggers prefetches by correlating
subsequent misses to the history. Recent work by Nesbit
et al. [11], [12] enables prefetches with a global history
buffer that holds the most recent miss addresses in FIFO
order and links entries sharing a common property. In this
manner, stale data can be removed from the table,
improving the accuracy of correlation-based prefetching.
A unified evaluation framework called MicroLib [13]
implements hardware prefetchers published in the litera-
ture and demonstrates that, under a fair comparison, even
the best prefetcher only achieves a very incremental
improvement over a decade-old next sequence prefetcher
[3] and the next sequence prefetcher is the best among those
that prefetch into the L1 cache.

On the other hand, static analysis techniques were
applied at compilation time to assist software prefetching
[14], [3], which inserts prefetch instructions within the
binaries for runtime prefetching. Many contemporary
microprocessor instruction sets feature some flavors of
cache line fetch instructions that simply move data into the
cache without intervening other architectural resources. For
example, prefetchnta, prefetcht0/t1/t2 instructions pro-
vided in Intel’s IA32 processors [15] or, in Alpha ISA, a
load instruction can be used to perform data prefetch when
specifying the destination register to be $r31, which is
hardwired to zero [16]. Since these prefetch instructions are
implemented nonblocking, the processor will continue
execution without awaiting their completion.
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1.2 Aggressive Prefetching

With the advent of billion transistor processors, processor
architects continue to dedicate these exponentially in-
creased resources to cache memory on the processor cores
with a deeper hierarchy to alleviate the impact of wire
delays. Meanwhile, sustainable memory bandwidth also
becomes larger between caches and main memory due to
improved bus frequency and width. As a result, more
aggressive prefetching schemes were proposed to utilize it.
Current design trend shows that, even though the overall
cache size is getting larger, the first level (L1) cache, in fact,
is getting smaller in order to guarantee faster L1 accesses,
typically in one or two processor cycles for GHz processors.
It is also less expensive, in terms of area and power
consumption, to build a smaller multiported cache for
wide-issue machines which need to process many memory
requests simultaneously. Given this design trend, overly
aggressive usage of prefetches will not only postpone
normal L1 cache accesses but can also pollute the L1 cache,
a small and precious memory resource, uninvitingly,
leading to an ineffectual use of prefetches.

1.3 Cache Pollution

No data prefetching algorithm can guarantee 100 percent
accuracy and effectiveness. A prefetched cache line could
turn out to be either completely useless or ineffective. Many
implementations place prefetched data in the data cache
where they compete for the available cache resources,
seriously degrading the performance if the L1 cache is too
small. Evicting useful data in the cache due to overly
aggressive prefetches causes cache pollution, which un-
necessarily reduces the overall performance. Performance
can also be significantly degraded when prefetching is
imprecise. For example, a stride-based prefetching scheme
can be completely ineffective for pointer-based type
applications, thereby polluting the data cache. In [17], Luk
and Mowry proposed three prefetching schemes for
pointer-based applications. Their work shows that prefetch
misses can be as high as 80 percent for some benchmark
programs, which include those prefetched data that are not
eventually accessed by the application or evicted before
accessed because they were issued either too early or too
late. Srinivasan et al. [18] show that even a prefetcher with a
high coverage and accuracy may still lead to low
performance (high total miss rate and low IPC). Therefore,
the side effects of the prefetcher are also critical when
adopting a prefetching technique. In summary, an inap-
propriate prefetch can lead to undesirable outcomes by
1) occupying cache space with useless data if the prefetcher
is inaccurate and causes more capacity or conflict misses or
2) imposing higher pressure on the competition for finite
bandwidth and limited number of cache ports and write-
back buffers, especially for aggressive prefetchers on a
wide-issue machine. Puzak et al. [19] formulated a method
for evaluating prefetching algorithms. They found that, in
many cases, prefetching could lose performance if the
conditions are not ideal (perfect coverage and accuracy,
sufficient timeliness, and ample bandwidth).

In this paper, we first investigate the impact of
aggressive prefetching on conventional cache architectures
targeting for deep submicron processors. Three different

prefetching schemes were evaluated, including software
prefetch instructions inserted by the Alpha compiler and
two aggressive hardware-based prefetch algorithms. We
then examine all the prefetches together with the runtime
footprint of given programs to identify the effective
prefetches, i.e., prefetched data that are referenced by
issued memory instructions prior to eviction. These pre-
fetches are classified as good prefetches. In contrast, those
never referenced prefetches are classified as bad. Then, we
evaluate the impact of bad prefetches by showing their high
percentage among all prefetches and the L1 traffic. This
motivates our endeavor to design a hardware-based cache
pollution filter that can effectively prevent the bad pre-
fetches from entering the cache. The filtering is achieved via
exploiting historical prefetch behavior. We propose three
filtering algorithms, consisting of a one-level, two-level, or
gshare style history table incorporating branch history
information. We investigate two prediction schemes: The
first one is based on the cache line address of the prefetched
data called Per-Address-based and the second one is based on
the program counter value of the prefetch trigger instruc-
tion or Program-Counter-based. Performance improvement,
bus traffic reduction, and design options are quantified in
our simulations and analysis.

The rest of this paper is organized as follows: Section 2
reviews related approaches. Section 3 gives our motivation.
Our proposed filtering hardware designs are described in
Section 4. We then evaluate the performance of our filtering
scheme in Section 5. Section 6 concludes this work.

2 RELATED WORK

Several previous works were proposed to reduce cache
pollution caused by prefetching. These techniques can be
classified into three categories—software-based by compi-
lers [20], hardware-based [7], [21], [22], and hybrid [18],
[23]. Chen et al. [24] proposed a dedicated prefetch buffer
for data prefetching. Instead of bringing prefetched data
into caches, the software data prefetch instructions allocate
prefetched data into a dedicated prefetch buffer. The data
cache and the prefetch buffer are probed either in parallel or
in sequence for each data item accessed. If both are missed,
the data will be fetched to the cache from the next level in
memory hierarchy. Typically, a prefetch buffer is fully
associative. Note that, when accessed in parallel with the
L1, the prefetch buffer could become the critical path if it
cannot keep up with the speed of the L1, thus limiting the
prefetch buffer size.

Lin et al. [25] proposed a technique to filter superfluous
prefetches with density vectors. The work is based on a
special prefetcher called scheduled region prefetcher. They
measure the predictability of spatial locality using density
vectors-bit vectors that track the block-level access pattern
within a region of memory. The evaluation shows over
70 percent of useless prefetches can be eliminated, whereas,
in this work, we intend to develop a more general approach
to filter polluting prefetches. We hope the filter can work
with a wide range of prefetchers.

In [20], Wang et al. introduced a compiler’s approach
that checks the data in the cache to see if the next reuse
distance is twice the cache size. It is shown that this scheme
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can reduce the pollution of prefetched data if the data are
unused or the prefetch distance is too long to keep the data
in the cache. Data being marked as evict-me have the highest
priority to be displaced from the cache. Lai et al. [21]
proposed detecting dead cache lines in caches and replacing
the dead lines with prefetched data. Their mechanism aims
at reducing situations where useful data are evicted from
the cache too early. While having a similar goal of reducing
cache pollution, our approach focuses on eliminating
ineffective or bad prefetches from entering the cache.

Srinivasan et al. presented a comprehensive taxonomy in
[18] that classifies prefetches based on traffic and misses
generated by each prefetch. They also proposed a static
filter in [26] aimed at reducing the number of polluting
prefetches. The static filter collects information on the
polluting prefetches offline through profiling and uses this
profiling information to guide data prefetches. They
reported a 2 to 4 percent performance improvement of
their static filter scheme combined with Next Sequence
Prefetching and Shadow Directory Prefetching. Ideally, the
profiling information can provide precise global informa-
tion for a given input data set; however, it lacks dynamic
adaptivity during runtime when the working set changes.
In contrast to their work, our technique solely relies on
hardware to evaluate each prefetch dynamically. No
profiling collection is needed. It seems the performance
gain of our scheme is higher than their published results.

Recently, [22] proposed using the L1 cache as a filter to
filter out useless prefetches and memory accesses on a
speculative path. In their scheme, if a speculatively fetched
block is referenced by a nonspeculative instruction while it
resides in the L1 cache, then the speculatively fetched block
is treated as any other nonspeculatively fetched block
during eviction; otherwise, the processor will assume that
the block is unlikely to be used prior to its eviction from the
L2 cache. In this manner, speculative memory accesses
bring data only into the L1 cache rather than into all levels
of the cache hierarchy.

3 MOTIVATION

We simply classify prefetches into two categories: 1) good
or effective—those referenced at least once in the cache
prior to their eviction—and 2) bad or ineffective—those
never referenced during their lifetime in the cache. A
comprehensive prefetch taxonomy [18] requires many
additional bits to keep track of the replaced cache line
and reference order for both displaced and prefetched cache
lines; our simple yet competent classification greatly
simplifies the hardware implementation. Fig. 1 shows the
distribution of the prefetches based on our classification for
10 benchmark programs selected from the SPEC95,
SPEC2000, and Olden benchmark suites. Due to page
limitations, we are not able to show the evaluation with
all known prefetchers. We select three representative
prefetchers. The same set of prefetchers was used by a
main related work [18] about the static prefetch filter. The
prefetches include both hardware-based (next sequence
prefetching—NSP [3]—and shadow directory prefetch-
ing—SDP [27]) as well as software-based prefetches. Note

that the number of software prefetches is far less than the

hardware prefetches but with higher accuracy.
The NSP prefetcher prefetches the next adjacent cache

line when a memory access either misses the L1 or hits a

cache line in L1. The SDP maintains a shadow line address

for each L2 cache line for prefetching purposes, along with

its resident address. The shadow line is the next line missed

after the currently resident line was last accessed. The

accessing of an L2 cache line would trigger the prefetching

of the shadow line into both the L1 and L2 caches. Notice

that prior hardware-based prefetchers have attempted to

reduce ineffective prefetches. For example, an improved

version of the NSP prefetcher employs a tag bit associated

with each cache line. When a cache line is prefetched, its

corresponding tag bit is set. Then, the prefetcher only

prefetches the next cache line when a memory access either

misses the L1 or hits a tagged cache line. Similarly, the SDP

prefetcher keeps a confirmation bit for each L2 line,

indicating if the prefetched line was ever used since it

was prefetched last time. Prefetches are only enabled for

those that were used after the previous prefetching.
In Fig. 1, the number of “Good Prefetches” and the

number of “Bad Prefetches” are normalized to the total

number of prefetches for each benchmark program. As

indicated, more than half of the prefetches are ineffective or

bad in four out of the 10 benchmark programs. Our

statistics show, on average, 48 percent of prefetched data

are not referenced during their lifetime in the cache.
Fig. 2 shows the traffic distribution in terms of cache

lines for the L1 data cache. Obviously, the traffic induced by

prefetches accounts for a significant portion of the total

traffic to the L1 cache. On average, the prefetch access to

normal access ratio is 0.41 with a maximum of 0.57 (ijpeg)

and minimum of 0.29 (gzip). In other words, on average,

about 2
7 traffics to the L1 cache are prefetches. Combined

with Fig. 1, it implies that the aggressive and/or excessive

prefetches generated by state-of-the-art processors could be

ineffective, polluting caches, and thrashing resources such

as buses and caches, leading to performance degradation

and unnecessary energy consumption. Our dynamic ap-

proach aims at addressing these issues by preventing the

overly aggressive prefetches from consuming memory

bandwidth and polluting the cache.
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4 PREFETCH POLLUTION FILTER

In this section, we propose a hardware-based cache
pollution filtering scheme for processors with aggressive
prefetches enabled. The history-based prefetch pollution
filter dynamically determines the effectiveness for each
prefetch. The bad (or ineffective) prefetches will be disabled
based on the lookup results from the history table to
prevent the L1 cache from being polluted. The prefetches
under examination include compiler-inserted prefetch in-
structions and dynamic prefetches generated by prefetch
hardware. At runtime, the prefetch pollution filter deter-
mines whether an in-flight prefetch should be performed or
not. Using such a dynamic implementation, one can
maximize the capability of all the hardware and software
data prefetching schemes and rely on the prefetch pollution
filter to intelligently select the effective prefetches.

4.1 Overview of the Filtering Mechanism

Fig. 3 depicts the overall diagram of our pollution filtering
mechanism associated with an out-of-order processor. The
prefetch pollution filter is implemented as a standalone
module that examines addresses generated from the
hardware-based prefetcher, L1 cache controller, and the
LD/ST queue (LSQ). The hardware prefetch generator is
triggered by data accesses to the L1 or L2 cache depending
on the prefetch algorithms. (The trigger may come from
other sources. In our cases, however, the two hardware-
based prefetchers are triggered by L1 or L2 cache accesses.)
The hardware prefetch generator accepts the trigger and
reroutes it to the prefetch pollution filter to check if the
prefetch operation should proceed. Software prefetch
instructions are identified from the LSQ and sent to the
prefetch pollution filter directly.

Incoming prefetches are sent to the prefetch pollution
filter to check whether they should actually be issued.
Either the data cache line address or the program counter
(PC) of the instruction triggering the prefetch is used for the
checking. If the prefetch pollution filter rejects the prefetch,
this prefetch operation will be terminated and no prefetch
will be issued to the L1 cache; otherwise, the prefetch is
issued to the prefetch queue. We prioritize demand
requests over prefetch requests. As long as the prefetch
queue is not full, demand requests are always issued to the
cache without being stalled. Moreover, all repeating recent
prefetches are disabled. To collect feedback information,
each prefetched cache line is associated with two control

bits: the Prefetch Indicator Bit (PIB) and the Reference
Indication Bit (RIB). As shown at the bottom of Fig. 3, these
two bits are appended to each cache line tag. PIB is used to
indicate whether this line is brought in by the prefetcher
(1 for prefetched lines; 0 for demand misses) and RIB
indicates whether this line is ever referenced during its
lifetime in L1. RIB is valid only if PIB is set. Whenever a
cache line is replaced and evicted from the L1, its
corresponding PIB is checked to see if the line was brought
in by prefetching. If yes, its RIB is further checked to see if it
was ever referenced. This information is then used to
update the prefetch pollution filter.

4.2 Three Types of Prefetch Pollution Filters

The critical component is the prefetch pollution filter. In this
paper, we study several alternative architectures in con-
structing the prefetch pollution filter. In Fig. 4, we study
three types of prefetch pollution filters. Our design of the
prefetch pollution filter bears a similarity to the traditional
branch predictors. An array of 2-bit up/down saturation
counters is used to record the history of prefetches and to
judge if a prefetch should be conducted. They are also
updated according to whether the prefetches are actually
good or not. We call these 2-bit saturation counters Prefetch
History Table (PHT). The number of 2-bit saturation counters
approximates the additional on-chip space required.

In our schemes, either the address of the accessed cache
line or the program counter (PC) of the triggering
instruction can be used as part of the index to the PHT.
Here, we use Per-Address-based (or PA-based) and Program-
Counter-based (or PC-based) to represent these two different
prefetch pollution filters. The PA-based prefetch pollution
filter tracks the cache line address of each prefetch
operation issued. Since the same memory instruction may
access different cache line addresses at different iterations
or from different control flow paths, different prefetches
may be triggered. The PA-based filter is capable of
discerning these various fetched addresses by the same
memory instruction. On the other hand, a PC-based cache
pollution filter tracks each instruction’s PC that triggers a
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prefetch. For prefetches enabled by a software prefetch
instruction, the PC is identical to the PC of the software
prefetch instruction. For hardware-based prefetch algo-
rithms, the PC of the memory instruction that triggers the
prefetch is used.

Fig. 4a shows a single level prefetch pollution filter. It
consists of 2m 2-bit saturation counters. The lower m bits of
the accessed address or the PC of the triggering instruction
are used as an index for the 2-bit counter array lookup.
Also, depending on whether the prefetched cache line is
referenced or not, the corresponding two-bit saturation
counter is updated. The lookup and update operations to
the two-bit counters are the same as those for dynamic
branch predictors.

To further improve the accuracy, we can couple it with
the branch history register as in branch predictors. By
keeping track of the directions of the last n branches
encountered along the path, we can determine more
precisely whether the prefetch leads to pollution. This is
achieved by including an n-bit Branch History Register
(BHR). In Fig. 4b, we illustrate a two-level structure for the
prefetch pollution filter. The n-bit BHR is globally shared,
recording the directions of the last n branches. Together
with the lower m bits of the accessed address or the PC of
the triggering instruction, a total of 2mþn 2-bit counters are
needed. For each accessed address or the PC of the
triggering instruction, the lower m bits are used to select
the row number, while the BHR indexes the column
number of the 2-bit counter array for lookup or update.

Notice that there could be a number of variations to the
two level branch predictors [28], [29], [30]. For example, the
BHR could be on a per-address or per-set basis, while the
second level 2-bit counters could be globally shared by all
BHRs to reduce the PHT size. In such a design, the recent
n-branch history of each branch instruction or each set of
branch instructions is recorded by the corresponding BHR.

Yeh and Patt [30] show that such a design could be more
area-efficient. However, for prefetch pollution filtering,
maintaining per-address or per-set BHRs does not make
sense because we are looking at individual prefetches
instead of branches. Therefore, we cannot establish a branch
history for each prefetch, while, in Fig. 4b, a global BHR
tracks the directions of last n branches along the path to the
prefetch. In this way, we can filter prefetches differently
according to the path taken.

Finally, Fig. 4c illustrates a gshare-style prefetch pollu-
tion filter. A gshare branch predictor [31] was proposed to
alleviate aliasing issues and reduce the number of two-bit
counters without losing the branch history bits. A similar
idea is applied to prefetch pollution filtering to reduce on-
chip die area. As shown in Fig. 4c, the lower m bits of the
prefetch address or the triggering PC are XORed with the
branch history register to be used to index into the 2maxðm;nÞ

2-bit counter array.
Notice that, due to the limited number of 2-bit counters

in the prefetch history table, the aliasing (or interference)
issue is inevitable for the PA-based filter. On the other
hand, the PC-based filter may not be as precise as the
PA-based filter due to sharing among different prefetch
addresses from the same trigger, notwithstanding that it
reduces the number of items that will be indexed into the
filter. Additionally, the PC needs to be passed to the
L1 cache and the prefetch pollution filter through a separate
datapath.

It is noteworthy that the diagram depicted in Fig. 3 does
not use a dedicated fully associative prefetch buffer;
instead, data are prefetched into the L1 cache directly since
a dedicated prefetch buffer is more complex and expensive
to build due to additional buses, routing, and layout issues,
etc. Most of the contemporary microprocessors implemen-
ted their data prefetch mechanism in the cache hierarchy in
lieu of dedicating a prefetch buffer. Nevertheless, we also
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evaluate and quantify processor architectures for both
design options in Section 5.6.

5 EXPERIMENTAL RESULTS

5.1 System Configuration and Benchmarks

Our experimental infrastructure is based on Simplescalar 3.0
using Alpha binaries. All benchmark programs were com-
piled using gcc targeting Alpha ISA with an -O4 optimization
flag that enables software prefetch instruction generation.
The hardware prefetches are assumed to be triggered (if
necessary) immediately after a cache access without any
delay. All duplicate prefetches are squashed automatically
without incurring any penalty. All benchmark programs
were run up to 300 million instructions. The default
configuration parameters are detailed in Table 1. In this
study, we target a deep-submicron high performance
processor in which a small 8KB direct-mapped L1 cache is
employed in exchange for a fast access latency. Similar
schemes have been implemented in commercial high
performance processors such as the Pentium 4 processor
[32]. Configurations are varied in our experiments, e.g., the
L1 cache size, history table size, branch history register size,
number of L1 ports, etc., for different evaluation purposes.

The default size of the history table has 4,096 entries
(1KB). For the two-level and gshare prefetch pollution
filters, we set the branch history register (BHR) size to be
4 bits. As mentioned earlier, for the two-level filter, the
history table indexing method uses partial bits of the branch
history and partial address/PC of the prefetch. In our
default model, the total number of bits for the index is
12 bits, i.e., 4K entries, then (12-n) bits, where n is the size of
the BHR are from the address/PC of the prefetch. On the
other hand, the gshare filter always takes 12 bits (under the
default model) from the address/PC, but XORs with the
BHR (typically smaller than 12 bits).

We use IPC as the metrics for performance evaluation.
Note that the software prefetcher actually adds more
instructions for prefetching, which could unfairly increase
the IPC values and skew the evaluation results against other
types of prefetchers. However, as our data show, the
number of executed (runtime) software prefetches is very
small (less than 1 percent) among the total number of
executed instructions with -O4 optimization; therefore, it
should not affect the proper comparison in our results.

Table 2 shows the properties of benchmark programs
used. These 10 programs were selected from the Olden [33]

(bh, em3d, perimeter), SPEC95 (ijpeg, fpppp, gcc, wave5),
and SPEC2000 (gap, gzip, mcf) benchmark suites. Their
input sets, L1 data cache miss rates, and L2 data cache miss
rates with prefetch turned off are shown in the table. We
select these benchmarks for their high cache miss rates.
Otherwise, aggressive prefetching will not be needed for
tackling the memory bottleneck.

5.2 Performance Evaluation

5.2.1 Default Processor Model

In Fig. 5, we show the percentage of reduction of bad
prefetches for the three prefetch filters and the two indexing
methods proposed, which contain six cases—one-level with
PA, two-level with PA, gshare with PA, one-level with PC,
two-level with PC, and gshare with PC. For clarity, all
numbers are normalized to the number of bad prefetches
when no filtering is applied. The first three bars are for PA-
based prefetch filters and the next three bars are for PC-
based prefetch filters. We observe a significant number of
bad prefetches are eliminated. Also, both the 2-level and
gshare filters show slightly better results than the single
level filters, indicating that branch information is helpful for
removing bad prefetches. In addition, gshare is more
effective in reducing the bad prefetches for more than half
of the benchmarks, although the difference is less signifi-
cant. On average, 95.9 percent of the bad prefetches are
removed for PA-based one-level prefetch filter, for PA-
based two-level, and, for gshare prefetch filters, the
numbers are 97.7 percent and 97.6 percent, respectively.
On the other hand, the PC-based prefetch filters perform
slightly better than the PA-based ones. On average,
97.7 percent, 98.0 percent, and 98.5 percent, respectively,
of bad prefetches are removed by the single level filter, two-
level filter, and gshare filter. The reduction in bad
prefetches is quite consistent across all benchmarks as we
can conclude that at least 90 percent of the bad prefetches
are reduced in all cases.

Despite the fact that pollution filters aim to reduce
ineffective prefetches, they could be too aggressive and
filter out effective prefetches as well due to the unpredict-
ability of cache reference behavior. In Fig. 6, we show the
amount of good prefetch reduction. It appears that some
benchmarks can preserve most of the good prefetches, such
as gap, mcf, while some others eliminate many good
prefetches as well (e.g., gcc, perimeter, ijpeg). The simula-
tion results indicate that, on average, the reductions for
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PA-based one-level, two-level, gshare filters are 60.9
percent, 51.3 percent, and 48.8 percent, respectively. As
mentioned before, the PC-based filters reduce bad pre-
fetches more aggressively, but, at the same time, they
disable fewer good prefetches. The average reductions for
one-level, two-level, and gshare filters are 55.6 percent, 45.1
percent, and 48.8 percent, respectively. Both the two-level
and gshare filters remove fewer good prefetches. Both the
two-level and gshare filters are quite close in either PA-
based or PC-based filtering. The gshare filter reduces fewer
good prefetches (by about 3 percent) than the two-level one.

Fig. 5 and Fig. 6 demonstrate that the pollution filters can
successfully reduce the bad prefetches dynamically with a
tolerable loss of the good ones. Besides, the PA-based filter
performs a little bit worse than the PC-based one. Among
the three filters, aggressiveness increased from one level,
two level to gshare in terms of their ability to disable bad
prefetches and preserve good prefetches. Also notice that,
for some benchmark programs like the gcc, most of the
prefetches are filtered due to their unpredictable nature
even though the prefetches are already ineffective for such
programs.

From Fig. 7, we notice that, for all benchmark programs,
the IPC numbers are improved; apparently the reduction of
good prefetches is compensated for by the significant
reduction of bad prefetches. Here, the first bar is the IPC

numbers of benchmarks without any filtering. The average

IPC improvements are 8.2 percent, 12.8 percent, and

13.3 percent for PA-based one-level, two-level, and gshare

filters. For PC-based filters, we observe larger improve-

ments primarily due to more bad prefetches being removed.

The average speedups are 9.0 percent, 15.1 percent, and

16.2 percent for PA-based one-level, two-level, and gshare

filters. Among the three filters, gshare and two-level filters

perform much better than the one-level filter. This could be

explained by their aggressive reduction of bad prefetches.

Although the loss of some good prefetches hampers their

effectiveness, the overall prefetch traffic is cut down as well,

which brings about the increased speedup due to less cache

port competition.
We also notice that adding a 1KB history table for cache

pollution filtering is actually more effective than simply

increasing the cache size. Due to implementation difficulty

(a 9KB cache in terms of access speed will be less cost-

effective due to the 9-way management), we only compare

our default model with the one with 16KB L1 cache (other

configurations are identical). The speedup for 16KB L1 is

about 20 percent. Reasonably, we can conclude that adding

a 1KB history table is more desirable.
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Fig. 5. Comparison of bad prefetches for 8KB data cache.

Fig. 6. Comparison of good prefetches for an 8KB data cache.



5.2.2 Processors with 32KB Data Caches

Next, we repeat the same set of experiments and performance

analysis by extending the L1 cache to 32KB 4-way set-

associative. Due to a larger cache size, the L1 access latency is

increased to four cycles in our simulation as precharging the

word-lines and signal driving through the bit-lines of the

cache now takes longer time for a high frequency processor.

Results for bad/good prefetch reduction and IPC comparison

are shown in Fig. 8, Fig. 9, and Fig. 10.

In Fig. 8, we present the number of bad prefetches for the

six schemes. Similarly, the filters greatly filter bad pre-

fetches. However, with a larger L1 cache, the filters are less

aggressive in that a smaller number of bad prefetches was

removed compared with the 8KB L1, due in part to reduced

conflict and capacity misses for larger caches. On average,

the reductions are 87.7 percent, 93.9 percent, and 93.3 per-

cent for PA-based one-level, two-level, and gshare prefetch

filters, respectively. For PC-based ones, the numbers are
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Fig. 7. Comparison of IPC for an 8KB data cache.

Fig. 8. Comparison of bad prefetches for a 32KB data cache.

Fig. 9. Comparison of good prefetches for a 32KB data cache.



90.8 percent, 93.5 percent, and 92.8 percent for single level,
two level, and gshare prefetch filters.

In the meantime, we observe a similar trend for the
reduction on good prefetches. As shown in Fig. 9, more
good prefetches are retained than the cases with 8K L1
cache. The reductions of good prefetches are 45.2 percent
(one-level), 40.1 percent (two-level), 40.8 percent (gshare)
for PA-based filters, and 41.3 percent (one level), 37.2 per-
cent (two level), and 37.1 percent (gshare) for PC-based
ones. Noticeably, the two-level filter and gshare filter
perform slightly differently. The two-level filter tends to
reduce more bad prefetches, but retain almost an equivalent
number of good prefetches. Also, they are much closer, in
contrast to the 8KB L1 case. In addition, the amount of
traffic reduction also confirms our theory that a larger cache
leads to a more effective filtering. For either PA or PC-based
filters, roughly 50 percent prefetch bandwidth is reduced
for the 32KB L1 cache compared with the 8KB L1 cache.

Fig. 10 shows IPC comparison. The one without filtering is
shown as the first bar in the figure. All filters outperform the
one without pollution filtering. As shown in the figure, no
filter always delivers the worst performance among others.
On average, the PA-based one-level filter achieves a
6.7 percent speedup and the PC-based one-level filter has
an 8.2 percent speedup. The two-level filter is the best among
the three, which gets a 11.9 percent speedup with PA-based
indexing and a 13.5 percent with PC-based indexing. Finally,
gshare is slightly worse than the two-level, with speedups of
10.6 percent (PA-based) and 13.2 percent (PC-based).

In summary, a smaller L1 cache size, also the trend of deep
submicron processors, results in a more aggressive filtering.
Although a less aggressive pollution filtering preserves more
good prefetches, at the same rate, it retains more bad
prefetches; hence more bandwidth is consumed by the
prefetch traffic. The performance largely depends on the
trade-off between prefetch traffic reduction and cache
pollution reduction. Once prefetch traffic is reduced too
much to introduce enough useful prefetches, the perfor-
mance degrades. As for gcc, the good prefetches are reduced
to the extent that it offsets the benefits of traffic reduction. The
one-level filter is worse than the other two since it reduces
fewer bad prefetches but more good prefetches. However, the

advantage is much less for a 32KB cache due to the higher
prefetch traffic leading to more cache port competition for all
filters. The difference between a two-level filter and a gshare
filter is more subtle. With a larger cache, the two-level filter is
very close to the gshare since more prefetches can be held in
cache and this potentially lowers the bar for identifying bad/
good prefetches. In other words, some prefetches, when
having a longer lifetime in cache, become good prefetches.
Overall, the performance difference between these two filters
is minimal.

5.3 Impact of the History Table Size

In this section, different history table sizes are evaluated
to quantify their impact to the overall performance. We
only evaluate the PA-based single level filter since similar
results have been observed for other types of filters. The
size of the history table is varied from 1,024 entries
(256B), 2,048 entries (512 B), 4,096 entries (1KB), 8,192
entries (2KB), up to 16,384 entries (4KB). All the
experiments were performed using the default configura-
tion except for the history table size.

Fig. 11 examines the bad/good prefetch ratios. In
general, the bad/good prefetch ratio decreases by using
larger history tables. It is obvious that more entries will
alleviate aliasing in the history table. What was also found
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Fig. 10. Comparison of IPC for a 32KB data cache.

Fig. 11. Comparison of the bad/good prefetch ratio for different history

table sizes.



is that the number of bad prefetches increases with larger
history tables as well. For a few benchmarks such as gap,
gzip and mcf, varying the history table size is almost
insensitive to the reduction of bad prefetches. Nevertheless,
with more good prefetches being preserved, the bad/good
prefetch ratio is reduced. On average, the ratio is gradually
reduced from 0.37, 0.33, 0.29, 0.27, down to 0.25 for 1K, 2K,
4K, 8K, and 16K entries. As shown in Fig. 11, a 1,024-entry
history table is good enough to capture most of the
reduction for bh, gcc, and wave5. The ratio is reduced by
only 0.04 when the history table is enlarged from 4K entries
to 16K entries; in other words, a small history table, e.g., 4K
entries, is sufficient to obtain most of the benefits.

Fig. 12 presents the IPC comparison. For most programs,
the IPC increases slightly as the history table grows. The
harmonic means of the IPCs are 1.70 (1K-entry), 1.72 (2K-
entry), 1.82 (4K-entry), and 1.83 (8K-entry and 16K-entry).
The harmonic mean shows a 6 percent improvement from
the 2K-entry to the 4K-entry. The transitions from the 1K-
entry to the 2K-entry, 4K-entry to 8K-entry, and 8K-entry to
16K-entry only result in a less than 1 percent performance
improvement. In short, the performance improvement for a
history table size larger than 4,096 entries is limited.
Moreover, short history tables (1K or 2K entries) can affect
the performance to some extent. Hardware implementa-
tions should choose the size of the history table based on
their cost budget. With 4K entries, the prefetch pollution
filter will take only 1KB space with direct indexing, a small
overhead in future performance processors with one billion
transistors available to explore.

5.4 Impact of the Branch History Register (BHR)
Size

This section discusses the 2-level and gshare prefetch
pollution filters where a branch history register (BHR) is
used. We investigate how the size of the BHR affects the
effectiveness of our prefetch filtering schemes. Without loss
of generality, we only look at the PA-based prefetch filters
and all the other configuration parameters are the same as in
the default model. The size of the BHR ranges from 2 bit, 4 bit
(default), 6 bit, 8 bit, and 10 bit. Notice that a 4,096-entry
history table needs 12 bits at most.

Fig. 13 compares the bad/good prefetch ratios, which
were normalized to the default with a 4-bit BHR. It appears

that the bad/good prefetch ratio increases significantly as a
wider BHR is used, especially when it reaches 8 bit and
10 bit. As mentioned earlier, once more branch history bits
are counted, fewer bits are used for the address (or PC) of
the prefetch. As a result, it could cause severe aliasing.
Meanwhile, branch history bits do help to improve the
effectiveness as can be seen from the earlier comparison
between one level and two level filters. Thus, if the BHR
size is too small, the ratio can be bad as well. Fig. 13 shows
that a 4-bit BHR is the best for our current setting. The
average values of the normalized bad/good prefetch ratios
are 1.09 (2-bit), 1.16 (6-bit), 1.54 (8-bit), and 2.42 (10-bit). In
other words, except for 2-bit and 4-bit, the other choices
lead to much worse ratios.

We now study their impact on the IPC. In Fig. 14, the
IPCs are normalized to the default case with a 4-bit BHR.
Conceivably, a higher bad/good prefetch ratio leads to a
bigger IPC degradation. On average, the normalized IPCs
are 0.98 (2-bit), 0.97 (6-bit), 0.96 (8-bit), and 0.92 (10-bit),
respectively. In other words, the slowdown could be as
large as 8 percent when a 10-bit BHR is used.

Fig. 15 and Fig. 16 repeat the same experiments for the
gshare filter. The normalized bad/good prefetch ratios in
Fig. 15 imply that the BHR size is affected less radically for
the gshare filter. Although the general trend remains the
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Fig. 12. Comparison of IPC for different history table sizes. Fig. 13. Comparison of the normalized bad/good prefetch ratio for a two

level prefetch filter with different BHR sizes.

Fig. 14. Comparison of normalized IPC for a two level prefetch filter with

different BHR sizes.



same as in the case for a two level prefetch filter, it becomes
less clear for some benchmarks such as perimeter and mcf.
The average ratios are 1.06 (2-bit), 1.09 (6-bit), 1.12 (8-bit),
and 1.11 (10-bit). It is perhaps because the gshare filter
XORs BHR with the indexing address or PC such that the
size of the address or PC is still included instead of being
reduced like the two level filter. However, it also suggests
that counting on more history bits could be detrimental
since a few bits for the branch history serve well to
distinguish prefetches, while more BHR bits actually bring
about inaccuracy.

Fig. 16 shows the IPCs by varying the BHR size,
corresponding to the bars in Fig. 15. Again, for individual
benchmarks, a particular BHR size could be more suitable;
however, the overall performance still suggests that a 4-bit
BHR seems to be the best option under our configuration.
On average, the normalized IPCs are 0.98 (2-bit), 0.98 (6-bit),
0.97 (8-bit), and 0.96 (10-bit), respectively. As shown, the
slowdown for a 10-bit BHR is less severe compared with
that of the two-level filter.

5.5 Impact of L1 Cache Ports

Next, the number of L1 cache ports is varied to see how it
affects the bad/good prefetch ratio and the IPC. All
experiments were performed under the default configura-
tion with the PA-based pollution filter. The number of the
L1 ports is increased gradually from three, four to five.1

Note that additional cache ports lead to a bigger cache
design, thus elongating the access latency. We take these
physical design constraints into account in our latency
model. The L1 access latency is assumed to be two cycles for
a 4-port 8KB cache and three cycles for a 5-port 8KB cache.

Fig. 17 shows the bad/good prefetch ratios for the three
PA-based filters. We normalize the ratio to the value of the
default machine model with three ports. For most bench-
mark programs, this value decreases as more L1 ports are
provided. With fewer L1 ports, the competition for the
ports is more intense. Consequently, prefetches to the L1
are postponed as they are lined up waiting for the L1 cache
ports to become available. This procrastination turns

potential good prefetches into bad if they reach the L1
cache too late. However, our pollution filter should try to
adjust the history table for the increased misses (a
previously good feedback turns bad and the table update
must change the setting in the table). For the single level
filter, a 4-port cache yields a 5 percent reduction over a
3-port one, then a 4 percent reduction from 4-port to 5-port.
For a two-level filter, the reduction from 3-port to 4-port is
1.5 percent. Adding to 5-port gives an extra 1 percent
reduction. Finally, the gshare obtains a 8.5 percent ratio
reduction with one more port over 3-port and 2.7 percent
reduction from 4-port to 5-port. In summary, the ratio
reduction decreases as more ports are added. Meanwhile, it
appears that more ports are especially helpful for the
gshare filter.

Fig. 18 compares the IPC numbers. They are also
normalized to the value of the default machine model with
three ports. In general, the IPC increases with the port
number increased. For a one level filter, it reflects a
3.0 percent speedup with four ports and another 0.8 percent
with five ports, while, for a two level filter, 4-port gets a
2 percent speedup and 5-port gets a 0.5 percent speedup
over 4-port. For gshare, it is a 2.9 percent speedup with
4-port and another 0.8 percent performance gain with five
ports. In short, the speedup differences are quite small; in
particular, from 4-port to 5-port, the performance is
improved by less than 1 percent.

5.6 Comparison with a Dedicated Prefetch Buffer

In this section, we evaluate the impact of a dedicated
prefetch buffer with our baseline machine model. All other
configurations are kept intact. The prefetch buffer is
suggested by [24] to reduce L1 cache pollution by storing
prefetched data in a separate buffer. In our experiments, the
prefetch buffer is fully associative with 16 entries. We only
show the results using the single level prefetch filter since
the other two prefetch filters yield similar results. We
consider six scenarios:

1. no filter, no prefetch buffer,
2. no filtering and the prefetch buffer is used for

reducing cache pollution,
3. one level PA-based prefetch filter without prefetch

buffer,
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1. Our processor model does not differentiate read ports and write ports.
All ports are universal for either reads or writes. The prefetch queue
competes for these L1 ports.

Fig. 15. Comparison of the normalized bad/good prefetch ratio for a

gshare prefetch filter with different BHR sizes.

Fig. 16. Comparison of normalized IPC for a gshare prefetch filter with

different BHR sizes.



4. one level PA-based prefetch filter with prefetch
buffer, i.e., all prefetches go to the prefetch buffer,

5. one level PC-based prefetch filter without prefetch
buffer, and

6. one level PC-based prefetch filter with prefetch
buffer.

Fig. 19 shows the bad/good prefetch ratio for the six

cases. Surprisingly, with only the prefetch buffer, the ratio is

even worse. This is probably because aggressive prefetching

can cause severe competition to the prefetch buffer; most

prefetches are evicted quickly without actually being

accessed. On the other hand, a prefetch buffer is fully

associative, so its size cannot be too big, which becomes

ineffective for aggressive prefetchers. Besides, unlike pre-

fetch filtering, a prefetch buffer cannot reduce the prefetch

traffic, which means the resource competition to the

memory subsystem and cache ports remains unchanged.
Moreover, our experiments also show that, for aggres-

sive prefetching, a small dedicated prefetch buffer is less

effective if combined with our pollution filters because the

prefetch buffer is not able to accommodate a a large number

of prefetches and frequently causes early eviction of

prefetched blocks. For most of the programs, adding a

dedicated prefetch buffer degrades the effectiveness of the

pollution filters. In Fig. 19, the bad/good prefetch ratio

increases by about 0.05 for PA-based filter and 0.08 for PC-

based filter.
In Fig. 20, the IPC numbers concur that no filtering but

with prefetch buffer leads to the worst performance. It

causes an 11.3 percent slowdown compared with the one

without a prefetch buffer. Also, adding a dedicated prefetch

buffer on top of our prefetch filters penalizes performance.

On average, the IPCs are 1.68, 1.49, 1.82, 1.66, 1.83, and 1.66
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Fig. 17. Comparison of the normalized bad/good prefetch ratio for a different number of L1 ports.

Fig. 18. Comparison of the normalized IPC for a different number of L1 ports.

Fig. 19. Bad/good prefetch ratio comparison with prefetch buffer.



for the six cases, respectively. In other words, the
performance loss for prefetch buffer only (no filter) ranges
from 9 percent to 19 percent, while adding the prefetch
buffer on top of the PA-based and the PC-based filter causes
a slowdown of 9 percent and 10 percent, respectively. Note
that gcc is almost unaffected due to the small absolute
numbers of both bad and good prefetches.

5.7 Sensitivity Study for Prefetch Accuracy

In this paper, we include three prefetchers, one software-
based prefetcher and two hardware-based ones, i.e., NSP
and SDP. Their prefetch accuracies (as a rough estimation, it
can be derived from the bad/good prefetch ratios) are quite
different. Here, we conduct a sensitivity study for the
prefetch accuracy across the three prefetchers. The three
prefetchers are separately examined such that we can
evaluate the effectiveness of our prefetch filters with regard
to the accuracy of each prefetcher. For brevity, we only look
at a single level prefetch filter because the other two
prefetch filters behave similarly in our evaluation. We first
perform all prefetches without filtering, then apply the one
level PA-based filter. The bad/good prefetch ratios are
separately reported for the three prefetchers.

Fig. 21 illustrates six cases. Due to the wide range of
values, the Y-axis is plotted on a log scale. Before delving

into the details, it is necessary to report the distribution of
prefetches across the three prefetchers. Roughly, when no
filtering is applied, software prefetches account for 5 per-
cent, while NSP and SDP consist of 80 percent and
15 percent. From Fig. 21, prefetch filtering only reduces
the ratio slightly for a software-based prefetcher (6.2 percent
on average). Conversely, the reductions for NSP and SDP
are much higher. On average, NSP receives a 91.2 percent
reduction and SDP receives 40.2 percent.

Overall, prefetch algorithms with higher accuracy
typically lead to worse performance for pollution filtering.
This is because a highly accurate prefetcher leaves little
space for the prefetch filter to improve the bad/good
prefetch ratio. For advanced features, our pollution filter
can be made adaptive to start filtering when the prefetching
becomes too aggressive (with low accuracy).

6 CONCLUSIONS

This paper proposes a number of hardware-based prefetch
pollution filtering mechanisms that can significantly reduce
the number of bad prefetches (over 90 percent) for
processors implementing aggressive hardware and soft-
ware prefetching. We evaluate three flavors of prefetch
pollution filter design, including a single level, a two level,
and a gshare style filter. In addition, we also evaluate a
different indexing method based on cache line address (Per-
Address-based) or program counter (PC-based). The major
advantage of employing a cache pollution filter hardware is
to enable an architecture to encompass several prefetching
techniques, together with a dynamic filtering capability to
maintain the performance edge. Excessive but ineffective
prefetches causing performance degradation are filtered out
by the hardware-based pollution filter. We quantified our
approach through simulations and showed that our
technique mitigates L1 data cache pollution while reducing
the prefetch traffic that compete for the limited number of
the L1 cache ports and finite bus bandwidth. As a result, the
IPC, on average, could be improved by up to 16 percent for
different L1 cache sizes with respect to a machine without
any filtering mechanism. We also analyzed and demon-
strated the hardware overheads to implement the filter.
Basically, the history table size can be kept small (e.g., 1KB
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Fig. 20. IPC comparison with prefetch buffer.

Fig. 21. Bad/good prefetch ratio comparison for prefetchers with different accuracy.



for some benchmarks), while the overhead for the L1 cache

is very insignificant as the flags for enabling other hardware

prefetching algorithms can be reused. In addition, a number

of sensitivity tests are experimented with to help under-

stand our prefetch pollution filters thoroughly.
In conclusion, the prefetch pollution filter offers an

effective hardware solution with affordable overheads that

can improve performance by dynamically controlling the

number of bad prefetches generated from overly aggressive

prefetching schemes. Given that the L1 cache is getting

smaller in the emerging deep submicron processors, our

solution provides a means to utilize the limited on-chip

resources more intelligently and effectively.
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