
46

Integrated Microarchitectural Floorplanning and Run-time Controller
for Inductive Noise Mitigation

MICHAEL B. HEALY, IBM Corporation
FAYEZ MOHAMOOD, The MathWorks
HSIEN-HSIN S. LEE and SUNG KYU LIM, Georgia Institute of Technology

In this article, we propose a design methodology using two complementary techniques to address high-
frequency inductive noise in the early design phase of a microprocessor. First, we propose a noise-aware
floorplanning technique that uses microarchitectural profile information to create noise-aware floorplans.
Second, we present the design of a dynamic inductive-noise controlling mechanism at the microarchitectural
level, which limits the on-die current demand within predefined bounds, regardless of the native power and
current characteristics of running applications. By dynamically monitoring the access patterns of microarchi-
tectural modules, our mechanism can effectively limit simultaneous switching activity of close-by modules,
thereby leveling voltage ringing at local power-pins. Compared to prior art, our di/dt alleviation technique
is the first that takes the processor’s floorplan, as well as its power-pin distribution, into account to provide
a finer-grained control with minimal performance degradation. Based on the evaluation results using 2D
floorplans, we show that our techniques can significantly improve inductive noise induced by current demand
variation and reduce the average current variability by up to 7 times, with an average performance overhead
of 4.0%. In addition, our floorplan reduces the noise margin violations using our noise-aware floorplan by an
average of 56.3% while reducing the decap budget by 28%.

Categories and Subject Descriptors: B.7.2 [Integrated Circuits]: Design Aids—Placement and routing

General Terms: Design, Reliability

Additional Key Words and Phrases: Floorplanning, microarchitecture, power supply noise

ACM Reference Format:
Healy, M. B., Mohamood, F., Lee, H.-H. S., and Lim, S. K. 2011. Integrated microarchitectural floorplanning
and runtime controller for inductive noise mitigation. ACM Trans. Des. Autom. Electron. Syst. 16, 4, Arti-
cle 46 (October 2011), 25 pages.
DOI = 10.1145/2003695.2003706 http://doi.acm.org/10.1145/2003695.2003706

1. INTRODUCTION

High-performance, power-conscious microprocessors exhibit varying current demands,
depending on the execution characteristics of a given program. For a high-frequency
microprocessor, any abrupt change in current demand (referred to as dI/dt) will result
in high-frequency inductive noise that leads to voltage ringing in the power-supply
network. In the worst case, unreliable supply voltage can flip data values, resulting
in incorrect computation. Processors are often over-designed, with the use of excessive

This work is supported by the National Science Foundation under CAREER grant CCF-0546382, the Center
for Circuit and System Solutions (C2S2), and the Interconnect Focus Center (IFC).
Author’s addresses: M. B. Healy, IBM Research, Yorktown Heights, NY; email: mbhealy@gatech.edu;
F. Mohamood; email: fayez.mohamood@gmail.com; H.-H. S. Lee, School of Electrical and Computer En-
gineering, Georgia Institute of Technology; email: leehs@ece.gatech.edu; S. K. Lim, School of Electrical and
Computer Engineering, Georgia Institute of Technology; email; limsk@ece.gatech.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2011 ACM 1084-4309/2011/10-ART46 $10.00

DOI 10.1145/2003695.2003706 http://doi.acm.org/10.1145/2003695.2003706

ACM Transactions on Design Automation of Electronic Systems, Vol. 16, No. 4, Article 46, Pub. date: October 2011.

46:2 M. B. Healy et al.

amounts of decoupling capacitors (decap) to address this reliability issue. For increas-
ingly complex processors, inserting an excessive amount of decaps enlarges the chip
area and, at the same time, exacerbates the leakage power problem. Moreover, sig-
nificant design effort and cost is inevitably expended to manage the infrequent cases
where programs exhibit the maximum level of varying current demands during the
course of execution.

Traditional technology scaling has exacerbated the problem as well. Decreasing sup-
ply voltages reduce the absolute noise margin, and increasing transistor counts and
higher frequencies result in more power dissipation. Aggressive power-saving tech-
niques like clock-gating and/or power-gating are widely studied and applied. Proces-
sors such as the Intel Pentium 4, Pentium M, and IBM Power5 [Jacobson et al. 2005]
use different levels of clock-gating to dynamically disable portions of the circuit. The
industry has acknowledged the dI/dt issue due to the extensive application of clock-
gating and responded with architectural solutions. For instance, the L2 cache in the
Power5 processor uses progressive clock-gating in different cache banks to mitigate the
dI/dt effect [Jacobson et al. 2005].

Conventionally, the worst-case current consumption can be profiled and gauged by
exercising power virus programs [Grochowski et al. 2002]. These programs are writ-
ten expressly to vary the execution behavior of the microprocessor to induce drastic
current-demand fluctuations. Designers then allocate an appropriate amount of decap
to manage these worst-case fluctuations in a repetitive process until the reliability tar-
gets are met. The main drawback of this design technique is that a significant amount
of chip area is devoted to these decaps, which only cover those infrequent corner cases.
For example, the designers of the Alpha 21264 reported that roughly 15 to 20% of the
die area is occupied by decaps.

To address these shortcomings in the worst-case design methodology, we advocate
a design procedure that builds inductive noise awareness into the complete processor
design cycle. Our proposed methodology involves two components. The first component
involves using microarchitectural feedback to perform noise-aware floorplanning. With
this floorplanner, we introduce the following innovations.

—Two metrics called self-switching weight and correlated switching weight for identi-
fying modules that are highly likely to cause large dI/dt problems.

—A simulated-annealing-based floorplanning algorithm that incorporates microarchi-
tectural feedback for module placement. Combined with dynamic control at the mi-
croarchitectural level to eliminate the worst-case scenario, it enables designers to
focus on the average-case current variability.

Our floorplanner allows the design of a floorplan that is inherently noise-tolerant.
However, it still cannot guarantee reliable operation during the worst-case noise sce-
nario. To prevent the worst-case scenario, we also introduce a low-cost dI/dt control-
ling mechanism embedded in the microarchitecture that will dynamically limit high-
frequency dI/dt. This design can be integrated into the microarchitecture during the
early planning stages to facilitate the design of a processor for the average-case current
consumption scenario. This dynamic dI/dt controller is the second component of our
design methodology, which features the following:

—Decay counters used as a simple mechanism to monitor the access pattern of each
microarchitectural module to prevent unsteady self-switching activity.

—A novel microarchitectural technique using a queue-based dynamic dI/dt controller
to prevent simultaneous (or correlated) Gating of modules that share the same local
power-pins on the power delivery network.

ACM Transactions on Design Automation of Electronic Systems, Vol. 16, No. 4, Article 46, Pub. date: October 2011.

Integrated Microarchitectural Floorplanning 46:3

—Preemptive ALU gating that is integrated into our queue-based dynamic dI/dt con-
troller to avoid performance loss and further reduce high-frequency dI/dt noise.

—An enhancement that performs progressive clock-gating to achieve fine-grained dI/dt
control for large modules without violating the current demand threshold.

Unlike prior techniques [Grochowski et al. 2002; Joseph et al. 2004; Pant et al. 2000;
Powell and Vijaykumar 2003, 2004], which largely aim to provide chip-level dI/dt con-
trol, our technique monitors and controls dI/dt by leveraging the spatial information
of modules obtained from a given floorplan and its power-pin distribution. This is the
primary reason why our floorplanning algorithm and dynamic controller compliment
each other perfectly. Inductive noise is highly dependent on the chip floorplan, which
determines the relative location of functional modules and their distance from the
power-pins. Hence, a solution at the chip-level is too coarse-grained and cannot ac-
count for the fact that certain power-pins are unaffected by a distant module. For the
same reason, such designs are also likely to generate many false alarms, resulting in
undesired performance degradation. In contrast, by guaranteeing the prevention of si-
multaneous gating of modules that share the same power-pins, our proposed technique
can accurately limit the current demands to be within designated bounds.

2. RELATED WORK

Power supply noise-aware floorplanning has been studied in the past [Zhao et al.
2002; Chen et al. 2005; Minz et al. 2006] by the design automation community. The
central idea of these works involves two concepts: the first one focuses on creating
a low-impedance path to the power supply, and the second involves optimizing on-
chip decap placement and allocation to suppress inductive noise effects. Additionally,
minimizing on-chip decap requirements is important for several reasons. The current
leaked by the MOS transistors used to implement decaps increases power consumption
and causes additional thermal problem for modern designs. Decaps can also cause
wiring congestion and take up silicon area. Lu et al. [2008] proposes a floorplanning
algorithm that inserts decaps during optimization in order to minimize the required
amount of decap. The floorplanning algorithm used in this work, and presented in
Section 5, optimizes decap requirements after the floorplanning optimization algorithm
has run. Additionally, the main focus of this work is to develop a floorplanning algorithm
that expressly works with the dynamic noise controller, explained in Section 4.

In contrast to most prior art, we advocate a methodology that takes inductive noise
issues, into account early in the architecture planning phase of design. By analyzing
the microarchitectural behavior of real workloads, we exploit module placement in the
floorplanning process to create a design that is inherently more tolerant to inductive
noise than a conventional wirelength-driven floorplan. There are a few works that
consider power-supply-noise optimization at both the architectural and physical de-
sign levels. For example, [Chen et al. 2005] focuses on functional units. The authors
propose an architectural-level functional unit selection scheme and find an optimal
functional unit floorplan ordering that minimizes power-supply noise and decap de-
mand. In contrast, our work demonstrates minimization of power-supply noise for the
entire architecture and chip, and could be used in concert with their technique. The
only other prior effort that includes early-design-phase consideration of power-supply
noise [Mohamood et al. 2007] does not directly consider the use of a dynamic controller.
A comparison to this work is included in Section 6.

The microarchitecture community has also recently paid notable attention to dI/dt
issues, due largely to the use of power-saving techniques like clock-gating. Several
publications [Grochowski et al. 2002; Joseph et al. 2004; Powell and Vijaykumar
2004] have proposed hardware-based microarchitectural solutions as well as hybrid

ACM Transactions on Design Automation of Electronic Systems, Vol. 16, No. 4, Article 46, Pub. date: October 2011.

46:4 M. B. Healy et al.

Fig. 1. The design flow used in this work.

hardware/software techniques [Hazelwood and Brooks 2004]. Different from the pre-
ceding, mentioned work tackling the mid-frequency dI/dt issue (50-100HMz), the focus
of this article is to mitigate high-frequency dI/dt that requires immediate response, for
which the solutions just mentioned are inappropriate. Toward this effort, Powell and
Vijaykumar proposed pipeline muffling [Powell and Vijaykumar 2003], which controls
instruction issues and limits the use of resources for the high-frequency dI/dt concerns.

Note that the cause of high-frequency dI/dt is highly dependent on the spatial distri-
bution of modules across the floorplan and their distance from the power-pins because
of on-chip inductance. We make this conclusion based on the following two results.
First, it has been demonstrated [Zhao et al. 2002] that the current is mainly supplied
by the power-pins nearest to a switching circuit. Second, the ultra-high frequency noise
caused by individual gate transitions is confined to extremely small areas [Pant et al.
2007], and should not affect the chip-level supply noise. Together, these observations
imply that the supply noise resulting from both the timescale and size of current de-
mand changes related to clock-gating are of utmost importance to distribution network
reliability. Finally, high-frequency dI/dt is not only dependent on a given module’s self-
activity, but also correlated to gating events that stress nearby power-pins. None of the
existing work accounts for this fact, which could result in current demand violations
or false alarms.

3. UNIFIED DESIGN METHODOLOGY

3.1. Design Flow

An overview of this work’s design flow is shown in Figure 1. The input to the
flow is an architectural description and a set of benchmark programs. The size of
each module in the floorplan is estimated using GENESYS [Eble et al. 1996] and
eCACTI [eCACTI]. The flow begins with cycle-level microarchitectural simulation us-
ing SimpleScalar [Austin et al. 2002] and integrated power consumption estimation
using Wattch [Brooks et al. 2000]. During this simulation, the power consumption of
each microarchitectural block, and its switching activity, are collected on a per-cycle ba-
sis. This collection is done with the dynamic noise controller inactivated. The switching
activity factors are then used to optimize the floorplan. A large number of candidate
floorplans are generated and stored during the floorplanning phase. Finally, decap
planning is used to select the best among the candidate floorplans. This best floorplan
is used to report our results.

The next steps in power-supply planning include final determination of the number
and location of the power-supply pins. The most important considerations at this stage
are to maintain supply currents below the limits of the C4s and to minimize IR-drop.
In high-power designs that are near the limit of the technology may require several
iterations. Existing optimization algorithms [Sato et al. 2005; Zhao et al. 2006] may
be used. In extreme cases, the floorplan may need to be adjusted. In this work we
assume that the supply-pin locations are given before the floorplan is optimized, and
are located in a regularly alternating pattern between power and ground.

ACM Transactions on Design Automation of Electronic Systems, Vol. 16, No. 4, Article 46, Pub. date: October 2011.

Integrated Microarchitectural Floorplanning 46:5

3.2. Architectural Profiling

Architectural profiling is done using SimpleScalar, a cycle-level microarchitectural sim-
ulator. This work assumes aggressive and coarse-grained (module-by-module) clock gat-
ing on a cycle-by-cycle basis. Two statistics are collected about each module, namely, the
self-switching weight and the correlated switching weight. The self-switching weight
is a normalized measure of how often a block changes power state and the correlated
switching weight is a normalized measure of how often a pair of blocks switch power
states in the same direction during the same cycle. Highly correlated blocks are likely
to cause power noise problems, and so should be placed far from each other in a noise
optimized floorplan.

3.3. Floorplanning

This work uses simulated annealing based on the sequence pair [Murata et al. 1998]
floorplan representation. Floorplanning can impact noise problems in a power dis-
tribution grid by moving noisier blocks both away from each other and closer to the
power-pins. A longer current-delivering path between a power-pin and a noisy block
will lead to more noise for that block’s neighbors and for itself, due to the increased
inductance in the longer path to the power-pin. Additionally, if the architecture utilizes
a dynamic controller that is floorplan-aware, as in this work, then it is possible to opti-
mize the operation of that controller by providing it with a well-formed floorplan. This
work uses a new annealing cost function that specifically targets two sources of noise,
as well as the physical basis of the dynamic noise-control algorithm. More details are
provided in Section 5.1.

3.4. Decoupling Capacitor Planning

Large amounts of decoupling capacitors (decaps) are used to reduce inductive noise in
modern designs. This work uses a network-flow-based approach [Wong et al. 2006] to
perform decap planning. The planning algorithm is used to select the best among a large
group of low-cost (according to the cost function) floorplans found during annealing.
The network-flow algorithm is used to analyze how much decap each of the floorplans
requires. The floorplan with the smallest requirement is chosen as the overall best. All
white space in the floorplan is occupied by decaps.

3.5. Run-time Noise Controller

Clock-gating at the microarchitectural level is used extensively to control the total
dynamic power dissipation of modern processors. In this work, a dynamic noise con-
troller based on a floorplan-aware set of queues is implemented to address the noise
problems created by clock-gating. Each queue in the controller is based on modules
close to each other in the floorplan, and thus likely to cause noise problems for the
other modules in the queue. The controller prevents modules within the same queue
from switching in the same cycle, and each module’s request to power-off is limited by
a decay counter. The decay counter prevents modules that are used regularly, but not
continuously, from rapidly switching on and off in a short time-frame. The worst-case
noise scenario is when all modules attempt to switch simultaneously from one power
state to another. The dynamic controller is designed to eliminate occurrences of this,
and other less severe, noise behavior. The run-time noise controller is detailed in the
next section.

4. QUEUE-BASED DYNAMIC DI/DT CONTROLLER

The design of our dynamic dI/dt controller is presented in this section. The controller
is intended to address inductive noise issues caused by excessive clock-gating by

ACM Transactions on Design Automation of Electronic Systems, Vol. 16, No. 4, Article 46, Pub. date: October 2011.

46:6 M. B. Healy et al.

L1 Instruction Cache

0

1

1 51 101 151 Cycles

Integer Register File

0

1

1 51 101 151 Cycles

Integer ALU

0

1

1 51 101 151 Cycles

Branch Predictor

0

1

1 51 101 151 Cycles

Power
Saving
Window

Fig. 2. Module access patterns.

improving the current-demand profile regardless of program behavior. Our design
is easily customizable to enable a given design to achieve the right balance among
dynamic dI/dt control, power consumption, and performance overhead. The primary
components of the dI/dt controller are the following:

—A low-overhead modular decay-counter-based clock-gating mechanism. The objective
of the decay counters is to throttle excessive self-gating activity of modules.

—A floorplan-aware clock-gating queue that selectively disables simultaneous switch-
ing of modules in the same direction. The queue-based controller is designed to limit
the maximum current surge or dip for a given set of power-pins shared by several
modules on the power supply grid.

—Pre-emptive activation of ALUs through predecoding for simultaneous dI/dt and
performance enhancement.

—An enhancement to the queue controller that enables progressive clock-gating on
large modules, such as L2 cache banks.

4.1. Decay-Counter-Based Clock-Gating

The key to avoiding clock-gating induced noise lies in identifying program phases
to determine whether clock-gating activity will impact power-supply reliability. Al-
though certain elaborate techniques can accurately predict module requirement pat-
terns, clock-gating requires low-overhead mechanisms to justify the extra hardware
cost [Li et al. 2004]. We propose the use of decay counters to enable a low-overhead,
dynamic clock-gating scheme that provides a tunable form of dI/dt control. By using
low-resolution decay counters to monitor module access patterns, we can choose to save
power only during longer stretches of inactivity.

To illustrate this, we provide an example that quantifies fine-grained module access
patterns for select modules over a small simulation period in Figure 2. The figure
shows an example of an access pattern profile for the branch predictor, the L1 I-cache,
an integer ALU, and the integer register file for the 256.bzip benchmark. The 200-cycle
interval is shown in the figure to illustrate the potential high-frequency dI/dt effects
from a fine-grained perspective. It is observed that typically a module that is inactive
for more than 10 to 12 cycles is likely to remain dormant for an extended period of

ACM Transactions on Design Automation of Electronic Systems, Vol. 16, No. 4, Article 46, Pub. date: October 2011.

Integrated Microarchitectural Floorplanning 46:7

time. Clearly, there is a threshold cycle count beyond which a module can be reliably
gated-off with the least likelihood of encountering high-frequency inductive noise. On
the other hand, it can be seen that when a module remains unaccessed for less than 5
to 10 cycles, it is highly likely to be accessed again soon.

To exploit this behavior, a decay counter is employed to enable clock-gating activity
only when a minimum turn-off threshold has been exceeded. We use a 4-bit decay
counter for each microarchitectural module inside the processor. The decay counters
only permit clock-gating of a module if it has not been accessed during the last 16
cycles. For any given module, the counter decays every cycle unless there is an access
made to that particular module, in which case the decay counter is reset back to the
maximum.

The resolution of the decay counter provides the tradeoff between high-frequency
inductive noise control and power dissipation. A large decay counter will further smooth
out current spikes over time, but at a cost of higher average power consumption due
to the fact that modules will be gated-off only after a long interval of inactivity. The
opportunity for power saving is also dependent on the module access pattern. As shown
in Figure 2, certain modules, such as the branch predictor or I-ALU, exhibit larger
potential for power savings than others that display high activity, like the integer
register file.

4.2. Dynamic dI/dt Controller Architecture

Even though the decay counters can provide a smoother current profile for each module
by eliminating unwanted switching activity, they are inherently incapable of avoiding
dI/dt issues caused by simultaneous gating of modules that share common power-pins.
To address these shortcomings, we propose a queue-based controller that is aware of
the processor’s floorplan and power-pin distribution. In the processor’s power-delivery
network, a module usually draws more current from spatially nearby power-pins, in
other words, following the path(s) with the lowest impedance. Consequently, adjacent
modules, if they switch simultaneously in the same direction, will unreliably stress
local power-pins. Therefore, to guarantee the maximum current ramp at any given
time, it is necessary to be able to dynamically alter simultaneous gating of modules
that are likely to stress the same power-pin(s). The proposed queue-based controller
is designed to overcome unreliable simultaneous switching of adjacent modules. The
salient features of the controller are as follows.

—A static queue with an entry for each module sharing the same power-pin domain.
Ideally, there will be no more than eight entries in a queue, resulting in a 3-bit
module identification number that is local to each queue.1

—Every queue entry contains the corresponding state of the matching module, which
indicates either the current state or any requested clock-gating transition event. This
will require 2 bits for the ON/OFF states as well as the ON→OFF and OFF→ON
transitions. The state is used to drive the prewired clock-gating signals to the corre-
sponding modules.

—Every queue entry that represents a module also has an associated integer weight
that is proportional to the current consumed by the corresponding module. We use
a two bit integer to represent one of the four different current consumption levels.
Since weights are used to compute and check for current demand violations, integer
weights are appropriate for faster current demand calculations. Fast calculations are
essential for quick response to high-frequency dI/dt events.

1The number of entries are limited to minimize the performance loss, as explained in Section 4.2.

ACM Transactions on Design Automation of Electronic Systems, Vol. 16, No. 4, Article 46, Pub. date: October 2011.

46:8 M. B. Healy et al.

Module State/Transition Weight
I-Cache ON 3
Bpred OFF ON 2
ALU-1 OFF ON 1
ALU-2 OFF 1
ALU-3 OFF 1

Module Decay
I-Cache 4
Bpred 16
ALU-1 1
ALU-2 0
ALU-3 0

ALU Instruction
Pre-decoder

&0

0

0

&0

0

0

&0

0

0

To Pipeline Stall Logic
Pipeline throttling logic is needed for

every pipeline-stage based on
necessary modules.

Clock-Gate Enable Signal
As shown, the queue drivers pre-
wired clock-gate logic signals for
modules in the same power-pin

domain.

Pre-emptive ALU Gating
Prevents unnecessary ALU

gating through instruction pre-
decode

Module Decay Counters di/dt Queue Controller

Power-Pin

Chip Floorplan

Access Pattern
Feedback

Bpred

I$

ALU-3

ALU-2

ALU-1

Fig. 3. Noise controller architecture.

A simplified version of our high-frequency dI/dt controller architecture is depicted
in Figure 3. The “+” signs on the chip floorplan (left side) indicate the power-pin lo-
cations. For simplicity, we illustrate only four power-pins. The queue-based controller
works in the following manner. The decay counters will signal a transition event, that
is, ON→OFF for a given module in the queue. Let � be the current demand threshold
that is permitted for a given power-pin domain. At any given time, a head pointer is
always pointed to one single module in the queue. Every cycle, the queue is traversed by
a window size which has a total weight of �. The value of � is the largest sum of weights
of consecutive modules that are in the transition states (ON→OFF or OFF→ON), such
that � ≤ �. Since integer weights can be negative as well,2 the sliding window will
attempt to permit the maximum allowed transitions without violating the maximum
current demand constraint.

To better understand the dI/dt queue-controller mechanism, we use an example based
on the instantaneous state of the controller, as shown in Figure 3. Let us assume that
the value of the current demand threshold is, � = 3. In the figure, ALU-2 and ALU-3
are gated-off (indicated by the bold arrow that is the output of the queue controller).
Both Bpred and ALU-1 have an activation request indicated by the OFF→ON state.
Therefore, the combined weight of the sliding windows, � = 3.3 The queue-controller
will therefore permit both module-gating events to occur, since the threshold constraint
is not violated in this case. After servicing the transition, the head pointer will traverse
two entries and point to the ALU-2 entry in the queue. In contrast, consider an alternate
case where ALU-1 had a higher weight that resulted in the weight of the sliding window
to exceed the current threshold budget. In this case, only the Bpred transition will be
serviced by the queue-controller. Also, the head pointer will traverse only one module
entry to ALU-1, so that it can be serviced in the next cycle. Furthermore, consider yet
another example where ALU-1 requires an ON→OFF transition, which represents a

2OFF→ON is a positive switch, while ON→OFF represents a negative switch.
3Please note that in a real implementation, the sliding window will have an upper limit in terms of how
many modules weights can be computed in a given cycle.

ACM Transactions on Design Automation of Electronic Systems, Vol. 16, No. 4, Article 46, Pub. date: October 2011.

Integrated Microarchitectural Floorplanning 46:9

negative weight. In this case, � = 1, thus still permitting both Bpred and ALU-1 to
perform their transitions. However, the sliding-window value will still be below the
threshold, �—and the queue-controller can potentially gate the next ALU-2 module
if it requires a transition. These examples are provided to illustrate how the sliding
window adjusts dynamically, based on the worst-case current demand that can be
sustained in a given power-pin domain.

The example dI/dt queue in Figure 3 shows the modules in descending order of
weight. Note that the dI/dt controller will enforce the current demand threshold re-
gardless of the order of the modules in the queue. However, the ordering of modules
does affect the performance, overhead imposed by the design. For instance, clustering
modules in the queue that have high weights will create a larger performance overhead,
since multiple modules will not be permitted to transition because they consistently
violate the current demand threshold. The ordering of modules in the queue is static
and presents a design choice that needs to be made by an architect for a given floorplan.

Also, note that the queue in our dI/dt controller is different from a typical queue
structure like the instruction fetch queue, a memory structure allocated at run-time.
In contrast, the entries in the dI/dt controller queue are prewired for each module
at design time in order to simplify the logic for driving clock-gating signals directly
to the modules.4 Functionality-wise, the controller behaves like a circular queue that
traverses as many modules as determined by the sliding-window threshold. Note that
the maximum hardware overhead of each microarchitectural module is merely 11 bits
(including the decay counter). This is rather negligible in terms of additional power
dissipated and extra current drawn by the controller itself.

4.3. Preemptive ALU Gating

Preemptive ALU clock-gating through predecoding instructions is another technique
we propose to prevent unnecessary gating activity. Decay-counter-based clock-gating
allows gating events to occur based on the history of module accesses. However, de-
cay counters by themselves will be unable to predict the future switching activity of
modules. For instance, it will be detrimental to performance if an ALU is going to be
gated-off due to a saturated decay-counter, when in fact an incoming ALU instruction
has just been fetched. Furthermore, if an ALU instruction is on its way, it makes sense
to leave the unit “on,” even from a dI/dt perspective. To achieve this goal, we include
preemptive turn-on gating of ALU modules by predecoding instructions. In a typical
RISC ISA, the opcode can be determined by observing the first few bits of the instruc-
tion,5 allowing us to predecode this information simultaneously with the instruction
fetch. In the case that an ALU instruction has been detected early on, it is used to
override the decay-counter turn-off request. In CISC ISAs, it might not be possible to
easily perform a simple predecode due to variable-length instructions, but even in this
case, other techniques, such as storing predecode information in the L1 instruction
cache [Austin and Sohi 1995], can be used to achieve this effect.

This technique is similar to deterministic clock-gating (DCG) proposed by Li et al.
[2004], in that we predict the necessity of ALU units in the near future based on the
most recently fetched instructions. However, the application is different in our case.
The goal of DCG is to reduce power dissipation in units by predicting the necessity for
those units. In our scheme, we use the preemptive ALU-gating knowledge to prevent
unnecessary clock-gating of units that could result in dI/dt violations.

4Since the queue entries are prewired to the clock-gating output, it is possible to apply certain heuristics
to the order of modules in the queue with asymmetric weights, in order to permit the maximum possible
number of transitions at any given time. Such optimizations, however, are out of the scope of this work.
5For example, Alpha and PowerPC ISA uses the prefix 6 bits for the opcode.

ACM Transactions on Design Automation of Electronic Systems, Vol. 16, No. 4, Article 46, Pub. date: October 2011.

46:10 M. B. Healy et al.

4.4. Enhanced Progressive Gating of Large Modules

Simultaneous power-state-switching of multiple modules can be prevented completely
by selective gating. However, some monolithic modules like the L2 cache can still con-
sume large amounts of current, resulting in unreliable voltage swings. For this reason,
certain processors employ progressive gating of large modules, like the L2 cache, in or-
der to mitigate dI/dt effects [Jacobson et al. 2005]. However, ad-hoc progressive gating
does not prevent other adjacent modules from switching simultaneously, and can still
result in unreliable dI/dt surges. To counteract this issue, our queue-based controller
can be used to generate multiple clock-gating domains for even a single monolithic
module by merely replicating multiple entries for a module with smaller weights. For
instance, for a banked L2 cache, there can be as many entries as the number of banks
within the queue with proportionally lower weights.6 Since the queue inherently throt-
tles simultaneous switching activity, it presents a much more effective progressive
gating mechanism than current solutions. Thus, the queue-based controller can enable
efficient progressive gating of such modules while maintaining the current demand
below the noise-tolerant threshold, which is set to mitigate negative simultaneous
switching effects.

4.5. Pipeline Design Implications

The use of any dynamic dI/dt controller requires an appropriate performance-throttling
mechanism to guarantee program correctness, even if certain necessary processor com-
ponents are unavailable when needed. For instance, the instruction scheduler needs to
be accurately aware of the ALU availability before issuing operations. The integration
of a dI/dt controller into a conventional architecture will require the pipeline logic to be
fully aware of the clock-gating state of the modules in order to issue operations without
affecting correctness. For this reason, it is essential that the dI/dt controller not impose
impractical design requirements on the processor pipeline.

Our queue-based high-frequency dI/dt controller can be easily built into a conven-
tional out-of-order pipeline without significant additional complexity. Conventional pro-
cessor modules are already capable of correctly operating under resource contention.
In the event of resource hazards such as over-subscription of ports in the register file,
caches, or load-store queue, the selection logic will properly delay the issue of certain
operations. As indicated in Figure 3, our queue has static entries and prewired logic
that indicates the availability of any given module. This makes it efficient to integrate
the additional resource availability constraint into an existing selection logic in the
pipeline. Since resource availability can be directly interpreted from the output of the
queue-based controller, an enhanced pipeline with the dI/dt controller merely needs to
ensure that the resource availability constraint overrides all conventional hazards for
correct functionality.

5. NOISE-CONTROLLER-AWARE FLOORPLANNING ALGORITHM

Previous work has addressed the IR drop problem by including decap considerations
during the floorplanning process. Other work has independently addressed the coupled
dynamic inductance noise problem by separating blocks that switch during the same
cycle. This is the first work to combine both direct IR drop considerations and LdI/dt
dynamic noise considerations with dynamic-controller awareness during floorplanning.
This is accomplished through the combination of a novel design flow and a new cost
function. It should be noted that the term “switching activity” refers to changes in a
clock-gated power state, and not transistor-based switching.

6Typically, L2 cache banks are in separate clock-gating domains.

ACM Transactions on Design Automation of Electronic Systems, Vol. 16, No. 4, Article 46, Pub. date: October 2011.

Integrated Microarchitectural Floorplanning 46:11

5.1. Annealing Cost Function

A new annealing cost function is used that specifically targets two factors affecting
power supply noise, as well as the physical basis of the dynamic noise control algorithm.
There are five terms in the cost function. The first two target traditional physical
design objectives, area (A) and wire-length (W). The third term of the cost function,
I, addresses self-induced inductance and IR drop. Correlated switching factors are
considered in the fourth term, C. The final term, Q, includes consideration of the
dynamic noise control algorithm. The total cost function is given by

Cost = α · A+ β · W + γ · I + δ · C + ε · Q

where, α, β, γ , δ, and ε are weighting constants. In this work the values for the weighting
constants were empirically determined to be 1, 0.2, 0.5, 0.5, and 0.025 for α, β, γ , δ, and
ε, respectively. The first two terms are defined in the usual way, based on Manhattan
distance and the bounding box of the floorplan. The three final terms, and how they are
used to control the three sources of noise and optimize the performance of the dynamic
noise control algorithm, are described in the following sections.

It should be noted that this work assumes the power-supply C4s are capable of de-
livering a sufficient amount of current without suffering from electromigration effects.
Modern high-performance processor designs are running into this current density limit.
It is possible to combine the algorithms presented in this work with other methods or
additional cost-function terms to ensure that these electromigration current limits are
met. However, the microarchitectural simulator used in this work limits the granular-
ity of the powermap that can be simulated, which constrains our ability to provide a
meaningful analysis of this issue.

5.2. Self-Switching Current

The self-switching current term, I, is defined as follows:

I =
∑

∀i∈B,∀ j∈P

curri · swi · disti, j · regi, j

where B is the set of all blocks; P is the set of all pins; curri is the current requirement
of block i; swi is the self-switching factor of block i; disti, j is the Euclidean distance
between block i and pin j; and regi, j is one if and only if block i is in the current drawing
region of pin j, and zero otherwise. The current drawing region of a pin is defined to
be half the distance to the next nearest pin. Figure 4 shows an illustration of the self-
switching term. Previous work that considered the LdI/dt problem [Mohamood et al.
2007] did not directly consider the IR drop problem. The pin capacity force described in
that work focused on satisfying the current drawing requirements of each pin, pushing
blocks away from pins that were overloaded and pulling them towards pins that were
underloaded. Their work did not weight blocks that needed more current than others.
The self-switching term used in this work, I, considers both the current requirements
of each block and the amount of switching that the block exhibits. It therefore considers
both the IR drop seen by each block as well as the self-induced inductance noise seen by
each block. When blocks are farther away from the pins, the resistance term, R, of the
IR drop is increased. In a complementary fashion, the inductance term, L, of LdI/dt
inductance noise is increased when blocks are farther away from pins. The distance
between pins and blocks that have high current demand and high switching activity is
minimized by minimizing I. Therefore, the IR drop and LdI/dt noise seen by the chip
as a whole is also minimized.

ACM Transactions on Design Automation of Electronic Systems, Vol. 16, No. 4, Article 46, Pub. date: October 2011.

46:12 M. B. Healy et al.

Fig. 4. Illustration of the self-switching-current factor and queue factor cost function terms. For self-
switching current, the higher-weighted (darker) blocks, based on current demand and switching activity,
are drawn to the power-pins more strongly. For the queue factor, each quadrant of the chip has a different
queue. Only modules within the same queue are given a weighted cost function bonus based on their corre-
lated switching activity and current demand. Queues are defined spatially, and blocks have no movement
restrictions during annealing.

Table I. Self and Correlated Switching Weights of Modules for a Sample Benchmark

LSQ RUU BTB L2$ IRF L1D$ ALU0 ALU1 ALU2 ALU3 ALU4 ALU5 L1I$ Bpred DTLB ITLB FALU0 FALU1 Freg
LSQ 28 0 20 13 20 2 10 10 10 10 10 10 11 20 0 11 10 10 12
RUU 0 26 8 4 13 2 0 0 0 0 0 0 5 8 2 5 0 0 5
BTB 20 8 18 7 29 17 13 13 13 13 13 13 37 100 17 37 13 13 13
L2$ 13 4 7 16 14 28 12 12 12 12 12 12 21 7 26 21 4 4 7
IRF 20 13 29 14 10 17 7 7 7 7 7 7 23 29 17 23 8 8 24

L1D$ 2 2 17 28 17 7 6 6 6 6 6 6 11 17 93 11 5 5 6
ALU0 10 0 13 12 7 6 3 100 100 100 100 100 15 13 6 15 66 66 4
ALU1 10 0 13 12 7 6 100 3 100 100 100 100 15 13 6 15 66 66 4
ALU2 10 0 13 12 7 6 100 100 3 100 100 100 15 13 6 15 66 66 4
ALU3 10 0 13 12 7 6 100 100 100 3 100 100 15 13 6 15 66 66 4
ALU4 10 0 13 12 7 6 100 100 100 100 3 100 15 13 6 15 66 66 4
ALU5 10 0 13 12 7 6 100 100 100 100 100 3 15 13 6 15 66 66 4
L1I$ 11 5 37 21 23 11 15 15 15 15 15 15 3 37 12 100 11 11 5

Bpred 20 8 100 7 29 17 13 13 13 13 13 13 37 3 17 37 13 13 13
DTLB 0 2 17 26 17 93 6 6 6 6 6 6 12 17 2 12 5 5 6
ITLB 11 5 37 21 23 11 15 15 15 15 15 15 100 37 12 1 11 11 5

FALU0 10 0 13 4 8 5 66 66 66 66 66 66 11 13 5 11 1 100 5
FALU1 10 0 13 4 8 5 66 66 66 66 66 66 11 13 5 11 100 1 5
Freg 12 5 13 7 24 6 4 4 4 4 4 4 5 13 6 5 5 5 0

5.3. Correlated Switching Factor

The correlated switching factor term, C, is defined as follows:

C =
∑

∀i, j∈B

curri · currj · corri, j

disti, j
,

where corri, j is the correlated switching activity, described above, between blocks i and
j. The rest of the terms are as defined in Section 5.2: B is the set of all blocks; curri
is the current drawn by block i; and disti, j is the Euclidean distance between blocks i
and j. The minimization of this term maximizes the distance between blocks that have
both high current and often switch simultaneously. If two blocks are positioned near
one another and draw current from the same power-pin, then simultaneous switching
would exacerbate the LdI/dt noise seen by both blocks. An example table of the per-
module correlated switching weights for a sample benchmark is shown in Table I.

ACM Transactions on Design Automation of Electronic Systems, Vol. 16, No. 4, Article 46, Pub. date: October 2011.

Integrated Microarchitectural Floorplanning 46:13

5.4. Dynamic Controller Queue Factor

The dynamic controller queue factor, Q, is defined as follows:

Q =
∑

∀i, j∈B

−(curri · currj · corri, j · qi, j),

where qi, j is one if and only if blocks i and j reside within the same dynamic noise
controller queue, and is zero otherwise. The rest of the terms are as defined above:
B is the set of all blocks; curri is the current drawn by block i; and corri, j is the cor-
related switching activity between blocks i and j. Figure 4 shows an illustration of
the queue factor. The dynamic noise controller is floorplan-aware through the use of
spatially organized queues. Therefore, by specifically optimizing the blocks that occupy
each queue it is possible to optimize the operation of the dynamic noise controller
through physical design. Including this type of optimization into a force-directed ap-
proach would be extremely difficult, which is why this work uses the more flexible
simulated-annealing-based floorplanning approach. The queue factor takes its form
from the correlated switching factor. It adds consideration of current-weighted corre-
lated switching activity to the cost function, based on whether two blocks share the
same queue or not.

The initial motivation behind the form of the queue factor was that we believed
it would be more problematic if highly-correlated blocks resided within the same
queue. Highly correlated blocks should be separated from one another with a large
distance. If those blocks are within the same queue, it is bad, because the queues are
spatially designated, and blocks in the same queue are necessarily close to one another.
Experimentation proved this assumption to be incorrect. Floorplans produced using a
cost function with a positive queue factor (+Q) had uniformly worse power supply noise
than floorplans produced using no queue factor (No Q) at all. However, if the queue
factor is included as a bonus (−Q) instead of as a penalty, the noise characteristics are
improved over a noise-aware-only floorplan. These results are discussed in more depth
in Section 6.4. This behavior can be explained by the fact that no matter how far away
highly correlated blocks are from one another, they are still connected to the same
power distribution grid, and can cause coupled inductive noise by switching simulta-
neously. It is also possible that highly correlated blocks are near one another, but just
slightly over the queue boundary. This scenario would cause noise problems, but be
given a lower cost with a positive queue factor. By adding a negative bonus (−Q) to
the cost function when blocks that are highly correlated reside within the same queue,
the dynamic controller is allowed to deal with the noise problem more effectively.

5.5. Decoupling Capacitor Planning

The floorplanning algorithm described above can produce a floorplan with low cost,
according to the cost function. However, the whitespace of the floorplan will be used for
decaps to reduce the dI/dt-induced voltage swing. The network-flow-based approach
from Wong et al. [2006] is used to perform decap planning in this work. The decap
planning algorithm is used to choose a floorplan that has minimal decap requirements.
The planning algorithm is used to select the best among a large group (in this case,
200) of low-cost (according to the cost function) floorplans found during annealing.
The network flow algorithm is used to analyze how much decap each of the floorplans
requires. The floorplan with the smallest requirement is chosen as the overall best. In
this way, the amount of decoupling capacitance is minimized.

ACM Transactions on Design Automation of Electronic Systems, Vol. 16, No. 4, Article 46, Pub. date: October 2011.

46:14 M. B. Healy et al.

power supply

decaps

modules

Fig. 5. The SPICE circuit used for simulating LdI/dt noise. Voltage supply bumps are positioned at every
other grid point. Decoupling capacitors and modules (current sources) are connected to the nearest grid point
in the floorplan.

5.6. Power Network Analysis

To evaluate the effectiveness of the cost function that is used to guide the dynamic-
noise-controller-aware floorplanning, we use a SPICE model of the on-chip power de-
livery network [Chen et al. 2005]. A depiction of the SPICE model is shown in Figure 5.
The noise-mitigation technique is evaluated using the worst-case current consumption
scenario. The worst-case switching activity of an application is determined by sampling
microarchitectural activity of all modules over the duration of the simulation. By com-
paring module activity during different program phases, the period where the highest
module switching occurs can be determined. Once the worst-case phase is identified,
the current profile of each module is generated from the microarchitectural simulator.
This complex current waveform is used as piecewise linear (PWL) source input to the
SPICE module. Induced noise effects can then be observed as a direct function of the
application’s behavior.

6. EXPERIMENTAL RESULTS

This section describes the experimental techniques and simulation framework used to
implement and evaluate both the dynamic dI/dt control mechanism and the controller-
aware floorplanning algorithm.

6.1. Simulation Framework

Our simulation framework is based on SimpleScalar 3.0 and Wattch [Brooks et al.
2000] running the SPEC2000 INT and FP benchmark suite. To understand the access
patterns of individual modules that motivated the solution of this work, we include
various profiling and instrumentation facilities in our simulator. For the implementa-
tion of the dynamic dI/dt controller, we extended SimpleScalar/Wattch to incorporate
a floorplan-aware queue configuration. We also implemented a detailed, floorplan-
dependent performance-throttling model and queue configuration for studying the per-
formance impact of our technique. The primary simulation parameters used in our sim-
ulations are shown in Table II. The power and current consumption metrics were based
on a 5GHz processor developed using a 70nm process technology. Each simulation was
fast-forwarded by 4 billion instructions and simulated for 1 billion instructions. The
current signatures that were chosen to evaluate the dynamic dI/dt controller represent
the worst-case overall module switching activity over the entire simulation period.

ACM Transactions on Design Automation of Electronic Systems, Vol. 16, No. 4, Article 46, Pub. date: October 2011.

Integrated Microarchitectural Floorplanning 46:15

Table II. The Microarchitecture’s Parameters

Parameters Values
Fetch/Decode width 8-wide
Issue/Commit width 8-wide

Combining: 16K entry Metatable
Branch predictor Bimodal: 16K entries

2-Level: 14 bit BHR, 16K entry PHT
BTB 4-way, 4096 sets

L1 I- and D-Cache 16KB 4-Way 64B line
I- and D-TLB 128 Entries

L2 Cache 256KB, 8-way, Unified, 64B line
L1/L2 Latency 1 cycle / 6 cycles

Main Memory Latency 500 cycles
LSQ Size 64 entries
RUU Size 256 entries

Functional Units 8 IntAlu (only 2 can be used for IntMult)
4 FPAlu (only 2 can be used for FPMult)

6.2. Baseline Floorplanning Methodology

Our baseline-specific floorplan is purely wirelength and area-driven. The baseline floor-
plan is independent of running applications, that is, no profile-guided optimizations
were employed in the floorplanning algorithms. This baseline is compared against the
noise-aware floorplan with the dynamic dI/dt control mechanism in place. The noise-
aware floorplan is always used in conjunction with the dynamic controller because it is
specifically designed to work with the controller. The floorplan obtained, along with the
predefined power-pin distribution, determined the configuration of the queue entries
used in the dynamic dI/dt controller.

6.3. Dynamic dI/dt Controller Results

The basic objective of our dynamic dI/dt controller is to minimize the burden on power-
pin(s) caused by nearby modules. Therefore, for any given floorplan and power-pin
configuration, the design objective of the dI/dt controller is to place queues for effective
dI/dt control in a distinct section of the floorplan. For this work, we divided the floorplan
into four quadrants, with each quadrant representing a distinct power-pin domain.
Note that certain power-pins can be in multiple domains. For instance, quadrant-based
module separation could result in 5 power-pins per quadrant, because the power-pins
on the borders of the quadrants exist in multiple domains. The number of distinct
power-pin domains is a design choice influenced by the degree of dI/dt control that is
required. A high number of power-pin domains results in a larger number of queues
and finer grained control. On the other hand, too few power domains will result in
larger queues impacting performance, due to the fact that the worst-case delay in
transition is higher. For our experiments, queues were assigned to each quadrant and
all the modules placed in that quadrant. Since the floorplan determines the queue
configuration, different floorplans will have different performance impacts as well as
distinctive dI/dt characteristics.

We applied the technique to both the baseline floorplan and the controller-aware
floorplan to evaluate the effectiveness and overhead of our dynamic dI/dt controller
under different scenarios. The results include current profiles on a baseline machine
without a dI/dt controller versus our technique, as well as the average current vari-
ability across all benchmarks. We also present the performance overhead incurred due
to our dynamic dI/dt controller. Finally, we show the thermal impact of the controller,
which is caused by the additional power dissipated by modules that would have been
clock-gated in a design without a dynamic noise controller.

ACM Transactions on Design Automation of Electronic Systems, Vol. 16, No. 4, Article 46, Pub. date: October 2011.

46:16 M. B. Healy et al.

gzip - Queue 1 Current Profile

0

1

2

3

4

5

6

7

1 51 101 151 201

C
ur

re
nt

 (
am

ps
)

Baseline High Frequency di/dt Controller

gzip - Queue 3 Current Profile

8.5

9

9.5

10

10.5

11

11.5

1 51 101 151 201

C
ur

re
nt

 (
am

ps
)

Baseline High Frequency di/dt Controller

gzip Current Profile

0

5

10

15

20

25

1 501 1001 1501 2001 2501 3001 3501 4001 4501

Cycles

C
ur

re
nt

 (
am

ps
)

Ideal Clock-Gating Decay Counter Clock-Gating

gzip Current Profile (Zoomed View)

0

5

10

15

20

25

1 51 101 151

Cycles

C
ur

re
nt

 (
am

ps
)

Ideal Clock-Gating Decay Counter Clock-Gating

Cycles Cycles

Fig. 6. High ILP benchmark (164.gzip) chip current and queue current profiles.

6.3.1. Current Profile of Applications. To demonstrate the effectiveness of our controller in
improving high-frequency current-demand changes (dI/dt), we now present the current
profile of the whole chip as well as the current profile for each queue cluster for the
wirelength-driven floorplan. Note that the effectiveness of a dI/dt controller is evaluated
by observing its effect on the worst-case current profile of a given application, which
represents the computation phase with maximum module-switching activity. Due to
the staggeringly large number of current profiles for all of the benchmark programs, we
demonstrate representative characteristics using two types of benchmark programs.
Note that the crucial information conveyed in this section is to show the effectiveness
of our proposed mechanism.

We profiled one high-ILP benchmark (164.gzip) and another low-ILP (181.mcf,
memory-bound) benchmark. The current profiles, shown in Figures 6 and 7, were
obtained by determining the worst-case switching activity during the course of execu-
tion. A 4-bit decay counter was used for each module in all experiments.7 Each graph
shows the current profile for both the processor with ideal clock-gating as well as the
decay-counter-based clock-gating mechanism. We also provide close-up versions of the
representative, highly active, region of the graph for better visibility.

It can be seen that both 164.gzip and 181.mcf exhibit a repetitive current profile
during the worst-case switching period. This is especially prominent in the current
profile of 181.mcf where there is a period of high activity for a few hundred cycles,
followed by a stable current profile for approximately 500 cycles. This is due to the
long-familiar cache misses to main memory that occur in 181.mcf. During this period
most modules are inactive and can be clock-gated off to save dynamic power. The
effectiveness of the dI/dt controller in improving the current ramp is obvious in the
zoomed versions of the graphs. It shows that with the decay counter, our system (shown
in dashed lines) successfully prevents unnecessary oscillating swings in the current
profile and produces a much smoother down-ramp. For 164.gzip in Figure 6, we observe
large current variation in the ideal-clock gating scheme due to high activity across all
modules. This results in there being no significant duration of time where reasonable

7The resolution of the decay counter was based on the motivational data discussed in Section 4.2.

ACM Transactions on Design Automation of Electronic Systems, Vol. 16, No. 4, Article 46, Pub. date: October 2011.

Integrated Microarchitectural Floorplanning 46:17

mcf - Queue 1 Current Profile

0

1

2

3

4

5

6

7

1 51 101 151 201

C
ur

re
nt

 (
am

ps
)

Baseline High Frequency di/dt Controller

mcf - Queue 3 Current Profile

7

9

11

13

1 51 101 151 201

C
ur

re
nt

 (
am

ps
)

Baseline High Frequency di/dt Controller

mcf Current Profile

0

5

10

15

20

25

30

35

1 501 1001 1501 2001 2501 3001 3501 4001 4501

Cycles

C
ur

re
nt

 (
am

ps
)

Ideal Clock-Gating Decay Counter Clock-Gating

mcf Current Profile (Zoomed View)

0

5

10

15

20

25

30

35

1 51 101 151

Cycles

C
ur

re
nt

 (
am

ps
)

Ideal Clock-Gating Decay Counter Clock-Gating

Cycles Cycles

Fig. 7. Low ILP benchmark (181.mcf) chip current and queue current profiles.

power savings are possible. Because of this, modules are never inactive for extended
periods of time, and the decay counters rarely clock-gate-off the modules. The current
profile is extremely stable for this reason. In short, the decay-counter-based technique
finds the optimal power envelope right above the ideal clock-gating mechanism and
allows clock-gating only when there is a significant chance that the given modules will
not be accessed again soon.

Next, we present the current profile with the integration of the complete queue-
based controller. Note that this is the complete controller that incorporates prevention
of simultaneous switching, decay-counter-based feedback for clock-gating, preemptive
ALU gating, and progressive gating of L2 cache banks. The lower boxes of Figures 6
and 7 also show the current profile for Queues 1 and 3 for 164.gzip and 181.mcf. In all
cases, it can be observed that the current profile is significantly improved by eliminating
excessive switching activity. In addition, both the upward ramp and downward ramp
effects due to multiple modules in the same power-pin domain (i.e., using the same
module queue) are spread across multiple cycles. This is more prominent in the upward
ramp of the current with the dI/dt controller between cycle 20 and cycle 50 for Queue
1 in 181.mcf. For Queue 3 in 181.mcf, we observe a different trend, whereby the dI/dt
controller ramps up current repeatedly compared to the baseline, which is stable. This
is due to the preemptive ALU gating effect that ramps up additional ALUs which
are otherwise unused in the baseline clock-gating scheme due to low ILP. We observe
a repetitive pattern where ALUs are gated preemptively only to later decay after
approximately 20 to 25 clock cycles. However, these ramps are still spread over many
cycles and do not violate the current demand threshold.

For 164.gzip, where there is high ILP/switching activity, the queue-based controller
ramps up to the required current levels and does not saturate the decay counters for
long enough. For this reason, the queue-current profile is almost always stable, except
for the few cases where the decay counters decay long enough to enable clock-gating.
It is important to note that this does not mean that there is no opportunity for power-
savings in such a design without dI/dt control. The presented phase of 164.gzip is
the highest ILP portion in our simulation, and it is simply not worth it to clock-gate
elements during this phase because of the dI/dt as well as the performance penalty.

ACM Transactions on Design Automation of Electronic Systems, Vol. 16, No. 4, Article 46, Pub. date: October 2011.

46:18 M. B. Healy et al.

Fig. 8. Average current variability for the benchmark suite with the wirelength-aware floorplan.

Since presenting detailed current profiles is infeasible for all benchmarks, we now
show the current variability per cycle for the complete duration of the benchmark
execution. Unlike the worst-case profile presented earlier, this metric gives the average
variability of current per cycle for both the baseline processor and the processor with our
dynamic dI/dt controller. Figure 8 shows the comparison for various SPEC2000 INT and
FP benchmark programs. The current variability is calculated by measuring intercycle
current fluctuations (in the absolute value of the swing) over the entire simulation
period, as a fraction of the total number of simulation cycles. It can be observed that
the baseline architecture shows a higher degree of current variability across the board.
The data shows that 186.crafty exhibits the highest variability, whereas 171.swim has
the lowest variability. Regardless of the native current variability, our dynamic dI/dt
controlling mechanism can significantly mitigate the dynamic oscillating behavior of
the current profiles of the running applications. The dI/dt controller pushes the current
variability below 0.5 amps/cycle for all the benchmark programs studied.

6.3.2. Performance Impact. We now present the performance analysis of our dI/dt con-
trolling mechanism. Figure 9 shows the IPC degradation for the SPEC2000 INT and
FP benchmark suites with the dI/dt controller over the baseline machines without any
dI/dt control. The Wire-w/Pre configuration shows the queue controller with preemp-
tive ALU gating turned on in order to differentiate the type of applications that can
benefit from predecoding ALU instructions. Progressive gating in the L2 cache was
applied to all cases.

In general, we observe minimal performance degradation for most of the bench-
marks. Note that the performance overhead is dependent on the floorplan because the
floorplan affects the queue configuration. A more optimized floorplan will result in a
more balanced queue configuration. However, if the floorplan results in a configuration
where one queue carries a significantly larger number of modules than the others,
IPC will be adversely affected because the worst-case module activation time is longer.
We observe an average performance overhead around 4% for the floorplans that were
simulated.

We also observe that preemptive gating of ALUs improves the performance for certain
benchmark programs such as 252.eon, 254.gap, 253.perl, and 168.wupwise. This is
due in part to the fact that the 4-bit decay counter saturates consistently for ALUs

ACM Transactions on Design Automation of Electronic Systems, Vol. 16, No. 4, Article 46, Pub. date: October 2011.

Integrated Microarchitectural Floorplanning 46:19

Fig. 9. The performance degradation of the dynamic dI/dt controller across the benchmark suite for both
the wire-length-aware (wire-) and queue-aware (qaware-) floorplans.

(resulting in powering-off the module) right before ALU instructions are issued. It is
in these scenarios that the preemptive gating provides simultaneous performance and
dI/dt benefits. The decay counters predict future likelihood of module access based
solely on the past activity profile. In contrast, preemptive gating can “look-ahead”
and override unnecessary gating that the decay counters themselves cannot prevent,
thereby reducing unnecessary performance loss. The minimal IPC overhead illustrates
the practical potential of employing a low-overhead technique to control high-frequency
dI/dt.

6.3.3. Power Consumption Impact. The dynamic controller presented in Section 4 in-
cludes mechanisms that decrease the frequency of clock-gating events. Clock-gating
is a technique designed to limit dynamic power consumption. When the dynamic con-
troller prevents a module from turning off to limit dI/dt noise, the processor will dissi-
pate some extra energy. When the dynamic controller prevents a module from turning
on, the processor will dissipate less power, however the performance impact will cause
the program being executed to consume more total energy over an extended period of
time. Figure 10 shows the impact on power dissipation for both the wirelength- and
queue-aware floorplans using the dynamic controller compared to the same floorplans
without the dynamic controller. The average increase in power consumption is near
2% for both the floating-point and integer suites. The maximum increase in power
consumption is 6.3% for the queue-aware floorplan.

6.3.4. Thermal Impact. The goal of our technique is to improve power-supply reliability
and reduce design effort. Therefore, it is critical that our dI/dt controller must not cause
other reliability problems. Since our technique provides fine-grained dI/dt control at
the expense of increased power consumption, it is necessary to quantify any potential
adverse thermal effect caused by the dynamic controller. Thermal issues are particu-
larly critical in modern processors due to increases in power density caused by process
technology shrinks.

We used Hotspot 3.0 [Skadron et al. 2004] to evaluate the thermal impact of our
high-frequency dI/dt controller on the given floorplan. We compare our architecture
against the baseline design that uses ideal-clock-gating, which represents the sce-
nario with the least power consumption. Figure 11 shows the thermal analysis for all

ACM Transactions on Design Automation of Electronic Systems, Vol. 16, No. 4, Article 46, Pub. date: October 2011.

46:20 M. B. Healy et al.

Fig. 10. The power consumption impact of the dynamic dI/dt controller on the wirelength- and queue-aware
floorplans.

Fig. 11. The per-module thermal impact of the dynamic dI/dt controller on the wirelength- and queue-aware
floorplans.

23 modules in our processor model, evaluated using the SPEC2000 benchmark suite
for both the wirelength- and queue-aware floorplans.

First, we consider only the impact of using the dynamic noise controller. In Figure 11,
comparing the wirelength-aware floorplan (blue) versus the wirelength-aware floorplan
with the dynamic noise controller (black), the increase in average unit temperature is
3.2 kelvin. The maximum increase in unit temperature is 6.5 kelvin for the L1 data
cache. The maximum temperature of the floorplan increases by 1.5 kelvin. The queue-
aware floorplans are more effective at reducing power-supply noise with the dynamic
noise controller, which causes the power consumption to increase by a small amount,
as shown in Figure 10. For the queue-aware floorplans, the average unit temperature
increases by 5.2 kelvin with the dynamic noise controller. The maximum increase in
unit temperature is 6.8 kelvin for the data TLB. The maximum temperature of the
floorplan increases by 5.8 kelvin. These thermal analysis results indicate that the use
of the dI/dt controller does not create any large adverse thermal effects on our design.

ACM Transactions on Design Automation of Electronic Systems, Vol. 16, No. 4, Article 46, Pub. date: October 2011.

Integrated Microarchitectural Floorplanning 46:21

Table III. Average and Maximum per-unit Temperature (for the wirelength-aware and
queue-aware floorplans both with and without the dynamic noise controller)

Wire-noctrl Wire-w/ctrl Qaware-noctrl Qaware-w/ctrl
Average 319.5 322.7 321.7 326.8

Maximum 326.8 328.4 326.0 331.8

Fig. 12. Comparison with noise-direct. The voltage violation threshold is 0.1V. This comparison does not
include the use of decaps.

The increase in temperature when comparing the wirelength-aware floorplan versus
the queue-aware floorplan is more significant on a per-unit basis. However, this is not
a reasonable comparison because the floorplans are completely different. Comparing
floorplans from a thermal perspective makes sense only when using the average and
maximum temperatures. Table III shows the average and maximum per-unit temper-
atures for the wirelength-aware and queue-aware floorplans, both with and without
the dynamic noise controller activated. The results show a range of maximum temper-
ature of less than 6 kelvin, which again demonstrates the nominal thermal impact of
our techniques.

6.4. Noise-Aware Floorplan Results

To compare our floorplanning algorithm with previous work, we replicate the simula-
tion and parameter infrastructure of Noise-Direct [Mohamood et al. 2007]. A compari-
son of the voltage swing of the controller-aware floorplan and the previously published
numbers for Noise-Direct are shown in Figure 12. Queue-aware floorplanning results
in an overall smaller voltage swing as compared to Noise-Direct. However, most sig-
nificantly, it reduces the voltage swing to below the 10% voltage violation threshold
of 0.1V , and therefore there are zero noise constraint violations compared to the ap-
proximately 10% noise violations per cycle reported by Noise-Direct. For the purposes
of comparison, there were no decaps included in the SPICE netlist for these voltage
swing numbers. Therefore, no direct comparison between these values and those of the
other experiments is logical. Given that Noise-Direct had no decap consideration at all,
there is very little that could be comparable to the remaining experiments.

Next, a comparison between the traditional area-and-wirelength objective (A+W),
floorplanning with positive Q factor (+Q), floorplanning without the queue weights
(No Q), and the new controller-aware floorplanning with negative Q factor (−Q), all
with decoupling capacitors added, is shown for voltage swing in Figure 13 and noise
violations in Figure 14. A comparison between the +Q and −Q bars indicates a change
in the cost function, switching the queue factor from positive to negative and shows that

ACM Transactions on Design Automation of Electronic Systems, Vol. 16, No. 4, Article 46, Pub. date: October 2011.

46:22 M. B. Healy et al.

Fig. 13. Voltage swing comparison between area and wirelength, positive queue factor (+Q), noise-only (No
Q), and negative queue factor (−Q). Decoupling capacitors and the decap allocation network flow are used
for these results.

Fig. 14. Noise violation comparison between area and wirelength, positive queue factor (+Q), noise-only
(No Q), and negative queue factor (−Q). (−Q) has zero violations. As in Figure 13, this data is generated
with the decap allocation flow.

our initial intuition about the form of the queue factor was incorrect. As a reminder, the
queue factor provides a bonus (in negative form) to the cost function whenever blocks
with high correlation and current demand reside within the same dynamic controller
queue. The No Q bars show a floorplan that has 0 for the ε weight, and thus is most
similar to the work of Noise-Direct. However, as stated previously, due to the inclusion
of decoupling capacitors here, no direct comparison of values between the two is logical.
As shown in Figure 13, we can observe that the negative Q controller-aware floorplan
has better noise characteristics than those of the traditional A+W objective, the positive
Q objective, and the Noise only objective. The queue-aware floorplan has approximately
30% smaller voltage swing than the Noise only objective. This demonstrates that adding
queue awareness to the floorplanner has a substantial impact for the simplicity of the
change. The negative Q factor floorplan also reduces the voltage swing to below the
violation threshold, and therefore there are no voltage violations for this floorplan,
as shown in Figure 14. Additionally, the voltage swing graph reveals that the swing
is independent of the benchmark for several experiments. This is the result of the
dynamic controller fully controlling the coupled voltage swing of the processor. In those

ACM Transactions on Design Automation of Electronic Systems, Vol. 16, No. 4, Article 46, Pub. date: October 2011.

Integrated Microarchitectural Floorplanning 46:23

Fig. 15. Voltage ratio comparison between using the decap allocation flow (Queue-Aware) and the best
according to the cost function (NoFlow). In the NoFlow case the decap allocation flow is not used to choose
the best floorplan.

cases, individual module swings are fully responsible for the magnitude of the chip-
level voltage swing. This indicates that the negative Q-aware floorplanner is the most
effective method to use with the dynamic controller.

Finally, we show that the use of the network-flow-based decap allocation algorithm
improves the dynamic noise results. A comparison of the voltage swing between the
queue-aware floorplan and the top floorplan according to the cost function (NoFlow) is
shown in Figure 15. In the NoFlow case, decaps are added in all the white space of the
floorplan with the lowest cost function value. We can observe that for every benchmark
the floorplan that utilizes the decap allocation flow has improved voltage swing. And,
in fact, without the use of the decap allocation flow, the floorplan does violate the noise
threshold by a small amount.

7. CONCLUSION

The exponential increase in the current consumption of newer generations of processors
coupled with aggressive power-saving techniques have exacerbated the high-frequency
dI/dt issue. If current trends continue, ad-hoc solutions that mitigate dI/dt effects
using excessive decoupling capacitance will eventually become insufficient. Decaps not
only occupy considerable chip area, but also contribute to the already problematic
leakage power issue. Current microarchitecture-based solutions are inadequate for
deep submicron designs where high-frequency dI/dt is intricately entwined with both
the chip floorplan and power-pin distribution.

We have presented a unified design methodology that addresses the high-frequency
dI/dt issues and maintains high reliability while alleviating the design cost of cre-
ating a low impedance power delivery network using a dynamic queue-based dI/dt
controller and a controller-aware floorplanning algorithm. By leveraging microarchi-
tectural profile information in the floorplanning stage, and by monitoring application-
based module activity at run-time with our dynamic controller, we show that current
demands can be guaranteed for modules residing within the same power-pin domain.
In addition, we integrate a pre-emptive ALU gating mechanism as a performance en-
hancement technique as well as an enhanced progressive gating technique for large
modules (L2 cache) into our queue-based control mechanism. We have also explained
how the dI/dt architecture can be implemented in a conventional out-of-order pipeline
in a complexity-effective manner. Experimental results show that our dI/dt controller

ACM Transactions on Design Automation of Electronic Systems, Vol. 16, No. 4, Article 46, Pub. date: October 2011.

46:24 M. B. Healy et al.

can improve the current variability of applications by an average of 7x with a mere
4.0% IPC degradation. SPICE simulations show that the combination of our dynamic
controller and controller-aware floorplanner can completely eliminate power-supply
noise-margin violations.

Overall, our design provides practical microarchitectural and physical design ap-
proaches that can be used in concert to alleviate the effort of design afterthoughts
and reduce the use of leaky decoupling capacitors that consume large chip area. Our
technique incurs little performance overhead and has very little thermal impact.

REFERENCES

AUSTIN, T., LARSON, E., AND ERNST, D. 2002. SimpleScalar: An infrastructure for computer system modeling.
IEEE Micro Mag. 59–67.

AUSTIN, T. M. AND SOHI, G. S. 1995. Zero-cycle loads: Microarchitecture support for reducing load latency.
In Proceedings Annual IEEE/ACM International Symposium on Microarchitecture. ACM, New York,
82–92.

BROOKS, D., TIWARI, V., AND MARTONOSI, M. 2000. Wattch: A framework for architectural-level power analysis
and optimizations. In Proceedings of the IEEE International Symposium on Computer Architecture.
IEEE, Los Alamitos, CA, 83–94.

CHEN, H.-M., HUANG, L.-D., LIU, I.-M., AND WONG, M. D. 2005. Simultaneous power supply planning and noise
avoidance in floorplan design. IEEE Trans. Comput.-Aid. Des. Integrat. Circuits Syst. 578–587.

CHEN, Y., ROY, K., AND KOH, C.-K. 2005. Current demand balancing: A technique for minimization of current
surge in high performance clock-gated microprocessors. IEEE Trans. VLSI Syst. 75–85.

EBLE, J. C., DE, V. K., WILLS, D. S., AND MEINDL, J. D. 1996. A generic system simulator (GENESYS) for ASIC
technology and architecture beyond 2001. In Proceedings of the IEEE International ASIC Conference
and Exhibit. IEEE, Los Alamitos, CA, 193–196.

ECACTI. http://www.ics.uci.edu/ maheshmn/eCACTI/main.htm.
GROCHOWSKI, E., AYERS, D., AND TIWARI, V. 2002. Microarchitectural simulation and control of di/dt induced

power supply voltage variation. In Proceedings of the IEEE International Symposium on High- Perfor-
mance Computer Architecture. IEEE, Los Alamitos, CA, 7–16.

HAZELWOOD, K. AND BROOKS, D. 2004. Eliminating voltage emergencies via microarchitectural voltage control
feedback and dynamic optimization. In Proceedings of the International Symposium on Low Power
Electronics and Design. 326–331.

HEALY, M. B., MOHAMOOD, F., LIM, S. K., AND LEE, H.-H. S. 2008. A unified methodology for power supply
noise reduction in modern microarchitecture design. In Proceedings of the Asia and South Pacific Design
Automation Conference. 611–616.

JACOBSON, H., BOSE, P., HU, Z., BUYUKTOSUNOGLU, A., ZYUBAN, V., EICKEMEYER, R., EISEN, L., GRISWELL, J., LOGAN,
D., SINHAROY, B., AND TENDLER, J. 2005. Stretching the limits of clock-gating efficiency in server-class
processors. In Proceedings of the IEEE International Symposium on High-Performance Computer Archi-
tecture. IEEE, Los Alamitos, CA, 238–242.

JOSEPH, R., HU, Z., AND MARTONOSI, M. 2004. Wavelet analysis for microprocessor design: Experiences with
wavelet-based dI/dt characterization. In Proceedings of the IEEE International Symposium on High-
Performance Computer Architecture. IEEE, Los Alamitos, CA, 36–46.

LI, H., BHUNIA, S., CHEN, Y., ROY, K., AND VIJAYKUMAR, T. N. 2004. DCG: Deterministic clock-gating for low-power
microprocessor design. IEEE Trans. VLSI Syst. 245–254.

LU, C.-H., CHEN, H.-M., AND LIU, C.-N. J. 2008. Effective decap insertion in area-array SoC floorplan design.
ACM Trans. Des. Autom. Electron. Syst.

MINZ, J., WONG, E., PATHAK, M., AND LIM, S. K. 2006. Placement and routing for 3-d system-on-package designs.
IEEE Trans. Components Packaging Technol., 644–657.

MOHAMOOD, F., HEALY, M. B., LIM, S. K., AND LEE, H.-H. S. 2006. A floorplan-aware dynamic inductive noise con-
troller for reliable processor design. In Proceedings of the Annual IEEE/ACM International Symposium
on Microarchitecture. ACM, New York, 3–14.

MOHAMOOD, F., HEALY, M. B., LIM, S. K., AND LEE, H.-H. S. 2007. Noise-direct: A technique for power supply
noise aware floorplanning using microarchitecture profiling. In Proceedings of the Asia and South Pacific
Design Automation Conference. 786–791.

MURATA, H., FUJIYOSHI, K., AND KANEKO, M. 1998. VLSI/PCB placement with obstacles based on sequence pair.
IEEE Trans. Comput.-Aid. Des. Integrat. Circuits Syst. 60–68.

ACM Transactions on Design Automation of Electronic Systems, Vol. 16, No. 4, Article 46, Pub. date: October 2011.

Integrated Microarchitectural Floorplanning 46:25

PANT, M. D., PANT, P., WILLS, D. S., AND TIWARI, V. 2000. Inductive noise reduction at the architectural level. In
Proceedings of the International Conference on VLSI Design. 162–167.

PANT, S., BLAAUW, D., AND CHIPROUT, E. 2007. Power grid physics and implications for CAD. IEEE Design Test
of Computers. 246–254.

POWELL, M. D. AND VIJAYKUMAR, T. N. 2003. Pipeline muffling and a priori current ramping: Architectural
techniques to reduce high-frequency inductive noise. In Proceedings of the International Symposium on
Low Power Electronics and Design. 223–228.

POWELL, M. D. AND VIJAYKUMAR, T. N. 2004. Exploiting resonant behavior to reduce inductive noise. In Pro-
ceedings of the IEEE International Symposium on Computer Architecture. IEEE, Los Alamitos, CA,
288–299.

SATO, T., ONODERA, H., AND HASHIMOTO, M. 2005. Successive pad assignment algorithm to optimize number
and location of power supply pad using incremental matrix inversion. In Proceedings of the Asia and
South Pacific Design Automation Conference. 723–728.

SKADRON, K., STAN, M. R., SANKARANARAYANAN, K., HUANG, W., VELUSAMY, S., AND TARJAN, D. 2004. Temperature-
aware microarchitecture: Modeling and implementation. ACM Trans. Architect. Code Optim. 94–125.

WONG, E., MINZ, J., AND LIM, S. K. 2006. Decoupling capacitor planning and sizing for noise and leakage
reduction. In Proceedings of the IEEE/ACM International Conference on Computer-Aided Design. ACM,
New York, 395–400.

ZHAO, M., FU, Y., ZOLOTOV, V., SUNDARESWARAN, S., AND PANDA, R. 2006. Optimal placement of power supply
pads and pins. IEEE Trans. Comput.- Aid. Des. Integrat. Circuits Syst. 144–154.

ZHAO, S., KOH, C., AND ROY, K. 2002. Decoupling capacitance allocation and its application to power supply
noise aware floorplanning. IEEE Trans. Comput.-Aid. Des. Integrat. Circuits Syst. 81–92.

Received July 2010; revised February 2011; accepted April 2011

ACM Transactions on Design Automation of Electronic Systems, Vol. 16, No. 4, Article 46, Pub. date: October 2011.

