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SUMMARY

The objective of this thesis is twofold. The first objective is to provide generic

methodologies for enabling efficient communication among heterogeneous processors

in multiprocessor system-on-a-chips (MPSoCs). The second objective is to evaluate

the coherence traffic efficiency based on a novel emulation platform using FPGA.

Embedded systems have several properties for system-on-a-chip (SoC) designers

to abide by: low-cost, low-power, soft or hard real-time constraint, and short time-to-

market requirement. These properties coerce industries into embracing the IP-based

design concept. Exhibiting this design trend, international consortia such as OCP-IP

and VSIA devised standard SoC interface protocols for the seamless integration of

heterogeneous IP blocks. To meet their performance and cost constraint, SoC design-

ers integrate multiple, sometimes, heterogeneous processor IPs to perform particular

functions. Nevertheless, the integration of heterogeneous processors arouses com-

plications because of different interface protocols and incompatible communication

mechanisms, in particular, cache coherence protocols. Whereas the interface prob-

lems are being well studied in academia and industry, the communication problems

among heterogeneous processors have not been addressed.

The first two contributions of the thesis provide efficient communication mecha-

nisms among heterogeneous processors via the integration and support of cache co-

herence protocols in MPSoCs. Heterogeneous processors have incompatible coherence

protocols. Hence, special care should be taken to efficiently make use of existing hard-

ware in processors’ IPs. Our contributions addressed coherence problems for two main

MPSoC architectures: Shared-bus-based MPSoCs and Non-shared-bus-based MPSoCs.

In shared-bus-based MPSoCs, the integration techniques guarantee data consistency

xiii



among incompatible coherence protocols. An integrated protocol will contain com-

mon states from distinct coherence protocols. A snoop-hit buffer and region-based

cache coherence were also proposed to further enhance the coherence performance.

For non-shared-bus-based MPSoCs, the bypass and bookkeeping approaches were

proposed to support cache coherence in a new cache coherence-enforced memory con-

troller. The simulations based on micro-benchmark and RTOS kernel showed the

benefits of the methodologies over a generic software solution.

The third contribution of the thesis evaluated the coherence traffic efficiency. As

the memory wall becomes higher, it is imperative to understand the impact of com-

munication among processors and enhance future communication architectures based

on observations. Traditionally, the evaluations of the snoopy protocols focused on re-

ducing bus traffic using trace-based or execution-driven simulations, and the impact

of coherence traffic on system performance has not been explicitly investigated.

Using an Intel server system and an FPGA, our novel method measured and quan-

tified the intrinsic delay of coherence traffic and evaluated its efficiency. The intrinsic

delay was measured by completely isolating the impact of coherence traffic on system

performance. The technique eliminated non-deterministic factors in measurements

such as bus arbitration delay and stall in the pipelined bus. The experimental results

showed that the cache-to-cache transfer in the Intel server system is less efficient than

the main memory access.

xiv



CHAPTER I

INTRODUCTION

With the advances in the process and design integration technologies, an entire system

is now possible to fit onto a single chip called system-on-a-chip or SoC. Even though

this ever-increasing chip capacity offers embedded system designers much more flexi-

bility, the typical requirements of an embedded system such as high performance, low

power, low cost, meeting real-time constraint, and fast time-to-market, etc., can still

restrain SoC designs. To facilitate these often contradictory requirements, embed-

ded processors continue to evolve in both the general-purpose processor’s side (e.g.,

ARM [3] and MIPS [9]) and the configurable processor’s side (e.g., Tensilica [16],

ARC [2], and Improv [5]). Regardless of the evolution path of the embedded pro-

cessors, the design of SoC systems are driven by the needs of applications. In other

words, processors are chosen and integrated based on the nature of the required tasks

running on the systems [71].

Typically, general purpose processors are used to perform control-centric and some

signal processing tasks with low-to-medium performance requirement. On the other

hand, SoCs also integrate application specific processors such as digital signal pro-

cessors to achieve high performance. Time-critical tasks with extremely high perfor-

mance demands such as inverse discrete cosine transform and fast Fourier transform,

typically require dedicated hardware, often provided in the form of intellectual prop-

erties (IPs) to reduce the time-to-market design cycle.

The latest trend of SoC designs involves the integration of heterogeneous pro-

cessors. Applications in the domains of multimedia, wireless, network, and gaming,

1



etc., demand such an approach to attain maximal performance by exploiting the dis-

tinctive computing strength offered by different processors. Several commercial SoCs

are available using this approach, for example, Texas Instruments’ OMAP 2 [11],

LSI’s DiMeNsion 8650 [4], Analog Devices’ GSM baseband processor AD6525 [1],

Philips’ Nexperia pnx8500 [10], to name a few. Therefore, it is imperative to pro-

vide efficient and effective design methodologies for heterogeneous processors and IPs

to reduce time-to-market design cycle. Reflecting this trend, international consor-

tia formed by industry partners such as OCP-IP and VSIA has devised standard

SoC interface protocols to enable seamless integration of heterogeneous IP blocks. In

academia, various multiprocessor research thrusts on embedded systems are being ac-

tively conducted [33, 95]. Nevertheless, the integration of heterogeneous processors in

multiprocessor SoCs (MPSoCs) can be rather complex due to their distinct interface

protocols and incompatible communication mechanisms, in particular, in the cache

coherence protocols. Although the interface problems were well studied in academia

and industry, the communication problems among heterogeneous processors have not

been properly addressed. In this thesis, we addressed the communication problems

and provided generic solutions to enable efficient communication via cache coherence

protocols.

The performance of future computing systems is becoming less scalable as the dis-

parity between processor and DRAM memory continues to grow. It is referred to as

the memory wall problem [112]. To bridge the memory discrepancy, a large number

of on-die transistors are dedicated to increasingly larger caches and other memory-

related architectural features [67, 64, 28, 53, 63, 93, 37, 82, 94]. Furthermore, many

bus protocols are pipelined to improve the overall throughput. For example, the de-

sign of the front-side bus (FSB) [6] in the P6 processor family consists of 7 pipeline

stages. To further expedite data processing, applications are parallelized or multi-

threaded on multiprocessor systems. Server-class multiprocessor systems are often
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based on shared-bus architecture. Recently, even desktop computers are sold with

shared-bus multiprocessor configuration, often referred to as symmetric multiproces-

sor (SMP). To maintain data consistency in SMP systems, multithreaded applications

communicate among processors via cache coherence protocols. Due to the sharing of

the memory bus, the communication becomes a limiting factor in performance as the

number of processors increases. Despite the importance, the efficiency of coherence

traffic has not been explicitly evaluated with real systems.

More recently, the capacity, speed, and complexity of field programmable gate

array (FPGA) have been substantially improved. It is not uncommon these days to

have FPGAs with logic gate capacity in the order of millions. A recent study at Intel

showed that the original Pentium processor (P5) fits into a single FPGA. It occu-

pies only about 40% of the Virtex-4 LX200 [114] device. The FPGA vendors also

provide built-in memory and a variety of IP blocks so that the design cycle can be

greatly shortened. Furthermore, the operating frequency of today’s FPGA approaches

roughly one-tenth of a high-end processor’s speed, making real-time pre-silicon ver-

ification of the SoC/ASIC development possible. By leveraging the advantages of

the emulation technique using FPGA and combining with an Intel server system, we

proposed a novel emulation method for the evaluation of coherence traffic efficiency.

1.1 Problem Statement

1.1.1 Integration of Cache Coherence Protocols in MPSoCs

The use of IP components in an SoC design provides two major advantages. First,

it accelerates the processing speeds by exploiting the distinctive property of each IP

component. Secondly, it creates an opportunity for achieving higher power efficiency

while meeting the specific computing needs. Both are essential goals for delivering an

embedded system. For efficient communication among IP cores, several companies

such as ARM, IBM, Sonics, and PALMCHIP proposed using their proprietary or
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open protocols such as AMBA, CoreConnect, SiliconBackplane µNetwork, and Core-

Frame as standard communication architectures. These communication architectures

mainly based on bus topologies are typically designed for interfacing their own pro-

cessors such as ARM and PowerPC. Such lack of interoperability circumscribes the

integration of heterogeneous IPs in SoCs. Consequently, IP vendors have to provide

versatile IPs tuned into variegated communication architectures. To bridge the gap,

international consortia such as OCP-IP and VSIA proposed using “socket,” so de-

signers can exercise “plug-and-play” integration practices. The basic concept behind

socket is to define a point-to-point interface between two communicating entities such

as IP cores and bus interface modules. This approach provides a seamless integration

of IPs that conform the interface standards, regardless of the on-chip communication

standards.

Nevertheless, the design complexity of integrating heterogeneous processors in

MPSoCs is not trivial since it introduces several challenges in both design and val-

idation as a result of distinct interface protocols and incompatible communication

mechanisms, in particular, cache coherence protocols. First, to make the integra-

tion seamless, the interface protocols should provide the superset functionality of all

different processor interfaces. In other words, it should not only support standard

operations such as memory read and write operations, but also provides processor spe-

cific operations such as machine-dependent exceptions. Second, even with the socket

approach, incompatible coherence protocols cannot be integrated and used together

because they result in data inconsistency.

To address the communication challenges among heterogeneous processors, the

first two contributions of this thesis provide generic methodologies to enable efficient

communication. The methodologies integrate incompatible coherence protocols and

support data coherence for both shared and non-shared bus architectures with mini-

mal hardware addition.
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1.1.2 Evaluation of Coherence Traffic Efficiency

The performance of the cache coherence protocols were evaluated in several litera-

tures [57, 66, 88, 107, 39, 40, 26, 49, 51, 50, 48, 21, 85, 58, 44]. Traditionally, the

evaluations of coherence protocols focused on protocols themselves, and the system-

wide performance impact of coherence traffic has not been explicitly investigated

using off-the-shelf machines. When workloads are parallelized and run natively on

SMP systems, the speedup is dependent on three factors: (1) how efficiently work-

loads are parallelized; (2) how much communication is involved among processors; (3)

how efficiently the communication mechanism manages communication traffic (for ex-

ample, cache-to-cache transfer between processors). While programmers make every

effort to efficiently parallelize workloads, the underlying communication mechanism

of the architectural implementation remains unmanageable in the software layer and

it becomes the limiting factor of the speedup as the number of processors increases.

Despite of the importance of the communication, it has not been feasible to sep-

arate its contribution from the speedups measured on SMP machines. Oftentimes,

because of the difficulty of the direct evaluation on real machines, software simu-

lators [36, 76, 86, 92, 84] were developed to characterize the multiprocessor system

performance. However, the software-based simulation is sometimes difficult to reach

an unbiased conclusion since the exact real-world modeling such as I/Os is difficult.

In addition, it hinders the broad range measurement of the system behavior due to

the intolerable simulation time.

Toward these issues, we proposed a novel emulation technique using an off-the-

shelf system and an FPGA. Our study evaluated the exclusive impact of coherence

traffic on the system performance. Notably, our methodology made it possible to

measure the intrinsic delay of coherence traffic by completely eliminating the non-

deterministic factors such as arbitration delay and stall in the pipelined bus in a

multiprocessor system.
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1.2 Thesis Contributions

The contributions of this thesis are threefold.

• We studied generic solutions for enabling efficient communication among hetero-

geneous processors by integrating incompatible cache coherence protocols in a

shared-bus-based MPSoC. The integration techniques include read-to-write con-

version and shared-signal assertion/de-assertion. To further enhance the coher-

ence performance, two low-cost architectural techniques were proposed: snoop-hit

buffer and region-based cache coherence. Using Verilog-HDL, the proposals were

applied to simulation platforms with commercial embedded processors. Synthesis

and simulation results showed the cost-effectiveness and performance improve-

ments over a generic software solution. We also discussed the hardware deadlock

problem present when integrating processors with no native coherence support.

• The previous study was extended to address the communication problem among

heterogeneous processors in a non-shared-bus-based MPSoC. We studied two ap-

proaches that support coherence in a non-shared-bus MPSoC — bypass and book-

keeping approaches. Using Verilog-HDL, we implemented simulation platforms

with the proposed techniques. We reported the implementation costs and quanti-

fied the performance benefit over a conventional software solution.

• To quantify the impact of coherence traffic, a novel approach for measuring the

intrinsic delay of coherence traffic was proposed. For the experiment, cache, statis-

tics modules and the front-side bus protocol in Pentium-III were implemented in

the Virtex-II FPGA. Then, statistics information was gathered during the native

execution of the benchmarks. After compiling collected data, we analyzed data

to evaluate the coherence traffic efficiency on an Intel server system. We found

that the cache-to-cache transfer in the Intel server system is less efficient than the

main memory access.
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1.3 Thesis Organization

This thesis is organized as follows.

• Chapter II: Cache Coherence Protocols

This chapter introduces classic coherence protocols. Snoop-based coherence pro-

tocols and directory-based coherence protocols were surveyed and summarized.

Emulation initiatives for the coherence protocol evaluation were also surveyed.

• Chapter III: SoC Integration and Communication Architecture

This chapter reports the survey of SoC communication architectures proposed

by several companies, and the SoC interface protocols from OCP-IP and VSIA.

Additionally, it presents academic researches on design methodologies for MPSoC

architectures.

• Chapter IV: Cache Coherence Protocol Integration on Shared-bus-based MPSoCs

This chapter presents the first contribution of the thesis. We proposed a generic

methodology of integrating incompatible cache coherence protocols in shared-bus-

based MPSoCs. Then, the proposal is extended to cover two architectural features

to enhance the coherence performance. This chapter also discusses the implication

and limitation of integrating processors with no native coherence support.

• Chapter V: Cache Coherence Support on Non-shared-bus-based MPSoCs

This chapter presents the second contribution. Here, we extended our scope to

non-shared-bus-based MPSoCs and proposed ccMC. Then, two approaches to sup-

port the coherence were presented in details.

• Chapter VI: Evaluation of Coherence Traffic Efficiency

This chapter presents the third contribution of this thesis. Using an Intel server

system and an FPGA, we proposed a novel methodology to measure the intrinsic

delay of coherence traffic and to evaluate its efficiency. With the coherence cache
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implemented in FPGA, this methodology evaluated coherence traffic efficiency by

natively running standard benchmarks. We also discussed the opportunities to

enhance the coherence traffic efficiency.

• Chapter VII: Conclusions

This chapter concludes this thesis.
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CHAPTER II

CACHE COHERENCE PROTOCOLS

Cache coherence protocols are required for maintaining data consistency and guar-

anteeing data correctness in a multiprocessor system. A large number of cache co-

herence protocols [44, 88, 26, 106, 57, 78, 107, 65, 58, 52, 73, 68] were proposed and

developed in the ’80s and early ’90s. More recently, research thrusts such as the

token coherence protocol [77] have continued to improve the efficiency of coherence.

Depending on the scale and requirements of a system design, different coherence pro-

tocols may be used. Large-scale multiprocessor systems based on distributed shared

memory usually employ a directory-based coherence scheme for data consistency.

On the other hand, small- or medium-scale multiprocessor systems commonly use a

shared bus architecture, where a snoop-based coherence protocol is implemented to

make caches coherent. In the subsequent sections, we detail these two major cache

coherence protocols.

2.1 Snoop-based Cache Coherence

Multiprocessor systems based on a shared bus employ a snoop-based protocol for

cache coherence. Figure 1 shows a basic structure of such multiprocessor systems.

All bus transactions go through a common resource, e.g., the shared bus. Depending

on the cache line status and bus transaction type, the processors snoop each bus

transaction and respond with appropriate state changes for the corresponding cache

lines. The snoop-based coherence protocols can be classified into two main policies:

the invalidation-based protocol and the update-based protocol. In general, a write-back

cache is used as the underlying scheme for both policies. The difference between

these policies lies in whether to invalidate or update the shared cache lines when
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Figure 1: A symmetric multiprocessor system based on a shared bus.

a processor writes to the same memory block. In the invalidation-based protocol,

the shared cache lines held by other processors are all invalidated, whereas in the

update-based protocol, data is updated in all caches sharing the same memory block.

It is controversial to argue with respect to which policy delivers better performance

since the performance of each policy is highly correlated to the data-sharing patterns

exhibited by the application’s workload. In [65, 58], a hardware scheme was proposed

to support both policies in one single platform. Given the behavior of an application’s

workload, it changes policies on a per-cache-line granularity or a per-page granularity

in a dynamic manner. Such a hybrid approach, however, is rather expensive in terms

of extra hardware needed. In general, the invalidation-based strategies are more

robust, and thus most vendors use them as the default protocol [44].

In the 1980s, several invalidation-based protocols (e.g., the write-once [57], the

Synapse [52], the Berkeley [66] and the Illinois [26]) and update-based protocols (e.g.,

the Firefly [107] and the Dragon [78]) were proposed and evaluated [78]. As the mul-

tiprocessor system design and understanding become matured over time, the industry

vendors adopt some variants of the most efficient protocols for their own systems. In

the following sections, we focus on these protocols.
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2.1.1 Invalidation-based Protocols

In general, an invalidation-based protocol consists of the following states: Modified,

Exclusive, Shared, Invalid, and Owned. The I state indicates that a data block in the

cache is invalid. Multiple processors can share the same data block in their respective

caches in the S state, but only one processor can have the block exclusively in its

own cache in the E state. The E state also indicates that the cached block has not

been modified since it was brought in from the main memory. A processor can have a

modified data block in the M or the O state. The M state indicates that the processor

owns the modified data block exclusively in its cache, while the O state specifies that

the modified block may be shared with other processors. For different performance

requirements and the affordable complexity, different states can be combined to estab-

lish a coherence protocol. Instead of listing all possible combinations, three common

coherence protocols, as shown in Figure 2, will be discussed. An optimization called

BusUpgr [44] for reducing data traffic on the bus is also illustrated in Figure 2. In

the figure, a solid line in the state transition indicates that the transaction is initi-

ated by its own processor. On the other hand, each dotted line indicates that the

state transition is initiated by a remote processor, i.e., the transition is incurred by

the snooping result. The notation A/B in Figure 2 means that transaction B takes

place after the observation of transaction A. For example, PrWr/BusRdX indicates

that BusRdX is generated by observing PrWr. The definition of each notation is

summarized in Table 1.

MSI protocol: As depicted in Figure 2(a), the I→S transition occurs when a

processor’s read operation misses its local cache. When a processor’s write operation

misses its cache, the I→M transition is made with the BusRdX transaction. When

a processor’s write hits a clean line (the S state), BusUpgr is generated to invalidate

the same block in other processors’ caches, followed by the S→M transition in its

own cache. The cache-to-cache transfer could occur during the M→S and M→I state
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Figure 2: State diagrams of invalidation-based protocols.

transactions. It also could occur when a processor observes BusRd on the S state

line. Nevertheless, in this case, since several processors might have the same block

in the S state, a selection algorithm is needed to determine which cache will provide

the data [44], resulting in complex hardware and potential performance degradation

because of the arbitration mechanism. Silicon Graphics 4D series multiprocessor

machines [32] use a protocol similar to MSI.

MESI protocol: The MESI protocol was proposed by Papamarcos and Patel [88]

and is often referred to as the Illinois protocol [26]. The state transition of the MESI

protocol is similar to the one of the MSI protocol with an additional E state included.

By introducing the E state, as shown in Figure 2(b), the MESI protocol has an
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Table 1: Definitions of the notations in the state transition diagrams of Figure 2.

Notation Definition

PrWr Local processor’s write operation
PrRd Local processor’s read operation
BusRd Read transaction on the bus

BusRdX
Read exclusive transaction on the bus for the ownership of a memory block,
i.e., a remote processor intends to modify a memory block after read

BusUpgr
Same as BusRdX, but no data involved since the purpose is to invalidate
the same memory block in remote caches

BusRd(S)
Read transaction on the bus, and the shared signal is asserted
by remote processor(s)

BusRd(#S)
Read transaction on the bus, and the shared signal is de-asserted
by remote processor(s)

Flush Cache line data supply to the bus for cache-to-cache transfer

Flush′
Same as Flush, but data is supplied by the cache responsible
for supplying the data

– No action taken

advantage over the MSI protocol in terms of bus bandwidth savings, but it requires a

new bus signal generically named the shared signal. When a processor’s read misses

its own cache, the processor gets the data from the memory or remote caches. If a

valid copy exists in other cache(s), which is indicated by the assertion of the shared

signal, the I→S state transition is incurred for the new cache line. In contrast, if

the data cannot be found in any other caches, then the I→E state transition occurs

for the new line. When there is a subsequent write operation to the same block

by the same processor, the E→M transition occurs without generating bus traffic

because no other caches have the same block as indicated by the E state. Variants of

the MESI protocol are implemented in many commercial microprocessors, including

Intel’s IA32 Pentium class processors [62], AMD K6 [24], and PowerPC 601 [34], to

name a few. Depending on the implementation, the behavior of the state machine

may vary slightly from the generic one shown in Figure 2(b). For example, the P6
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family, including Pentium Pro, Pentium II, and Pentium III, supports the cache-to-

cache transfer only for the M→S and M→I transitions. Note that in the Illinois

MESI protocol, the cache-to-cache transfer could also occur during the E→I, E→S,

and S→I transitions. In P6, the shared signal is implemented with an #HIT front

side bus (FSB) signal, and BusUpgr is implemented with a special encoding called

0-byte memory read with invalidation using multiplexed #REQ[4:0] FSB signals [6].

MOESI protocol: This protocol was proposed by Sweazey and Smith [106] to

further enhance the coherence performance at the cost of additional hardware com-

plexity. By introducing the O state, this protocol allows for some memory blocks in

the main memory to not necessarily be the most up-to-date when some processors

might have the same block in the S state. This occurs when a cache with the M

state line observes BusRd, which initiates a cache-to-cache transfer without updat-

ing the memory. This transaction also incurs the M→O transition in the snooping

processor’s cache and the I→S transition in the requesting processor’s cache. Since

the SRAM-based cache is considerably faster than the DRAM main memory, such

a new state inclusion enables faster transfer compared to a simultaneous update to

the memory with the cache-to-cache transfer. Note that in the MESI protocol, the

M→S transition updates the main memory simultaneously with the cache-to-cache

transfer. Variants of the MOESI protocol are also used in modern microprocessors,

e.g., AMD64 architecture [25] and SUN Microsystems’ UltraSPARC [105].

2.1.2 Update-based Protocols

As mentioned in Section 2.1, the update-based protocol broadcasts data whenever a

processor writes to a shared block of memory, so processors always contain the most

up-to-date data in their caches. The Firefly [107] and the Dragon protocol [78] are

representatives of the update-based protocol.

Figure 3 depicts the state transition diagram of the Dragon protocol, and Table 2
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Table 2: Definitions of additional notations in the state transition diagram of Fig-
ure 3.

Notation Definition

PrWrMiss Local cache miss for processor’s write operation
PrRdMiss Local cache miss for processor’s read operation
BusUpd Data update request from a remote processor’s write operation

BusUpd(S) Same as BusUpd, and shared signal is asserted by remote processor(s)
BusUpd(#S) Same as BusUpd, and shared signal is de-asserted by remote processor(s)

Update Update the cached data according to BusUpd request

M

Sc
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E
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Figure 3: State diagram of the Dragon protocol.

details the additional notations in the state transition diagram. Compared to the

states of the invalidation-based protocols, the Sc (Shared Clean) and Sm (Shared

Modified) states are new to this protocol. The Sc state is semantically similar to the

S state, while the Sm state is similar to the O state. The Sm state indicates that

the main memory is not coherent, and the cache is responsible for updating the main

memory upon eviction. The Sc state means that the main memory may or may not

be up-to-date since the remote caches may have the same line in the Sm state.

Since every write to a potentially shared line (Sc, Sm) needs to be updated in

the remote caches, a new bus transaction called BusUpd is also introduced, as shown
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in Figure 3. For example, the Sm→M transition occurs when PrWr/BusUpd(#S) is

observed, meaning that the bus update (BusUpd) is initiated by a processor’s write

operation (PrWr), but the remote caches inform that the line is not shared by them

through (#S). When the data update occurs as a result of a write operation to a

shared line, the main memory is not updated. Through this scheme, this protocol

expects a faster data transfer as the cache is faster than the DRAM main memory.

This is the same argument as the one made in the MOESI protocol. The Dragon

protocol ensures that data is always valid if the tag matches. Hence, there is no

explicit invalid state even though it reserves a miss mode bit for compulsory misses.

2.2 Directory-based Cache Coherence

The bus-based multiprocessor makes use of a snoop-based protocol and communicates

through a bus, relying on a broadcast mechanism to invalidate or update the data in

remote caches. As such, this basic mechanism is less scalable in terms of the number

of processors allowed on a single bus because of limited bandwidth and electrical load

(capacitance). This lack of scalability is a critical obstacle to the construction of a

large-scale system with more than hundreds or even thousands of processors.

During the 1990s, the research on distributed shared memory (DSM) machines

[22, 73, 72, 68, 31, 81, 70, 40, 55, 74, 21] concentrated on scaling beyond the num-

ber of processors that may be sustained by a single shared bus. The DSM uses a

shared address space, and the main memory is distributed across the entire system.

As such, unlike the bus-based machine, the data access latency can be different, de-

pending on the location of the data. This type of architecture is often referred to as

Cache-Coherent, Non-Uniform Memory Access (ccNUMA). For maintaining cache co-

herence, the DSM typically employs a directory-based cache coherence protocol [39].

Instead of resorting to broadcasting, the DSM explicitly sends requests to appropri-

ate processing nodes after looking up the directory through network transactions.
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Even though the DSM machine was the dominant form of large-scale multiprocessor

systems in the 1990s, its popularity diminished after the emergence of cluster com-

puting. The availability of high-speed networks and increasingly powerful commodity

microprocessors is making clusters of computers and networks an appealing solution

for cost-effective parallel computing. Nevertheless, as the mainstream of future com-

puter architecture research migrates to the many-core (currently implying more than

eight processors on a chip) architecture, the directory-based cache coherence is being

adopted as a coherence protocol among distributed caches (e.g., L2 or L3) on a chip.

Figure 4(a) shows the basic structure of a DSM machine. As shown, the main

memory is distributed across several processing nodes, and each distributed memory

is associated with a directory. A node assigned for a given data block is referred to

as the home node of that block. Each node maintains a directory for its allocated

main memory. The granularity of association is typically on a per-cache line basis. A

cache miss in a local node could be serviced from either the local memory or a remote

memory, depending on the location of the missed address. Like the snoop-based

protocol, the directory-based protocol could be an invalidation-based, an update-

based, or a hybrid configuration. In most of the proposed implementations for large-

scale multiprocessors, the invalidation-based protocols are commonly used. Spurious

updates in the update-based protocol incur a separate network transaction for each

destination, and such protocols make it more difficult to preserve the desired memory

consistency model in directory-based systems [44]. This section discusses common

directory structures and operations adopted in the implementation of DSM machines.

2.2.1 Memory-based Schemes

The memory-based scheme maintains the directory information along with the main

memory. Figure 4(b) illustrates a simple approach to implementing the directory,

where one dirty bit and a presence bitvector are designated for each cache line. The
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size of the presence bitvector corresponds to the number of nodes on the system.

This directory structure is often referred to as the full-bitvector directory or full-map

directory. The presence bitvector indicates which nodes are currently sharing the same

memory block, and the dirty bit implies that only the node with its corresponding

presence bit set contains the valid data. A cache read miss in a node i sends a message

to the home node. If the line is in the clean state (i.e., the corresponding dirty bit

is off), the home node supplies data along with a response message and turns on

the ith presence bit. If the line is in the modified state (i.e., the corresponding dirty

bit is on), the home node sends the owner’s node information to the requester. The

requester then sends a request message to the owner node. The owner node supplies

the data back to both the requesting node and the home node, changing the cache

line to the shared state. In the home node, the dirty bit is turned off and the ith

presence bit is turned on. A cache write miss or a write hit in a local node i involves

the invalidation of all sharing nodes indicated by the presence bits of the home node.

After the invalidation, the corresponding dirty bit and the ith presence bit are turned

on in the home node. If a cache line in the shared state is replaced in a local node

i, a message called the replacement hint may or may not send to the home node to

turn off the ith presence bit. This helps to reduce unnecessary invalidation messages

the next time the block is modified. Note that whether the replacement hint is sent

or not has no effect on the correctness.

The main disadvantage of the memory-based schemes is the storage overhead of

the directory. As the number of nodes increases, the number of presence bits also

increases. To overcome the storage problem, Agarwal [21] proposed keeping a fixed

number of pointers for each line, which is referred to as a limited pointer directory

or simply a limited directory. This comes from the observation that typically only

a few caches share the same block of memory. LimitLESS [40] also has the same

structure as a limited directory except that the directory overflow is handled by the
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software. Gupta et al. [59] and O’Krafka et al. [85] proposed reducing the directory

height, taking advantage of the fact that the size of the cache (i.e., total cached

blocks) is much smaller than the one of the main memory. Several DSM machines,

including Stanford DASH [73], FLASH [68], MIT Alewife [22], and SGI origin [70],

were implemented based on this scheme.

2.2.2 Cache-based Schemes

In contrast, the cache-based scheme only keeps the head pointer for each block in

the main memory, as illustrated in Figure 4(c). The head pointer points to the first

sharing node of the block. Then, the forward and backward pointers in the caches

of each node direct the next sharer and the previous sharer, respectively, in a doubly

linked list fashion. This scheme is called chained directory. A cache read miss in a

local node sends a message to the home node to obtain the head node information

of that block. After receiving a response from the home node, the requester sends a

message to the head node, asking to insert itself to the head of the doubly linked list.

The home node or old head node sends the requested data to the requesting node,

and the requester becomes the new head node of that block. A cache write miss or a

write hit causes a breakup of the doubly linked list since the requester becomes the

only owner of that block (no other sharers) in the invalidation-based protocol. This

breakup involves a series of invalidation messages from the head node to the end of the

linked sharing nodes. Unlike the memory-based scheme, this scheme requires sending

messages (replacement hint in the memory-based scheme) to neighbors even when a

clean line is replaced since the new cache line will need the forward and backward

pointers.

Even though the cache-based scheme exhibits some disadvantages such as the long

latency resulting from the serialization of the invalidation messages, it has several ad-

vantages over the the memory-based scheme. First, the directory overhead is smaller
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since it only keeps the head pointers. Second, it keeps track of the order of the block

access through the doubly linked list, making it easier to provide fairness. Third,

the invalidation messages are sent by distributed nodes, whereas it is centralized in

the memory-based scheme. Several DSM machines, including Sequent NUMA-Q [74],

Convex Exemplar [108], and Data General [42], implemented this scheme.
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2.3 Coherence Protocol Evaluation

The cache coherence protocol is a crucial design choice for multiprocessor systems,

directly affecting the overall system performance. Depending on the selection of coher-

ence protocols and the target application workloads, several system factors can impact

the overall performance to different certain levels such as the maximum achievable

bus bandwidth (in snoop-based protocols) and the number of network transactions

(in directory-based protocols). Since the introduction of coherence protocols, they

have been thoroughly evaluated over the past two decades [57, 66, 88, 107, 39, 40,

26, 49, 51, 50, 48, 21, 85, 58, 44]. As multiprocessor research matured in the 1990s,

parallel benchmarks such as SPLASH2 [111], NAS [30], ScaLAPACK [41], TPC [18],

PARKBENCH [14], and Perfect Club [35] were developed to facilitate the study of

centralized and distributed shared memory multiprocessor systems. Most protocol

evaluations were performed via trace-driven or execution-driven software-based sim-

ulation. This section summarizes evaluation methodologies, metrics used for the

protocol evaluations, and design options associated with such investigations.

2.3.1 Snoop-based Cache Coherence

Goodman [57] used six traces from PDP-11 and VAX machines under Unix to conduct

experiments on the write-once protocol. This work reported the correlation of bus

traffic and miss ratio, and discussed the cache block size effect. Katz [66] also utilized

traces to evaluate the Berkeley protocol and reported the bus traffic reduction over

the write-once protocol. Papamarcos and Patel [88], on the other hand, used an

analytical model to demonstrate the effectiveness of the Illinois protocol. Firefly [107]

implemented by Digital Equipment Corporation (DEC) was again evaluated using

trace-driven simulation to assure its effectiveness.

In the late 1980s, several researchers [26, 50, 49, 51] evaluated coherence proto-

cols under the same environment. Archibald [26] used the probability function to
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generate memory references and compared the write-once, Synapse, Berkeley, and

Illinois protocols with the write-through policy. This work reported the results using

a metric called system power, which is the sum of the processor utilization in the

system. Eggers and Katz used trace-driven simulations to characterize sharing pat-

terns and their effect on cache coherence performance [49, 51]. They also evaluated

the impact of block size in the Berkeley write-invalidation protocol and the impact of

cache size in the Firefly write-update protocol [50]. Using a trace-driven simulation

of SPLASH [97] benchmarks, Dubois et al. [48] coined the term false sharing, rep-

resenting useless misses in a shared memory multiprocessor. Using execution-driven

simulation with the SPLASH2 benchmarks, Culler et al. [44] extensively explored the

design trade-offs in protocols by analyzing the bus bandwidth requirement according

to the state transitions and the cache block size. They also classified cache misses in

detail according to the benchmarks and block sizes.

2.3.2 Directory-based Cache Coherence

Chaiken et al. [39] evaluated memory-based schemes (full-map directory and limited

directory) and cache-based schemes (chained directory) using trace-driven simulations

with address traces from a variety of parallel applications. In this study, the proces-

sor utilization, in which computation is based on an analytical model [90], is used

as an evaluation metric. LimitLESS [40] implemented in MIT Alewife [22] was eval-

uated using both execution-driven simulation and trace-driven simulation to report

the execution cycle times of applications. Agarwal et al. [21] used the trace-based

simulation to evaluate directory schemes, where the communication cost per memory

reference is used as a metric. O’Krafka and Newton’s evaluation in [85] is based on

the execution-driven simulation using ssim, genie, and verf benchmarks, where the

average communication requirements and the average memory access time were used
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as evaluation metrics. Using the execution-driven simulation with SPLASH2 bench-

marks, Culler et al. [44] examined the full-bitvector directory protocol, where the

experiment showed the number of network traffic patterns according to the number

of processors. They also reported the cache block size impact on network traffic with a

32-processor configuration. With a 64-processor configuration, their experiment also

explored the data-sharing patterns by observing the invalidation size (the number of

active sharers) upon each invalidating write.

2.4 Emulation Initiatives for Evaluation

To overcome the inherent limitation of the software-based simulations, several re-

searches devoted their efforts to emulations using field-programmable gate array

(FPGA). Compared to the software simulation, the emulation achieves several orders

of magnitude speedup in evaluation. Hence, it is possible to perform the broad-range

analysis of the target systems’ behavior.

2.4.1 RPM

Rapid prototyping engine for multiprocessor (RPM) [47] is an emulator developed at

University of Southern California in the mid-to-late ’90s. The major objective of the

RPM project is to develop a common, configurable hardware platform to emulate the

different models of multiple instructions multiple data streams (MIMD) systems with

up to eight execution processors. The RPM platform emulates ccNUMA architectures

under strong ordering of shared-memory accesses. It is organized with nine identical

boards connected through Futurebus+. Each board contains a CPU, L1 and L2

caches, main memory, and several FPGAs. The Sparc IU/FPU is used as CPU,

and L1/L2 caches were implemented with SRAM and FPGAs. To emulate variable

interconnection delays, the delay unit was implemented using an FPGA and sits

between the Futurebus+ and the network interface. The RPM platform has inherent

limitations due to its infrastructure. For example, it cannot prototype systems with
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more than eight execution processors and/or with more than two levels of caches. The

RPM cannot implement various interconnection topologies due to the connection of

the nodes through Futurebus+ and the processor architecture is fixed. In spite of

these limitations, RPM is much more flexible than traditional hardware prototypes

and can help explore a large number of practical multiprocessor architectures.

2.4.2 MemorIES

Memory instrumentation and emulation system (MemorIES) [83] is an emulator de-

veloped by IBM T.J. Watson Research Center in 2000, for evaluating large caches

and SMP cache coherence protocols for their future server systems. The emulation

board can be directly plugged into the 6xx bus of an RS/6000 SMP server, in which

each processor has L1 and L2 caches. L3 caches can be designed in the FPGAs on

the MemorIES board with various configurations and protocols. Then, by passively

monitoring 6xx bus transactions, MemorIES is able to perform on-line emulation of

the cache behavior while the system is running commercial workloads without slowing

down the execution speed of the applications. However, since MemorIES is a passive

emulator, one cannot inject transactions on the bus. This nature limits the usage of

MemorIES. For example, when emulating an L3 cache and/or an L3-level coherence

protocol, MemorIES cannot perform invalidations of cache lines in L1 and L2 caches

because it cannot inject invalidation traffic on the bus. In other words, MemorIES

cannot emulate a fully-inclusive cache. In addition, since the latency information of

the L3 hit and miss is not reflected in the emulation, the emulated cache’s behavior

could be slightly different from the one of a real L3 cache. Nevertheless, MemorIES

complements simulation techniques by providing fast results for a wide design space.

2.4.3 Other Cache Emulators

Reconfigurable address collector and flying cache simulator (RACFCS) [120] is a cache

emulator developed at Yonsei University in 1997. Using an Intel 486 system, the latch
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board is directly connected to the pins of the microprocessor. At the same time when

the board is collecting traces through the connected pins, the RACFCS performs

an on-line cache emulation. Like MemorIES, it is a passive emulator and also has

the same limitations. That is, RACFCS cannot emulate a fully-inclusive cache and

cannot perform the latency studies.

Hardware accelerated cache simulator (HACS) [109] is an L3 cache emulator de-

veloped at Brigham Young University in 2002. In terms of functionality, HACS is

exactly same as RACFCS. The difference is that HACS uses a more advanced system

equipped with a Pentium R©-Pro processor. By passively monitoring bus transactions,

HACS performs an L3 cache emulation while running SPECint2000 natively.

Active cache emulator (ACE) [60] is also an L3 cache emulator developed by Intel

in 2005. Based on a dual Pentium R©-III processor server system, ACE replaces one of

the two Pentium R©-III processors with FPGA for cache emulation. The Pentium R©-

III processor has an L1 and an L2 inside, and the ACE emulates an L3 cache by

monitoring bus transactions on front-side bus (FSB). The major difference from other

cache emulators (MemorIES, HACS, and RACFCS) is that ACE is an active emulator

whereas the rest is passive ones. The ACE is able to inject delays on the bus by the

snoop stall protocols of FSB. Thus, it is able to perform a real L3 cache emulation

while running benchmarks natively. Sitting on the FSB, ACE keeps track of the

memory transactions and stores appropriate TAG information from memory transac-

tions on the FSB for the given emulated cache size. If a memory transaction misses

the L3 TAG stored in the FPGA, a default L3 miss latency is inserted onto the FSB

based on the snoop stall protocol. If a hit is detected, zero or a default hit latency

is inserted in the same way. The ACE enables the L3 cache behavior modeling and

analysis for commercial workloads while natively running workloads. However, there

is one limitation in the ACE. It cannot emulate a complete non-blocking L3 cache

since the FSB does not allow for out-of-order completion of bus transactions.
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CHAPTER III

SOC INTEGRATION AND COMMUNICATION

ARCHITECTURES

According to the 2005 International Technology Roadmap for Semiconductors (ITRS) [8]

report, a system-on-a-chip (SoC) closely resembles an application specific integrated

circuit (ASIC), and is evolved most directly from an ASIC with the principal goals

of design cost reduction and higher level system integration. The primary distinc-

tion between an ASIC and a SoC is that the SoC design advocates the concept of

reusing existing blocks or cores to minimize the need and effort of creating new cir-

cuits blocks. The reusable intellectual property (IP) components in an SoC include

high-volume custom cores or blocks, analog or digital, as well as software modules.

Such a design methodology can improve design productivity, reduce verification and

validation effort, and accelerate time-to-market. Nevertheless, it demands the in-

tegration of heterogeneous components designed potentially even by incompatible

process technologies. Since heterogeneous components such as microprocessor cores,

DSPs, memory, and various peripherals are integrated in one single chip, the major

challenges in the SoC design are compatibility and communication issues among het-

erogeneous IPs. Reflecting its importance, several companies, including ARM, IBM,

Sonics, and PALMCHIP, proposed proprietary or open-source communication archi-

tectures, and research institutes such as TIMA Lab [17] are actively investigating

compatibility and efficient ease-of-integration issues. Furthermore, international con-

sortia such as VSI Alliance [20] and OCP-IP [12] are developing common standards

for IP core interfaces to facilitate “plug and play” SoC design practices. The purpose

of these protocols aims at providing an efficient communication design methodology
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for integrating heterogeneous IPs.

This chapter summarizes these communication architectures and interface proto-

cols by major hardware vendors. It begins by introducing the SoC communication

architectures in Section 3.1. Section 3.2 discusses the compatibility issues by present-

ing SoC interface standards, and Section 3.3 covers multiprocessor SoC architectures

and design methodologies.

3.1 SoC Communication Architecture

SoCs are mainly designed and deployed for embedded systems. Due to the nature

of many embedded applications, these systems typically have real-time requirements.

Thus, a small real-time kernel, often referred to as a real-time operation system

(RTOS), is generally used to manage and schedule applications’ tasks. While an

RTOS is used to guarantee a real-time response on the software side, the underlying

layer (i.e., the hardware) should also provide sufficient computing power and efficient

communication mechanism. Especially, as heterogeneous components are integrated

in SoCs, it is imperative to provide an efficient communication mechanism. This sec-

tion presents the communication architecture proposed by major hardware vendors.

3.1.1 AMBA

Advanced Microcontroller Bus Architecture (AMBA) [27] from ARM is an open stan-

dard, on-chip communication specification, which has been evolved since the mid-

90s. Figure 5 shows the current AMBA communication architecture, which includes

AMBA 2.0 and AMBA 3 Advanced eXtensible Interface (AXI). AMBA 2.0 is based

on the bus architecture as depicted in Figure 5(a). It consists of two levels of bus

hierarchy: Advanced High-performance Bus (AHB) or Advanced System Bus (ASB)

for high-performance communication, and Advanced Peripheral Bus (APB) for slow

peripheral devices. The pipelined AHB connects embedded processors (e.g. an ARM

core) to high-performance peripherals such as DMA controller, on-chip memory, and
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memory interface. The ASB is an old version of the pipelined system bus and is

being replaced by AHB. APB is mainly used to connect slow peripheral devices such

as UART, timer, keyboard/mouse controller, etc. APB is accessed by bus masters

in AHB or ASB via a bus bridge depicted in Figure 5(a). Unlike ASB, AHB pro-

vides separate bus channels for read and write, eliminating the bus load (capacitance)

problem incurred by the tri-state based shared bus. AHB also allows for the split and

retry transactions, which can be used by slave devices to issue a SPLIT or RETRY

response if a slave is unable to supply data immediately for a transfer. This mecha-

nism improves the overall utilization of the bus. For arbitration, AHB makes use of

the priority-based mechanism.

The AMBA 3 AXI protocol, of which the concept is based on interconnect and

interface, provides more advanced features — including unaligned data transfer, mul-

tiple outstanding transactions, and out-of-order completion. A typical system consists

of a number of masters and slave devices connected together through some form of

interconnect as shown in Figure 5(b). The AMBA 3 AXI provides a single interface
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definition for describing interfaces: between a master and the interconnect, between

a slave and the interconnect, and between a master and a slave. This interface defi-

nition enables a variety of different interconnect topologies. Nevertheless, for most of

the systems, the channel bandwidth requirement of addresses is significantly less than

that of data. Such systems can achieve a good balance between system performance

and interconnect complexity by using a shared address bus with multiple data buses

to enable parallel data transfers.

3.1.2 CoreConnect

CoreConnect [61] from IBM shares many similar characteristics with the AMBA

architecture. It is an open standard and consists of three buses for interconnecting

IPs: Processor Local Bus (PLB), On-chip Peripheral Bus (OPB), and Device Control

Register bus (DCR), as shown in Figure 6. The pipelined PLB, which corresponds to

the AHB in AMBA, interconnects high-bandwidth devices such as processor cores,

external memory interfaces, and DMA controllers. It supports separate read and

write buses and allows split transactions. The OPB, which corresponds to APB in

AMBA, is a secondary bus designed to alleviate system performance bottlenecks by

reducing capacitive loading on the PLB. Similar to the APB, low-bandwidth devices

such as UART, Timer, and I2C reside on OPB. The slight difference is that the OPB

supports multiple masters whereas the APB supports only one master (the APB

bridge). CoreConnect provides a separate bus (DCR) for configuring and checking
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registers of on-chip modules. The DCR lessens PLB and OPB traffic. For arbitration,

PLB relies on the priority-based scheme.

3.1.3 SiliconBackplane µNetwork

Figure 7 shows SiliconBackplane µNetwork [98] from Sonics. Each IP in a system

communicates with an attached agent via ports implementing OCP [12], and the

agents communicate with each other using a network that implements the Silicon-

Backplane protocol. The SiliconBackplane µNetwork makes use of agents to decouple

the performance of the communication network from the individual IP cores, enabling

the cores to be designed independently. The key concept governing the Sonics archi-

tecture is the combination of a fully pipelined, fixed-latency bus and a time-division

multiple access (TDMA)-based bandwidth allocation scheme into a single commu-

nication protocol. The pipeline is quite common in other bus architectures such as

AMBA and CoreConnect. For the fixed latency, the architecture allows for the retry

mechanism, which is also a feature in AMBA and CoreConnect. However, unlike

AMBA and CoreConnect in which arbitration is based on assigned priorities to bus

masters, SiliconBackplane relies on TDMA-based arbitration. It is also noticeable

that only one common bus accommodates all necessary IPs in a system. Therefore,

the usable bandwidth must satisfy the aggregated simultaneous bandwidth required
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by all integrated IP cores. SiliconBackplane µNetwork also features the dynamic mod-

ification of many system parameters as the system requirements change. To avoid

a tri-state bus, it uses a variant of a multiplexed bus topology where the signal to

be driven on a bus is qualified (through an AND gate) by the enable signal, and the

resulting qualified signals are OR-ed together.

3.1.4 WISHBONE

WISHBONE [15] is an open standard from OpenCores [13]. Figure 8 shows its inter-

connection model for connecting IPs. As shown, the masters and slaves communicate

through an interconnection interface referred to as INTERCON. The WISHBONE

interconnection allows the system integrator to change the way that IP cores connect

to each other. The AMBA 3 AXI has the same feature. There are four types of

interconnections in INTERCON: point-to-point, data flow, shared bus, and crossbar

switch. The point-to-point interconnection is the simplest way to connect two IP

cores together. The data flow interconnection is used when data is processed in a se-

quential and pipelined manner. The shared bus, like other bus architectures, provides

a way to connect masters with slaves using a common medium. The crossbar switch

interconnection is useful when multiple masters need to use the interconnection at the
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same time. The IP cores’ interfaces conforming the WISHBONE protocol have “in”

and “out” ports for address, data, and other control interface signals. This allows the

interface to be adapted to the multiplexed or tri-stated interconnection. Even though

multiplexed interconnection requires a large number of routing spaces and logic gates,

it is a more portable design choice since using tri-state logic is inherently slower and

is not friendly to EDA tools. Finally, the arbitration mechanism in WISHBONE is

left to be defined by end users.

3.1.5 CoreFrame

CoreFrame [43, 87] from PALMCHIP is not significantly different from AMBA and

CoreConnect. Its architecture is based on MBus and PalmBus, as shown in Figure 9.

MBus is the interface between the memory access controller (MAC) and the mem-

ory channels (DMA channels). PalmBus is the interface for communications between

the CPU and peripheral blocks and is not used to access memory. PalmBus is ac-

cessed via the PalmBus interface block, which is similar to the bridges in AMBA and

CoreConnect. CoreFrame is optimized for devices requiring extensive DMA with high

bandwidth data streams. It supports point-to-point signals instead of shared tri-state

buses. CoreFrame defines a processor-independent architecture, whereas AMBA and

CoreConnect are most likely to be used with their own processors such as ARM
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and PowerPC unless a wrapper [118] is adopted. CoreFrame opens the arbitration

mechanism to be application-specific.

3.1.6 LOTTERYBUS

LOTTERYBUS [69] is an arbitration mechanism for efficient and fair communica-

tion. The development of LOTTERYBUS is motivated by two observations: First,

the static priority-based arbitration does not provide a means of controlling the frac-

tion of communication bandwidth assigned to each component, possibly resulting in

starvation for lower priority components in some situations. Second, TDMA-based

arbitration could lead to significant latency increase resulting from variations in the

time profiles of communication requests, sometimes high-priority communication in-

curs longer latency. To provide efficiency and fairness in communication, Lahiri pro-

posed an arbitration scheme called LOTTERYBUS. Its mechanism heavily relies on

a uniformly distributed random number generator, which can be generated using a

linear feedback shift register. Using the notation in [69], let the bus masters in bus-

based system be C1, C2, ... Cn, the number of tickets held by each master be t1,

t2, ... tn, and at any bus cycle let the set of pending requests be represented by a

set of Boolean variables ri (i=1,2,...n), where ri=1 if the master Ci has a pending

request, and ri=0 otherwise. Then, the master to be granted is chosen depending

on the generated random number, by comparing it with the probability of granting

master Ci given by Eq 1. The experimental results show that LOTTERYBUS offers

low access latencies and effective bandwidth guarantees for each system component.

P (Ci) =
ri · ti∑n

j=1
rj · tj

(1)

3.1.7 Discussion

Table 3 summarizes the SoC communication architectures we discussed. LOTTERY-

BUS is not included in the table since it is only used for the arbitration mechanism. In
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general, the basic communication architecture is not significantly different from each

other. It is reasonable to say that the current dominant SoC communication architec-

tures are mostly based on shared bus. However, as embedded applications demand

more computing power and their datapaths become diverse, communication archi-

tectures tend to leave more freedom to end-users for the choice of communication

architecture. For example, AMBA 3 AXI and WISHBONE allow users to config-

ure the interconnection network such as multi-level bus, point-to-point network, and

crossbar switch-based architectures.

In SoC designs, a predictable data access latency is also important to meet the

real-time constraint of embedded applications. To satisfy this demand at the hardware

level, new standards employ more aggressive and advanced communication mecha-

nisms. For example, the AMBA 3 AXI adopts the split transaction and out-of-order

completion of the bus transactions. CoreConnect and SiliconBackplane µNetwork

also provide the split transaction to prevent slow devices from holding the shared

medium for a long time.

From an implementation standpoint, one noticeable change in design practices

compared to those in the 90s is that the shared bus is implemented with a variant

of multiplexors instead of tri-state buffers. In the past, when silicon real estate was

precious, the bus was implemented using tri-state buffers since the same physical line

could be shared among multiple agents. However, the disadvantages of using the

tri-state buffer are that it is inherently slow because of turn-around time and it is

not friendly to the EDA tools. Nowadays, as process technology advances, designers

have more luxury to explore silicon real estate for complex designs. For example, the

evolution from 0.5µm to 0.18µm technology frees 88% of the chip space [45]. More-

over, the system requires faster clock frequency and the time-to-market requirement

becomes more stringent. A tri-state-based design could be problematic in meeting

those conditions, so a multiplexor-based unidirectional bus becomes more prevalent.
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Table 3: Characteristics of SoC communication architectures.

Company
Communication

Topology
Interconnection Arbitration Latency-reducing

Protocol Type Mechanism Mechanism

ARM

Hierarchical bus Multiplexor-based bus
AMBA 2.0 -AHB(ASB),APB (ASB: tri-state based) Priority-based Split transaction

Pipelined bus
Configurable Split transaction,

AMBA 3 AXI - shared bus Multiplexor-based N/A∗ Out-of-order com-
- multilayer bus pletion
Hierarchical bus

IBM CoreConnect -PLB,OPB,DCR Multiplexor-based bus Priority-based Split transaction
Pipelined bus

Sonics
SiliconBackplane Single bus

Multiplexor-based bus TDMA-based Retry
µNetwork Pipelined bus

OpenCores WISHBONE

Configurable Configurable Configurable

None
- point-to-point - tri-state based - priority-based
- shared bus - multiplexor-based - round robin
- crossbar

Palmchip CoreFrame Hierarchical bus Multiplexor-based bus Application-specific N/A∗

* It is not described in documents.
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It also possibly shortens the time-to-market span because it conforms well to EDA

tools. However, the advantages come at the expense of silicon area.

3.2 SoC Interface Protocols

As mentioned, an SoC system is characterized by the heavy reuse of pre-built IPs, and

it requires the mix and match integration of heterogeneous IPs on a single chip. In

achieving this goal, there are two conflicting camps [116]. Companies such as ARM,

IBM, Sonics, and Palmchip advocate their own communication protocols as potential

standards. On the other hand, international consortia such as OCP-IP and VSI Al-

liance argue for using standardized communication links. In general, companies that

promote their own architectures claim that a standard protocol incurs performance

and area overhead, whereas the advocates of the standard communication protocol

believe that no single bus protocol can address the needs of all SoC integration. This

section summarizes two standard interface protocols proposed by OCP-IP and VSI

Alliance.

3.2.1 OCP

The open core protocol (OCP) [12] defines a high-performance, bus-independent

interface for IPs. It defines a point-to-point interface between two communicating

entities such as IP cores and bus interface modules (bus wrappers). Figure 10 shows
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a simple system containing a bus wrapper and three IPs: a system target, a system

initiator, and an entity that acts as both. The on-chip bus in Figure 10 could be any

bus protocol such as AMBA, CoreConnect, SiliconBackplane µNetwork, WISHBONE,

or CoreFrame.

The OCP supports not only basic data flow for interoperability such as simple

interactions between master and slave, but also complex protocols such as out-of-

order completion. A transfer across this system occurs as follows. A system initiator

(OCP master) presents command, control, and possibly data to its connected slave

(a bus wrapper interface module), as indicated in 1© of Figure 10. The interface

module sends the request across the on-chip bus system ( 2©). Since OCP supports

a bus-independent interface, the interface designer should convert the OCP request

into a native bus transfer. The bus wrapper interface module on the receiver side

then converts the bus transfer to a legal OCP command ( 3©). The system target

(OCP slave) receives the command and takes the requested action ( 4©).

The OCP is flexible. Each instance of the OCP is configured based on the re-

quirements of the connected entities. For example, system initiators may require

more address bits than the system target. There are some models of how existing

IPs communicate with one another. Some employ pipelining to improve bandwidth

and latencies. Others use multiple-cycle access models to simplify timing analysis

and reduce implementation area. In order for an IP to be OCP-compliant, the IP

must include at least one OCP interface and comply with all aspects of the OCP

specification.

3.2.2 VCI

Virtual socket interface alliance (VSIA) [20] and its on-chip bus (OCB) development

working group also define a standard communication protocol called virtual com-

ponent interface (VCI) [19, 45]. Figure 11 shows the VCI components associated
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Figure 11: Integration of IPs using the VCI protocol.

with the integration of IPs using the VCI protocol. The basic structure of VCI is

not much different from OCP. The OCB in Figure 11 could be any bus architecture

presented in Section 3.1. The VCI protocol can be defined as a generic cycle-based,

memory-mapped, point-to-point communication protocol. A master sends a request

to a slave, and the slave returns a response. The basic VCI (BVCI) defines the split

protocol through two handshake protocols. That is, the timing of the request and the

response are fully separated. However, it does not allow out-of-order completion. The

advanced VCI (AVCI) protocol offers more flexibility such as switching the order of

packets. In order for an IP to be VCI-compliant, a bridge shown in Figure 11 should

be available by the OCB IP provider to adapt communication between the IP and

OCB.

3.2.3 Discussion

OCP and VCI are quite similar in capability and in their design concept. However,

the OCP is considered a superset of the VCI [12]. While VCI focuses on data flow,

OCP additionally handles control and test flows. Even though AVCI provides some

advanced features, OCP 2.0 is a functional superset of all essential VCI features. The

basic concept of OCP and VCI is to use a “socket” to bridge heterogeneous IPs to

on-chip bus protocols such as AMBA and CoreConnect. To take advantage of this

concept, IP providers should supply OCP or VCI-compliant IPs, so SoC designers
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seamlessly exercise “plug and play” design practices.

The manual adaption of heterogeneous IPs to standard protocols is often a labor-

intensive and time-consuming process. Some papers [46, 91, 89] proposed using al-

gorithmic approaches to automate the interface design process. In particular, D’silva

in [46] experimented with their algorithm to automatically synthesize interfaces for

SoCs combined with AMBA (AHB, ASB), CoreConnect (PLB), and OCP. Their

experiments focused only on read behavior.

3.3 MPSoC Architecture & Methodology

Today’s SoCs demand the computing power and flexibility to cope with evolving

applications, leading to the integration of multiple embedded processors (homoge-

neous or heterogeneous) in a single chip, which is often referred to as multiprocessor

system-on-chip (MPSoC). In MPSoCs, processors are chosen based on applications’

demands. For instance, when an application demands MPEG and audio processing

with a network support, one general embedded processor or single digital signal pro-

cessor (DSP) can be insufficient in providing the computing power needed. Under

this circumstance, an SoC designer would choose DSPs for video and audio processing

and embedded processors for the network and housekeeping work. Such MPSoCs cre-

ate new design challenges for integration and communication among heterogeneous

processors.

PROPHID [71] is a design method aimed at high-performance systems with a

focus on high-throughput signal processing for multimedia applications. It uses the

heterogeneous MPSoC architecture template, as shown in Figure 12(a). Its develop-

ment was motivated by the fact that multimedia applications require a large number

of tasks on a variety of multimedia data, and many tasks such as audio processing

often necessitate the support of different standards in a wide range. PROPHID ex-

ploits coarse-grain task-level parallelism, which can be extracted by drawing block
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Figure 12: PROPHID heterogeneous high-performance multiprocessor architecture.

diagrams to specify applications. It enables the parallel execution of large indepen-

dent tasks. In Figure 12(a), the CPU executes low-performance tasks that require a

lot of programmability, while the other processors, referred to as application domain

specific (ADS) processors, execute high-performance tasks that require only a lim-

ited amount of programmability. ADS processors are optimized in terms of speed,

area, and power, and tuned towards a well-defined set of tasks. To greatly reduce

explicit communication overhead for task synchronization, PROPHID employs two

communication channels as shown in Figure 12(a): Central bus (shared bus) and

Communication network. The central bus, where CPU and ADS processors are at-

tached, is used for control-intensive tasks, while communication network is used for
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high-throughput communication among ADS processors. Figure 12(b) illustrates

two communication network configurations. Taking advantage of stream-based data

processing in multimedia applications, the first communication network shown at the

top of Figure 12(b) is implemented using first-in first-out (FIFO) between ADS pro-

cessors. FIFO enables the implicit synchronization among ADS processors by using

FIFO full and empty signals. The second communication network shown at the bot-

tom of Figure 12(b) allows the reconfigurability of the network. The reconfigurable

network can range from a single bus or multiple buses to a partially or fully connected

switch matrix. It allows flexibility in assigning tasks on ADS processors according to

different task graphs, after the MPSoC is fabricated.

TIMA laboratory [17] in France is actively investigating the MPSoC design method-

ology [118, 75, 29, 119, 54, 56, 38, 117]. Lyonnard [75] et al. presented an approach to

automatically generate application-specific architectures for heterogeneous MPSoCs.

It uses the generic MPSoC architecture template [29] shown in Figure 13(a). The

communication interface, referred to as communication coprocessor, is composed of

two parts, illustrated in Figure 13(b): one specific to the processor and the other

a generic depending on the number of communication channels and communication

protocols used. This decomposition dissociates the CPU from the communication

network, providing modularity and flexibility since other kinds of CPUs or DSP cores

can be integrated in the same way. The automatic generation starts from the macro

architecture specification such as connections among processors using high-level de-

scription. From the macro architecture specification, parameters for micro (physical)

architecture are extracted. Then, a detailed description of the final micro-architecture

is generated from pre-built libraries through a refinement process.

Wolf forecast the future of MPSoCs and described hardware and software chal-

lenges that MPSoC designers currently face [110]. MPSoCs have already started to

enter the marketplace (for example, Intel IXP2855 [7], Philips Nexperia [10], and TI
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Figure 13: Generic MPSoC architecture template.

OMAP [11], to name a few) and are expected to be available in even greater va-

riety over the next few years. MPSoCs require real-time and low power operation,

making heterogeneous architectures more attractive over the long run. Wolf pointed

out that a key area of concentration to handle both the real-time and power prob-

lem is the memory system, which needs to be predictable for data accesses. The

specialized structure of the memory system can conserve energy, allowing architects

to more carefully characterize the behavior of the time-critical parts. Software also

plays a critical role in MPSoC design. MPSoCs are often designed to comply with
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standards. Thus, a great deal of the software effort is to port the reference imple-

mentation of the standards to the platform. Since the reference implementations are

written with functionality (not performance) in mind, porting the code requires the

use of software analysis tools especially for trace-based analysis. In addition, the

designers need to build simulation models that can make use of the traces, and there

is still some work to be done to create easy-to-configure, highly accurate simulators

for heterogeneous MPSoCs. From the operating system and middleware standpoints,

MPSoCs demand their core functions to be implemented in a very small amount of

software for performance and memory limitations. The extensive use of middleware

will provide advanced features such as Internet access on top of micro-kernels, and

some key functions such as interprocessor communications primitives must execute

in a very small number of cycles to meet MPSoC design constraints.
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CHAPTER IV

CACHE COHERENCE PROTOCOL INTEGRATION ON

SHARED-BUS-BASED MPSOCS

In MPSoC designs, it is imperative to integrate processor IPs that meet the perfor-

mance requirements of embedded applications. Another important design choice is

the communication architecture for processor IPs. The communication among proces-

sors is inevitable for task synchronization, for example. In this chapter, we consider

a shared bus as the communication architecture.

Using coherence protocols in processor IPs and integrating them, we provide the

generic solutions for the efficient communication among processors on a shared-bus-

based MPSoCs [100, 101, 102]. As discussed in Section 2.1, there are two main cate-

gories of snoop-based coherence protocols: invalidation-based protocols and updated-

based protocols. In general, invalidation-based strategies are more robust, therefore,

most vendors use a variant based on such a strategy as their default protocol [44].

We also focused on them in this contribution.

Figure 14 depicts a simplified heterogeneous MPSoC architecture based on a

shared-bus, and Table 4 shows its classification in terms of the processors’ cache co-

herence support. It shows a dual-processor platform. However, the proposed approach

can be easily extended to platforms with more than two processors. Supporting co-

herence in PF1 and PF2 requires special hardware, and there is a limitation in the

resulting coherence mechanism. This limitation is discussed in Section 4.5.2. For

PF3, the cache coherence can be maintained with the proposed generic methodolo-

gies. This chapter mainly focused on PF3.

This contribution begins by studying the incompatibility problems of coherence
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Table 4: Classification of MPSoC platforms according to coherence support.

Platform (PF)
Cache coherence hardware

inside each processor
Processor 0 (P0) Processor 1 (P1)

PF1 No No
PF2 Yes (No) No (Yes)
PF3 Yes Yes

Processor 0

(MEI)

Processor1

(MESI)

shared bus

Memory

controller

MPSoC

Figure 14: Shared-bus-based MPSoC

protocols when integrating heterogeneous processors in MPSoCs. Then, integration

techniques are proposed to resolve incompatibility issues. To enhance the system

performance, we propose two architectural features. We also discuss additional hard-

ware and software issues in MPSoCs. To present benefits of the proposed techniques,

the simulation platforms and environments are introduced, and simulation results are

presented according to benchmarks.

4.1 Motivational Examples

To effectively present the problems, we discuss two examples in Table 5 according to

the operation sequence. First, integrating the MEI protocol with others such as MSI

or MESI requires the removal of the S state. To illustrate the problem with the S

state, the example in Table 5(a) is used assuming that Processor 0 (P0) supports the

MEI protocol and Processor (P1) supports the MESI protocol, with the operation
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sequence a©, b©, c©, and d© executed for the same block C. Operation a© makes

the I→E state change in P1 as a result of the read. Operation b© incurs the I→E

transition in P0 and E→S transition in P1. Since C is in the E state in P0, operation

c© does not appear on the bus even though P1 has the same block in the S state.

It invokes the E→M state transition in P0. However, the state of the block in P1

remains the same. Therefore, operation d© hits on the line of the cache and accesses

the stale data, which should have been invalidated during c©.

The second example illustrates the integration of the MSI and MESI protocols,

where the E state must be prohibited. Suppose that P0 supports the MSI protocol

and P1 supports the MESI protocol, and the operations in Table 5(b) are executed for

the same block C. Operation a© invokes the I→S state change in P0. Operation b©

causes the I→E transition in P1, while the block’s status in P0 remains unchanged

because P0 does not assert the shared signal. Note that processors with the MSI

protocol do not support the shared signal. Operation c© then makes only the E→M

transition in P1. As a result, P0 reads the stale data in operation d© because of a

cache hit indicated by the S state. Therefore, the E state should not be allowed in

this protocol combination.

4.2 Protocol Integration Techniques

As illustrated in Section 4.1, integrating processors with different coherence protocols

restricts the use of the entire protocol states. Only the states that the distinct pro-

tocols have in common are preservable with a exception of the O state. For example,

when integrating two processors with MEI and MESI, the coherence protocol in a sys-

tem must be MEI. To meet this requirement, we propose two integration techniques

– read-to-write conversion and shared-signal assertion/de-assertion.
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Table 5: Incompatibility problems and solutions.

(a) Problem and Solution with MEI and MESI

seq.

Read, Without Proposed With Proposed
Write Solution Solution
on a C state in P0 C state in P1 C state in P0 C state in P1
block C (MEI) (MESI) (MEI) (MESI)

a© P1 read I I → E I I → E
b© P0 read I → E E → S I → E E → I
c© P0 write E → M S(Stale) E → M I
d© P1 read I → E S(Stale) M → I I → E

(b) Problem and Solution with MSI and MESI

seq.

Read, Without Proposed With Proposed
Write Solution Solution
on a C state in P0 C state in P1 C state in P0 C state in P1
block C (MSI) (MESI) (MSI) (MESI)

a© P0 read I → S I I → S I
b© P1 read S I → E S I → S
c© P1 write S(Stale) E → M I S → M
d© P0 read S(Stale) M I → S M → S

4.2.1 Read-to-write Conversion

Integrating the MEI protocol with others requires the removal of the S state. The

S state can be reached either by the own processor’s transaction or by the remote

processor’s transaction. The own processor’s read transaction incurs the I→S tran-

sition in its cache when the block is present in other processors’ caches. This case is

discussed in Section 4.2.2. The remote processor’s read transaction makes the E→S,

M→S, or M→O transitions, depending on initial states and coherence protocols.

Figure 15 depicts our proposed method to remove the S state incurred by the

remote processor’s transaction. Because the transition to the S state in this case

occurs when the processor observes a read transaction on the bus, the technique to

remove the S state is to convert a “read” operation to a “write” operation within

the wrappers of snooping processors. However, the memory controller should see
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the actual operation to correctly access main memory when it needs to. As such,

the S state originated from the remote processor’s transaction will be excluded in

the controllers’ state machines. When a processor observes a write transaction on

a cache line in the E, M, or O state, the processor’s response could be different

depending on implementations. If the line is in a clean state (the E state), the

processor invalidates the line. If this line is in a dirty state (the M state or the O

state), the processor initiates either cache-to-cache transfer or write-back operation

to memory, with invalidating the line.

The last two columns of Table 5(a) illustrate the state transitions with the pro-

posed solution. Operation b© invokes the E→I state transition in P1 because P1

observes a write operation on the bus. Operation d© makes the M→I transition in P0

because a snoop-hit on the M line causes the state change to I in the MEI protocol.

Implementation cost: As shown in Table 1, a write-miss in a write-back cache

initiates a bus transaction, which is generically called a bus-exclusive read (BusRdX).

In general, the way to generate the BusRdX information is different depending on

processors and bus protocols. Thus, we use the generic signal, BusRdX, for the

cost estimation. Implementation requires asserting the BusRdX signal to snooping

processors within a wrapper even in a memory read transaction by a master processor.

We used Synopsys’s Design Compiler to evaluate our implementation using 0.18µm

TSMC library. The synthesized result shows that implementing the read-to-write

conversion requires only two gates.

4.2.2 Shared Signal Assertion and De-assertion

As demonstrated in Section 4.1, the E state is not allowed in integrating MSI and

MESI protocols. Using the MESI protocol as an example, the I→E transition occurs

only when a processor initiates a read transaction on the bus, and other processors

on the system do not have the same block in their caches. The sharing information

49



shared bus

Wrapper

Read/Write

Write

Memory
Controller

Processor 1

(MESI)

Wrapper

Processor 0

(MEI)

Figure 15: Read-to-write conversion to remove the S state.

is delivered by the shared signal. Therefore, the technique to remove the E state

is to assert the shared signal within the processor’s wrapper, whenever a memory

read transaction is initiated by its own processor. Like the read-to-write conversion,

it can be implemented within the wrappers, as shown in Figure 16(a). With this

technique, the operation b© in Table 5(b) invokes the I→S state transition in P1, and

the operation d© makes the M→S transition in P1, resulting in coherent caches.

Shared signal de-assertion is also necessary to remove the S state originated from

the own processor’s transaction. For example, in the MESI protocol, the I→S tran-

sition occurs when its own processor initiates a memory read transaction on the bus

and the shared signal is asserted in response. Because both the transaction is initi-

ated by its own processor and the state transition occurs in itself, the read-to-write

conversion can not be used in this situation. Therefore, to completely remove the S

state, the shared signal de-assertion should be used in conjunction with the read-to-

write conversion. As shown in Figure 16(b), the wrapper around itself de-asserts the

shared signal in response to a memory read transaction to prevent the transition to

the S state.

Implementation cost: The implementation of the shared signal assertion re-

quires asserting the shared signal to its own processor whenever a read miss occurs.
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Figure 16: Shared signal assertion and de-assertion

The synthesis result of our implementation using Verilog-HDL shows that the shared

signal assertion requires 1.3 gates. It shows the same result for the shared signal

de-assertion.

4.2.3 Detailed Descriptions According to Protocol Combinations

In this subsection, we discuss protocol integrations in detail for four major proto-

cols: MEI, MSI, MESI, and MOESI. The variations include (1) MEI with MSI/

MESI/MOESI, (2) MSI with MESI/MOESI, and (3) MESI with MOESI. In the

generic coherence protocols depicted in Figure 2, the cache-to-cache transfer could

occur any time when snooping processors find the block in their local caches. In

other words, when snooping processors have the requested block in the E, S, M, or
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O states, the generic protocols allow the cache-to-cache transfer. However, we limit

that the cache-to-cache transfer occurs only from M or O states, as we discussed

in Section 2.1.1 and most commercial processors do.

4.2.3.1 MEI with MSI, MESI, or MOESI

The integrations with the MEI protocol do not allow the S state.

MSI Protocol: We employ the read-to-write conversion in this combination.

In the MSI protocol, two transitions exist to reach the S state: (a) I→S when a local

read miss occurs and (b) M→S when the processor observes a read transaction on

the bus. In case (a), the S state cannot be removed since a local read miss always

makes a transaction to the S state in the MSI protocol, whether the other processors

share the block or not. However, even though it is in the S state, only one processor

owns a specific block at any point in time due to the read-to-write conversion. With

the technique, the S state changes to the I state when other processors read from

or write to the same block. Therefore, despite the name, the S state is equivalent

to the E state. The M→S state transition cannot occur because of the read-to-

write conversion. Only the M→I transition is allowed with the operation conversion.

Therefore, the resulting protocol becomes equivalent to MEI.

MESI Protocol: In this combination, we employ the shared signal de-assertion

and read-to-write conversion. In the MESI protocol, there are three possible transi-

tions to the S state: (a) I→S when a local read miss occurs and the shared signal is

asserted in response (b) E→S when the processor observes a read transaction on the

bus while caching the block in the E state and (c) M→S when the processor observes

a read transaction on the bus while caching the block in the M state. The shared

signal de-assertion prevents the transition (a). The read-to-write conversion prohibits

the transitions (b) and (c). Therefore, the S state is completely removed, and the

resulting protocol becomes equivalent to MEI.
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MOESI Protocol: The same techniques used for the MESI protocol – shared

signal de-assertion and read-to-write conversion – are applied to the MOESI protocol

except the O state needs to be handled in this combination. The O state can only be

reached when the processor observes a read transaction on the bus while caching the

block in the M state. Nevertheless, the read-to-write conversion prevents the M→O

transition. Therefore, the integrated protocol becomes equivalent to MEI.

4.2.3.2 MSI with MESI, or MOESI

The integrations with the MSI protocol do not allow the E state.

MESI Protocol: We employ the shared signal assertion in this combination.

In the MESI protocol, there is one transition to the E state: I→E when a local

read miss occurs and other processors are not caching the block. The shared signal

assertion in a wrapper around the master processor prevents the transition to the E

state. Therefore, the integrated protocol becomes equivalent to MSI.

MOESI Protocol: The same method – the shared signal assertion – is applied

to the integration of MSI and MOESI protocols except the O state should be taken

care of. In the MOESI protocol, the O state can be reached only from the M state

accompanying cache-to-cache transfer, when the processor observes a read transaction

on the bus. The O state has a similar definition to the S state with one exception.

The processor with a line in the O state is responsible for updating main memory

when the line is replaced. In the generic MESI protocol, main memory is updated

simultaneously upon cache-to-cache transfer with the M→S transition. However, in

the MOESI protocol, main memory is not updated upon cache-to-cache transfer with

the M→O transition.

To combine these two protocols, the memory controller should be able to differen-

tiate the origin of cache-to-cache transfers. If the cache-to-cache transfer is initiated
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from a processor with MESI, the memory controller should update main memory si-

multaneously. However, if the cache-to-cache transfer starts off from a processor with

MOESI, the memory controller does not have to update main memory. Nevertheless,

if the memory controller always updates main memory upon cache-to-cache transfer,

it still preserves the data consistency. Note that in this case, it could possibly cause

the performance loss since the O state becomes the same as the S state and useless

updates occur upon the evictions of the lines in the O state. Therefore, if the memory

controller selectively updates main memory upon cache-to-cache transfer, this combi-

nation becomes equivalent to the MSI protocol with the O state enabled. Otherwise,

this combination becomes equivalent to the MSI protocol.

4.2.3.3 MESI with MOESI

This combination does not require the integration techniques and the same discussion

made in the MSI and MOESI protocol integration applies to this combination. Due

to the O state, if the memory controller selectively updates main memory upon cache-

to-cache transfer, this combination preserves all the protocol states. Otherwise, the

MESI and MOESI combination becomes equivalent to the MESI protocol.

4.3 Architectural Features for Performance Enhancement

In the followings, we propose two architectural features to enhance the coherence

performance of the integration techniques.

4.3.1 Snoop-hit Buffer

According to the generic coherence protocols, when a snoop-hit occurs on a line in the

M state, the processor that originally requested the block can get the data through

cache-to-cache transfer. Nonetheless, it is sometimes not feasible to do cache-to-cache

transfer when integrating heterogeneous processors in MPSoCs for the following rea-

sons. First, although some embedded processors do have coherence protocols, they
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sometimes do not support cache-to-cache transfer. For example, the cache-to-cache

transfer is not supported in PowerPC750’s MEI protocol. Even worse, when inte-

grating processors with no inherent coherence support, it is not feasible to transfer

data through cache-to-cache transfer. Second, processors could operate at different

operating frequencies because MPSoC designs are typically based on instantiating

existing IPs, and pre-built IPs could be designed to operate at various clock fre-

quencies. Moreover, the incompatibility in processors’ interfaces could inhibit the

cache-to-cache transfer.

In those situations, for each snoop-hit, it is necessary to do back-to-back burst

main memory accesses: one for the write-back of the M state line and the other for the

original request. These two accesses are for the same block. To reduce the memory

access latency, we propose a snoop-hit buffer. Figure 17 illustrates a system with the

snoop-hit buffer. The snoop-hit buffer has a single buffer structure, where one single

cache line can be stored. It takes a snoop-hit line during a write-back transaction ( 1©

in Figure 17) and supplies the line to the requested processor ( 2© in Figure 17). Main

memory is updated simultaneously with the dirty line’s buffering into the snoop-hit

buffer. This simple additional hardware not only reduces the memory access latency,

but also creates an opportunity for the power savings since external address, data, and

control pins need not be activated for the second transaction. Once-buffered data are

valid until a processor encounters any of the following conditions: the next snoop-hit,

a write-miss in the same address, or a dirty line replacement of the buffered block.

Since a write-miss appears as BusRdX on the bus in a write-back cache and a dirty

line replacement appears as a write transaction on the bus, the line in the snoop-

hit buffer is invalidated when detecting a snoop-hit or write-invalidation (BusRdX

or write operation) on the bus. It means that buffered data can be accessed by all

subsequent read requests from other processors until the next snoop-hit or a write-

invalidation occurs.
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Figure 17: Snoop-hit buffer.

Performance can be further improved by employing a double buffer structure.

Similar to the double buffering in a video frame buffer, a double buffer consists of

a front buffer and a back buffer for keeping two cache lines. The difference from a

single buffer is that main memory is not updated until the next snoop-hit occurs on a

line with a different address (sh diff). When the next snoop-hit occurs, the line in the

front buffer is copied to the back buffer. Then, the back buffer updates main memory,

and the front buffer is used for buffering a line of sh diff simultaneously. The back

buffer is invalidated upon finishing updating main memory. However, the front buffer

is only invalidated when detecting a write-invalidation in the same address on the bus.

A double buffer can remove unnecessary memory-update transactions, which could

occur in the single buffer structure, when a snoop-hit is followed by other snoop-hits

or write-invalidations in the same address before the sh diff.

Implementation cost: Using Verilog-HDL, our implementation of the snoop-

hit buffer consists of a single 32-byte line buffer, a state machine for writing to and

reading from the snoop-hit buffer, and a memory-mapped register to enable the snoop-

hit buffer. The synthesized result reports 2,987 gates.

56



Table 6: State transition percentages (SPLASH2 was executed on a 16 processor
configuration, and Multiprog was executed on a 8 processor configuration).

Percentage of the state transitions
I E S M

SPLASH2 0.29% 0.76% 19.9% 78.9%
Multiprog kernel (data references) 0.14% 3.31% 30.51% 65.68%

4.3.2 Region-based Cache Coherence

Even though the integration techniques guarantee coherence among heterogeneous

processors, there are potential performance losses caused by the lost protocol states

(e.g., the S state). According to SPLASH and Multiprog simulations, as summa-

rized in Table 6 [44], the M state is composed of the majority of the protocol state

transitions followed by the S state. Note that the M state is always preserved in the

proposed integration techniques regardless of the protocol combinations. Neverthe-

less, the S state is removed in some cases when different protocols are integrated. For

example, it should be eliminated when integrating with the MEI protocol.

The shortcoming of the proposed techniques is that our techniques require proces-

sors in a system to use the minimum set of the protocol states. In a situation where

SoC applications share data only among processors that have more common protocol

states, our techniques become too restricted and prohibit the compatible states. To

address this issue, we propose a region-based cache coherence (RBCC).

Given the memory area usages from the applications, the region-based cache co-

herence permits the disabled states conditionally. Using an MPSoC example with

four processors in Figure 18, three processors have the MESI protocol1 and one pro-

cessor has the MEI protocol. We assume that the memory area 1 is shared by all four

1We implemented a data cache with the MESI protocol using Verilog-HDL and ARM9TMDI
core. The data cache has 8KB direct-mapped structure with a 32-byte line size
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Figure 18: Region-based cache coherence.

processors and memory area 2 is shared by three processors with the MESI protocols.

By implementing a comparison logic and comparing addresses generated by CPU, the

RBCC logic decides on-the-fly whether to enable the S state or not. Using the RBCC

technique, the integrated protocol becomes MESI for area 2, whereas the system-wide

integrated protocol becomes MEI.

RBCC can be implemented with two memory-mapped registers, one comparator,

two multiplexers, and two tri-state buffers inside wrappers. Continuing with the

same example, one register (start addr reg) is used to keep the start address of area

2, and the other register (range reg) has the range information as shown in Figure 18.

Figure 18 also shows the shared signal and BusRdX. The assertion of the shared

signal informs a master processor that other processor(s) is(are) caching the same

block. As depicted in Figure 18, the shared signal is an input when a processor is
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a bus master (that is, when the bus grant (BGNT) is asserted), and it is an output

when a processor is not a bus master (that is, when when snooping). The BusRdX

is used to request an exclusive copy of a block when a write-miss occurs. It is an

input when a processor is not a bus master, and an output when a processor is a bus

master. If a snoop address detected by the RBCC logic falls in the range of area 2, the

RBCC logic bypasses the shared signal and BusRdX on the bus to processors through

multiplexers, as shown in Figure 18. For area 1, the problem becomes integrating the

MEI and MESI protocols. Then, we employ the shared signal de-assertion and read-

to-write conversion, as discussed in Section 4.2.3.1. The shared signal de-assertion

is employed by selecting “0” (de-assertion) from a multiplexer, and the read-to-write

conversion is realized by selecting “1”(assertion) for the BusRdX. The RBCC logic

in Figure 18 can be extended to include as many area register pairs as needed. It

also can be easily extended to other protocol combinations such as MEI/MOESI,

MESI/MOESI, etc.

Implementation cost: The implementation requires two memory-mapped reg-

isters, one comparator, and two multiplexers for each memory area. We need only

two tri-state buffers no matter how many areas we choose to use. Our synthesized

result reports 591 gates for one memory area.

4.4 Additional Issues in Heterogeneous MPSoCs

Integrating heterogeneous processors in SoCs incurs additional problems in hardware

and software. We discuss these issues in the following subsections.

4.4.1 Synchronization Mechanism for Heterogeneous Processors

In a multiprocessor system, critical sections should be accessed in a mutually ex-

clusive manner. To guarantee this, systems use the lock mechanism, in which pro-

cessors should access lock variables atomically. Processors designed for supporting

multiprocessors or multi-threaded systems inherently provide atomic instructions with
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dedicated interface signals. For example, the PowerPC755 features lwarx and stwcx

instructions with the RSRV signal, and the ARM processor supports swp and swpb

instructions with the BLOK signal.

For these instructions to work correctly and to guarantee atomic accesses, the

memory controller should support the corresponding protocol of interface signals.

Even though homogeneous platforms can take advantage of these instructions, it

would be infeasible to use them in a heterogeneous multiprocessor environment be-

cause the behaviors of atomic instructions are inconsistent in different processors.

Software solutions such as the Dekker’s algorithm [44] and the Bakery algorithm [96]

are alternatives in heterogeneous environments. The Dekker’s algorithm is a popular

software-only mutual exclusion algorithm used in the absence of hardware support for

atomic read-modify-write operations, when two processes are competing for a shared

resource. The Bekery algorithm overcomes the two-process limitation in a system and

provides a mutual exclusion for any number of processes. However, these software

algorithms are inefficient from a performance standpoint.

The SoC Lock Cache (SoCLC) [23], a simple yet efficient hardware, would be

a more attractive solution for heterogeneous environments. The SoCLC uses only

1-bit lock register for a lock, and sits on a shared-bus like the snoop-hit buffer. It

uses general load and store instructions to acquire and release a lock in an atomic

fashion, so SoCLC can use the same high-level code regardless of heterogeneity among

processors. With the SoCLC, if a processor attempts to access a critical section, it

first checks the lock register using a load instruction. If the lock is not in use, it returns

a “0” to the processor and sets the bit value to “1”. Afterward, if other processors

attempt to access the critical section, the lock register returns a “1” without changing

its value. As such, this mechanism guarantees the atomic access. The processor

releases the lock by writing a “0” to the lock register, using a general store instruction.
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4.4.2 Real-time Operating Systems

Embedded systems, in general, necessitate real-time properties in processing tasks,

which requires the use of a real-time operating system (RTOS) in SoCs. Using RTOS

simplifies the design process by splitting applications into several tasks. To provide

for real-time processing, the RTOS supports multitasking, event-driven and priority-

based preemptive scheduling, priority inheritance, and inter-task communications and

synchronization. Especially, in heterogeneous multiprocessor platforms, inter-task

communication and synchronization will impact system performance since processors’

heterogeneity could lead to inefficient shared-memory management

Atalanta RTOS [104] is an embedded RTOS designed at Georgia Tech. For

inter-processor communication and synchronization, Atalanta provides both message-

passing and shared address space approach, whereas multiprocessor OS kernels such

as real-time executive for multiprocessor systems (RTEMS) and operating system

embedded (OSE) rely on message-passing. Therefore, in Atalanta, heterogeneous

processors can share system objects such as semaphore, mailbox, and queue by using

cacheable shared memory, taking advantage of the protocol integration techniques.

The shared-memory approach provides much better use of shared memory, thereby

increasing performance over that of a message-passing approach [103]. In addition,

since mixed systems of RISC processors, DSP processors, and other specialized pro-

cessors are assumed to be the target architectures, Atalanta’s design has been tailored

for heterogeneous multiprocessor platforms.

4.4.3 DMA

Many systems incorporate DMA for faster data transfer between I/O modules and

memory. In general, memory-mapped I/Os are allocated in non-cacheable memory

space. Therefore, DMA should not cause any coherence problem. For some uncon-

ventional systems that allow DMA to transfer data between cacheable regions, the
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coherence problem can be resolved by allowing DMA controller to concede the bus

mastership. Whenever a snoop hit occurs during DMA, the DMA controller yield the

bus mastership to the snoop processor and reclaim it after write-back if the corre-

sponding line is dirty. However, this DMA issue is not limited only to heterogeneous

platforms, but it also applies to homogeneous platforms.

4.5 Case Studies

Here, we present two implementations using commercially available embedded proces-

sors: a PowerPC755, a write-back Enhanced Intel486, and an ARM920T. The Pow-

erPC755 processor uses the MEI protocol, and Intel486 supports a modified MESI

protocol. The ARM920T does not offer native support for cache coherence. The

examples of this case study focus purely on maintaining cache coherence. Thus, we

selected this combination of processors from available Seamless [79] processor models,

solely to illustrate how to apply our techniques to the integration of actual heteroge-

neous processors.

4.5.1 PowerPC755 and Intel486 Integration

As shown in Figure 19(a), the schematic diagram illustrates the integration of a

PowerPC755 and an Intel486, representing a case of the PF3. Wrappers are necessary

for the protocol conversions between the processors’ interfaces and the bus, in addition

to the implementation of the proposed techniques (the read-to-write conversion and

shared signal assertion/de-assertion). On the PowerPC755 side, the read-to-write

conversion and the shared signal de-assertion are not necessary since the S state is

not present in the protocol states. On the Intel486 side, however, we should remove

the S state. It is done by asserting the INV (invalidation request) input signal, a

cache coherency protocol pin. The Intel486 cache controller samples the signal on

snoop cycles. If INV is asserted, the cache controller invalidates the addressed cache

line if the line is in the E or S state. If a cache line is in the M state, the line is
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drained to main memory. Normally, INV is de-asserted on read snoop cycles and

asserted on write snoop cycles. However, to remove the S state, the wrapper asserts

the INV signal regardless of the transaction types.

In the Intel486’s cache, cache lines are defined as write-back or write-through at

allocation time in enhanced bus mode, depending on the WB/WT (write-back/write-

through) pin status. Only write-through lines can have the S state, and only write-

back lines can have the E state. Therefore, the protocol for write-through lines

becomes the SI protocol while the protocol for write-back lines becomes the MEI

protocol.

When a snoop hits on a line with the M state in the Intel486 cache, the HITM (hit

to a modified line) output signal is asserted, and correspondingly, the wrapper around

the PowerPC755 informs the core of a snoop hit by asserting the ARTRY (address

retry) input signal. Then, the PowerPC755 immediately yields the bus mastership,

so the Intel486 drains the modified line to main memory. When a snoop hits on a

line with the M state in the PowerPC755’s data cache, the PowerPC755 asserts the

ARTRY output signal. The arbiter then immediately asserts BOFF (backoff), so

Intel486 yields the bus mastership. Then, the PowerPC755 drains the modified line

to main memory.

4.5.2 PowerPC755 and ARM920T Integration

Figure 19(b) shows another example of an MPSoC using a PowerPC755 and an

ARM920T representing a case of PF2. The same methodology used in ARM920T

is applicable to PF1. The wrapper in the Figure 19(b) converts the PowerPC’s in-

terface protocol to the ASB protocol, and vice versa. The wrapper also allows the

PowerPC755 to monitor the bus transactions generated by the ARM920T. The snoop
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Figure 19: Case study platforms for shared-bus-based MPSoCs.

logic 2 provides snooping capability for the ARM920T, which does not have any na-

tive cache coherence support. It keeps track of all the address tags of the ARM920T’s

data cache in a TAG content addressable memory (or TAG CAM) by monitoring bus

transactions initiated by the ARM920T. When the tag of a requested address gen-

erated by the PowerPC755 matches an entry of the TAG CAM, it triggers a snoop

hit to the ARM920T by asserting nFIQ (fast interrupt). Then, an interrupt service

routine is responsible for draining the snoop-hit cache line if the line is modified or

invalidating it if the line is clean.

2Our preliminary synthesized design using 0.18µm TSMC library shows that the snoop logic
occupies 11.18% of full-custom ARM920T area, supporting 16MB shared memory

64



Time

PowerPCBus master ARM PowerPC

nFIQ

ARM’s 
interrupt
response
time 

snoop hit in 
ARM

ARM drains out 
shared data

ARM tries to check the lock, which is 
in the data cache of PowerPC

PowerPC accesses
shared data

1

2
3

Figure 20: Hardware deadlock problem in PF1 and PF2.

Even though this mechanism can achieve the data consistency, there is one limita-

tion when at least one of the processors does not have native cache coherence support

such as in the case of ARM920T. PF1 and PF2 pertain to this category, and Fig-

ure 20 illustrates the problem. Suppose that the architecture allows lock variables

and a shared data to be cached, and the shared data is currently in the ARM920T’s

data cache. After acquiring the lock, the PowerPC tries to access the shared data as

shown in step 1©. Therefore, a snoop hit occurs in the snoop logic, and the nFIQ is

asserted as illustrated in step 2©. Then, the ARM processor is supposed to drain or

invalidate the addressed cache line in the interrupt service routine. However, because

most commercial processors implement pipelining and precise interrupt, the ARM

might or might not respond to the interrupt immediately. During the interrupt re-

sponse time as shown in step 3©, ARM might check the lock to see whether it has

been released. Lock variables are currently in the PowerPC’s data cache because

the PowerPC acquired the lock lately. Therefore, PowerPC should drain the cache

line storing the lock variables to main memory. However, if PowerPC gains the bus

mastership, it is supposed to retry the transaction, which it did in step 1©, instead of

draining the lock variables. We call this situation hardware deadlock.

65



There are two solutions to preventing the hardware deadlock problem. The first

option is not to cache the lock variables. The other alternative is to use the So-

CLC [23] discussed Section 4.4.1. For the first solution, a software algorithm such as

the Dekker’s algorithm [44] or the Bakery algorithm [96], can be used as a lock mecha-

nism for mutual exclusion even though it is inefficient from a performance standpoint.

For the second solution, it needs a simple lock module sitting on a bus. Since the

lock variables are not cached in either case, the hardware deadlock does not occur.

Even though we focused our discussion on synchronization using a single lock,

the same problem can occur among critical sections where applications implement

multiple locks in a system. For this reason, a system can have only one lock in PF1

or PF2, requiring that the program perform all shared variable operations within

critical sections.

4.6 Experimental Setup

Hardware simulation demands enormous amount of time to run real applications.

We experimented with the Verilog simulation of a MPEG decoding application on a

two-processor platform with three small frames. Using the simulation environment

listed in the Table 7, the simulation took more than three days to finish on a SUN

UltraSPARC workstation, making a complete evaluation of our approach too time-

consuming. Therefore, we designed a suite of micro-bench to evaluate the impact of

our methodology.

Our micro-bench suite consists of a worst-case scenario (WCS), a typical-case

scenario (TCS), and a best-case scenario (BCS). In these programs, one task runs

on each processor. Each task intensively tries to access a critical section protected

by the SoCLC. Once a task acquires the lock, it accesses shared data quantified by

cache lines and modifies them before exiting the critical section. We implemented the

micro-bench in a way that each task acquires the lock alternatively. It means that
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the simulation assumes the worst-case situation for lock acquisition and releasing.

In addition to the micro-bench, we also modeled another benchmark, part of the

Atalanta RTOS kernel. As discussed in Section 4.4.2, Atalanta is tailored for hetero-

geneous multiprocessor SoCs. For interprocessor communication and synchronization,

Atalanta provides shared memory approach. Thus, processors that share system ob-

jects such as semaphores and mailboxes, can directly access other processors’ task

control blocks (TCBs). For simulations, we modeled the task insertion and deletion

mechanism in the Atalanta RTOS kernel. Suppose that processor 1 and processor 2

share a semaphore S. Processor 1 now owns the S, and processor 2 is waiting for it.

When processor 1 is done with the S, it releases the S and promotes the waiting tasks’

TCB to the ready state by changing the state field in TCB. Processor 1 also inserts

the TCB into the ready list of processor 2 and sends an interrupt to processor 2, so

processor 2 can reschedule tasks and runs the highest priority task. This procedure is

repeated continuously for evaluations. In the Atalanta, tasks’ TCBs of each processor

are connected through a doubly-linked list based on priority. Each task’s TCB has 14

word-length fields including the state, priority, and two fields for the doubly-linked

list. The Atalanta also maintains an array to reference the highest-priority ready

tasks. The array is shared by all processors in a system.

We use a complete software solution as the baseline, in which the programmer is

responsible for draining or invalidating all the used shared data before exiting critical

sections. Since the critical sections are protected by the lock mechanism, users should

be aware of which shared data are in use in the critical sections3. The Atalanta RTOS

also has an option to enable the cache flush instructions at the end of each critical

section, in case processors do not have native coherence support.

3To flush out all used shared data in the critical sections, we used “asm volatile (“mcr p15, 0, %0,
c7, c14, 1”::“r”(addr))” for ARM920T and “asm volatile (“dcbf 0, %0”::“r”(addr))” for PowerPC755
recursively.
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Table 7: Simulation environment.

Simulators
• Seamless CVE [79]
• ModelSim [80]
• PowerPC755: 100MHz *

Operating frequencies • ARM920T: 50MHz *
• ASB: 50MHz

Instruction & Data caches Enabled

Memory access time

• Single word: 7 cycles
• Burst (8 words)
– 7 cycles for the 1st word
– 1 cycles for each subsequent word

* These low frequencies are because of the limitation of simulation models. Similar
results are expected for simulations with higher operating frequencies

The integration techniques (the read-to-write conversion and shared signal assertion/de-

assertion) is referred to as the simple hardware approach. The snoop-hit buffer in ad-

dition to a simple hardware approach is referred to as the snoop-hit buffer approach.

The simulation environment and the hardware configurations are summarized in Ta-

ble 7. Two-processor (PowerPC755 and ARM920T) and four-processor platforms

(three PowerPC755 processors and one ARM920T) are used to quantify the perfor-

mance. The Intel486 and PowerPC755 platform4 should outperform the PowerPC755

and ARM920T platform because of the absence of an interrupt service routine.

We simulated and measured the performance of the simple hardware approach, the

snoop-hit buffer approach, and the baseline using hardware/software co-simulations.

Seamless CVE [79] and ModelSim [80] from Mentor Graphics were used as simulators.

We varied the memory latency from 7-1-1-1-1-1-1-1, 13-2-2-2-2-2-2-2 .. to 97-9-9-9-9-

9-9-9. The string “7-1-1-1-1-1-1-1” means 7-cycle access time for the first word and

1-cycle access time for each 7 trailing word. Note that a cache line size is eight words.

The miss penalties indicated by the x-axis in Figure 21 ∼ Figure 30 represent the

latencies taken to fetch the entire cache line from main memory.

4Because of the unavailability of the complete processor model of Intel486 in Seamless at the
time of this study, the results of a PowerPC755 and Intel486 system are not reported.

68



4.7 Simulation Results

4.7.1 Performance of Integration Techniques with Snoop-hit Buffer

Figure 21 to Figure 26 show the speedup with respect to the software solution as the

miss penalty increases.
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Figure 21: Worst case results on a two-processor platform.

In the WCS, each task keeps accessing the same blocks of memory alternatively.

That is, a task in a processor accesses the shared blocks of memory after acquiring

a lock. When the task releases the lock, a task in other processor acquires the lock

and accesses the same blocks of memory. This procedure is repeated continuously.

Figure 21 shows simulation results on the two-processor platform, where the sim-

ple hardware approach performs better than the pure software solution with a few

exceptions. These exceptions come from cache line replacements and/or interrupt

processing overheads that vary as the miss penalty changes. The simulation with the

snoop-hit buffer shows at least a 6.3% performance improvement over the software

solution for all WCS simulations. As the miss penalty increases, the performance of

the snoop-hit buffer approach increases dramatically. The simulation result shows up
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Figure 22: Worst case results on a four-processor platform.

to a 53.4% performance improvement, when the miss penalty is equal to 160 cycles

and the number of accessed cache line is 32. Figure 22 shows simulation results on

the four-processor platform, where even the simple hardware approach always shows

better performance (at least a 0.97% improvement) with no exceptions because only

one processor (ARM920T) needs the interrupt service routine. The simulation with

the snoop-hit buffer approach shows an 11.8% ∼ 57.1% performance improvement

compared to the pure software solution.

In the BCS, each processor accesses different critical sections alternatively. It

means that snoop-hits do not occur with the coherence support in hardware. How-

ever, in the pure software solution, each processor should drain all the accessed shared

blocks explicitly before exiting the critical sections. Figure 23 shows the simulation

results on the two-processor platform, which achieved a 49.2% performance improve-

ment with a 14-cycle miss penalty and one accessed cache line. The speedup increases

as the number of accessed cache line increases and/or the miss penalty increases. The
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Figure 23: Best case results on a two-processor platform.

simulation with 32 cache lines shows a 407% performance improvement with an 160-

cycle miss penalty. The simple hardware approach and the snoop-hit buffer approach

show the same results, because snoop-hits do not occur in the BCS. Figure 24 shows

the simulation results on the four-processor platform, which achieved a 51% ∼ 426%

performance improvement.

In the TCS, each task randomly picks up shared blocks of memory among 10 blocks

before entering into the critical section. Figure 25 shows the simulation results on

the two-processor platform. The simple hardware approach shows a 21.7% ∼ 54.2%

performance improvement, and the snoop-hit buffer approach shows a 24.5% ∼ 214%

performance improvement compared to the pure software solution. Figure 26 shows

the simulation results on the four-processor platform. The simple hardware approach

shows a 27% ∼ 68.6% performance improvement, and the snoop-hit buffer approach

shows a 46.4% ∼ 226% performance improvement over the pure software solution.
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Figure 24: Best case results on a four-processor platform.

4.7.2 Performance of RBCC

We evaluated the RBCC performance with two benchmarks – Micro-bench and the

Atalanta RTOS kernel model – using the hardware platform in Figure 18. Similar to

the micro-bench in Section 4.7.1, the micro-bench consists of WCS, BCS, and TCS

programs. One task runs on each processor, and each task accesses the same blocks

of memory after acquiring the lock of the SoCLC. We use a system without RBCC as

the baseline.

In the WCS, three ARM processors with the MESI protocols keep writing to the

same blocks of memory while the PowerPC755 executes an idle task. Thus, the S

state in the MESI protocol does not affect the performance and the RBCC shows the

same performance as the baseline in Figure 27. However, with the snoop-hit buffer

the performance increases dramatically because every snoop-hit takes advantage of

the buffer. The simulation shows a 2.1% ∼ 56.9% performance improvement as the

number of accessed cache line and/or miss penalty increases.
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Figure 25: Typical case results on a two-processor platform.

In the BCS, three ARM processors keep reading the same blocks of memory while

the PowerPC755 executes an idle task. Without the RBCC technique, the integrated

coherence protocol of the platform in Figure 18 should be MEI. It means that when-

ever a processor reads shared blocks of memory, other processors should invalidate

addressed cache lines if they are caching them. However, with RBCC, they need not

invalidate the cache lines because the S state is still alive. The simulation results

in Figure 28 show a 13% performance improvement with a 14-cycle miss penalty and

one accessed cache line. The speedup increases as the number of accessed cache line

and/or miss penalty increases. The simulation with 32 cache lines shows a 3.06x

speedup over the baseline, when the miss penalty is 160 cycles. The snoop-hit buffer

does not affect the performance since snoop-hits never occur in the BCS.

In the TCS, all four processors access one memory area (the MEI protocol), and

three ARM processors additionally access another memory area (the MESI protocol).

We modeled the even access probability of each area by processors, so the ARM

processors access MEI and MESI memory areas with a 50% probability each. The

73



0
 20
 40
 60
 80
 100
 120
 140
 160

1.0


1.2


1.4


1.6


1.8


2.0


2.2


2.4


Simple hardware approach


Snoop-hit buffer approach


Sp
ee

du
p 

ov
er

 s
of

tw
ar

e 
so

lu
ti

on



Miss penalty (cycles)


# cache lines

 
32

 
16

 
8

 
4

 
2

 
1


Figure 26: Typical case results on a four-processor platform.

simulation assumes that each ARM processor performs read operations 80% of the

time, making a chance to use the S state around 50% (= (0.8)3). Figure 29 shows

the simulation results. RBCC shows a 0.5% ∼ 11.4% performance improvement. The

snoop-hit buffer in the baseline enhances performance by a 2.1% ∼ 19.6%. The RBCC

with the snoop-hit buffer increases the performance from 2.7% to 36.4%.

For the RTOS kernel simulation, we used the same simulation platform in Fig-

ure 18. Figure 30 shows the performance enhancement of the RBCC as the miss

penalty increases. The notation “2T-16T” means that two tasks are running on each

processor in the MEI protocol area and 16 tasks are running on each processor in the

MESI protocol area. A processor randomly selects two tasks to delete from and insert

to TCBs. After the deletion and insertion of the tasks’ TCBs from the doubly-linked

lists, the processor that modified other processor’s TCB generates an interrupt to the

processor that owns the inserted task. Then, the interrupted processor repeats the

procedure, that is, the insertion and deletion of two randomly selected tasks and the

generation of an interrupt.
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Figure 27: Worst case results of RBCC.

In the 2T-2T case in Figure 30, the RBCC shows marginal performance improve-

ment (0.4% ∼ 0.9%) over the baseline. This comes from short length of doubly linked

list. Only two tasks are running on each processor in the MESI protocol area, so

the list’s length is two. The insertion and deletion in this short linked list demands

modification of fields in both lists, leading almost no usage of the S state. Thus, the

RBCC provides marginal performance improvement. This marginal improvement is

due to sharing the array to reference the first ready list of tasks on each processor.

However, the 2T-16T case shows an 11% ∼ 29% improvement because 16 tasks are

connected through a doubly-linked list of TCBs. Depending on the position of in-

sertion and deletion, we modify the fields in only two or three TCBs. This lead to

increased usage of the S state. The snoop-hit buffer in the baseline enhances the

performance by a 4.4% ∼ 41.1% for the 2T-2T case and by a 2.9% ∼ 26.1% for the

2T-16T case. Finally, the RBCC with snoop-hit buffer enhances the performance by

a 4.5% ∼ 43.0% for the 2T-2T case and by 15.3% ∼ 77.0% for the 2T-16T case.
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Figure 28: Best case results of RBCC.

4.8 Conclusion and Discussion

In this contribution, we provided generic solutions to integrate cache coherence pro-

tocols in heterogeneous processors for MPSoC designs. In this study, we limited

our scope to shared-bus-based MPSoCs. For snoop-based and invalidation protocols,

cache coherence can be guaranteed by implementing two integration techniques inside

wrappers: the read-to-write conversion and the shared signal assertion/de-assertion.

Depending on combinations of coherence protocols, we described generically how to

integrate heterogeneous coherence protocols. In general, only the states that the dis-

tinct protocols have in common are preservable with a exception of the O state. To

enhance the system performance, we proposed two architectural features: the snoop-

hit buffer and the region-based cache coherence. We also presented implications and

limitation of integrating processors with no native coherence support.

Using commercial embedded processors, we evaluated the performance on the

two-processor and the four-processor platforms. Micro-bench simulations reported
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Figure 29: Typical case results of RBCC.

up to a 53.4% performance improvement over the pure software solution, even in

the worst case when the miss penalty is 160 cycles. In the best case, the simulations

showed a 5.26X speedup on the four-processor platform with a 160-cycle miss penalty.

For the region-based cache coherence, the RTOS kernel simulations indicated a 77%

performance improvement for the 2T-16T case when the miss penalty is 160 cycles.

For shared-bus-based MPSoCs, the integration techniques provide a generic solu-

tion for the incompatibility problem in communication via cache coherence protocols

among heterogeneous processors. Nevertheless, in reality, the design of shared-bus-

based MPSoCs demands much more engineering effort due to the following reasons.

First, heterogeneous processors could have unequal block sizes. The cache block

size is the power of 2 words (2n, where n = 1, 2, 3, ..., but typically 4 or 8 words).

When integrating processors with unequal block sizes, special care should be taken for

data consistency in wrappers. Suppose that the processor A’s cache and the processor

B’s cache are based on 8 words and 4 words, respectively. When processor A, for

example, generates an invalidation message on the bus, a wrapper around processor
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Figure 30: RTOS kernel simulation results of RBCC.

B should internally generate two invalidation messages to invalidate appropriate two

blocks in the processor B’ cache. Cache-to-cache transfer is rather problematic. When

a snoop hits on a line in the processor B’s cache, processor B is able to supply only 4

words and processor A needs 8 words to fill the line. The remaining 4 words should be

supplied from either processor B if cached or main memory if not cached. Therefore,

the processor B’s wrapper should be able to internally generate two transactions to

check two blocks.

Second, it is challenging to design the shared-bus protocol, which provides the su-

perset functionality of different processors’ interfaces. Processors’ interfaces not only

provide protocols for simple memory read and write transactions, but also typically

deliver processor-specific information such as special exceptions, power-saving, moni-

toring information, and so on. Including all different protocols could make shared-bus

protocol too complicated.

Third, embedded processor IPs may operate at a different range of clock fre-

quencies. For communication between different clock domains, not only should the

synchronization logic be designed, but also the wrapper design should include the
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buffering mechanism for proper read and write operations.

Lastly, software-related issues play important roles in MPSoC designs. We dis-

cussed lock and RTOS problems in Section 4.4.1 and Section 4.4.2. In MPSoCs, em-

bedded applications are mostly based on streaming data and exhibit the explicit par-

allelism. Therefore, the parallelization of embedded applications could be a straight-

forward task. However, in some rare cases, if applications do not show the explicit

parallelism and need to be parallelized, it would be a challenging task since het-

erogeneous processors have different performance characteristics. Hardware/software

co-design could resolve this issue in the early stage of MPSoC design by porting

applications into processor models.

In the same context, the memory consistency model could be a problem in the

heterogeneous multiprocessor environment. Depending on microprocessor vendors,

several different ordering specifications have been proposed with its own mechanism

for enforcing orders [44]. The purpose of these models is to overcome the performance

limitation imposed by the sequential consistency. For example, the total store order-

ing and the processor consistency models relax the write-to-read program order. The

weak ordering and the release consistency relax all program orders. In such systems,

the memory barrier or fense instructions are used to enforce the desired ordering

of memory references. Especially, in the heterogeneous multiprocessor environment,

these instructions should be employed in conjunction with the synchronization oper-

ation. For example, the insertion of these instructions right after the lock acquisition

(SoCLC) guarantees that all memory references before the synchronization are retired

once a process acquires the lock.
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CHAPTER V

CACHE COHERENCE SUPPORT ON

NON-SHARED-BUS-BASED MPSOCS

5.1 Introduction

The communication architecture based on a shared-bus provides a convenient com-

munication mechanism among processors since every processor is able to observe

broadcasting messages via a shared medium. Nevertheless, when integrating het-

erogeneous processors based on a shared-bus architecture, the versatility provided

by each processor is most likely compromised because of the difficulties discussed

in Section 4.8. Moreover, SoC designers typically do not develop their shared-bus

protocols due to short time-to-market and validation difficulties. Instead, they either

use proven off-the-shelf protocols such as AMBA and CoreConnect, or employ stan-

dard interface protocols such as OCP-IP and VSIA. As a result, very few MPSoC

vendors use a shared-bus approach. For example, commercial MPSoCs such as TI’s

OMAP [11] and Philip’s Nexperia [10] employ multiple bus architectures due in part

to fully utilize the native protocols.

The SoCs also should be inexpensive to gain competitiveness in the market. The

overall cost of fabricating SoCs or ASICs highly depends on the die budget and the

number of pin counts in the design. In most of the MPSoC systems, the majority of

the pins are dedicated to memory interfaces. Given several address and data buses of

multiple processors on an MPSoC, dozens of pins are easily consumed for each memory

interface. For this reason, architects often make an effort to share or multiplex the

memory interface among processors in SoC designs as long as the performance meets

its requirement. For example, the C55x DSP and the ARM925T in the TI’s OMAP
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Figure 31: Multiprocessor and multiple-bus SoC architecture.

5910 processor share a common external DRAM interface in a similar way to the

schematic in Figure 31.

In this contribution, we target a multiprocessor and multiple-bus (MPMB) SoC

architecture, on which a memory interface is shared among multiple bus agents such as

processors. Each processor uses its own private bus to access the shared memory. To

simplify our subsequent discussion, we assume that only one processor is connected to

each bus as depicted in Figure 31. Note that it can be easily extended to the scenario

with multiple buses and multiple processors on each bus. Cache coherence among

processors on each bus can be guaranteed by employing the integration techniques

described in Section 4.2.

Unlike a shared-bus architecture, the communication problem in the MPMB archi-

tecture is self-explanatory because processors are physically separated by the mem-

ory controller in Figure 31. Without special communication channels, the explicit

software-based synchronization must be used for the communication among proces-

sors in such architectures. Nevertheless, the software synchronization causes the

performance degradation because of its inherent inefficiency.

This contribution [99] proposes low-cost techniques, which enable cache coherence

capability for the efficient inter-processor communication on the MBMP architecture.
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Our main focus is on PF3 (refer to Table 4) and we discuss the implication and lim-

itation of integrating processors with no inherent coherence support in the MBMP

architecture (PF1 and PF2). This chapter begins by presenting the proposed ap-

proaches. Then, we estimate the hardware overhead implementing the approaches.

To present the benefits, the simulation platform and its environment are introduced,

and simulation results are presented according to benchmarks.

5.2 Coherence Support

To accelerate data communication, we propose a cache coherence-enforced memory

controller (ccMC), which wakes up the native snooping capability of processors. Then,

we study two approaches in the ccMC, depending on the allowable silicon budget:

the bypass approach and the bookkeeping approach. A common component in both

approaches is a memory-mapped register pair. One register (start addr reg) is set to

the starting address of a shared memory area, and the other (range reg) specifies the

size of the shared memory area. According to applications’ needs, the register pair

can be replicated to accommodate more discrete shared regions.

Figure 32 shows the simplified schematic of the bypass approach. The bypass ap-

proach blindly forwards a memory transaction to the opposite-side bus if the condition

is met. For example, users first set the register pair with a shared area information.

If the requested address of processor 1 falls into the shared region, the ccMC bypasses

the memory transaction to the opposite-side bus (bus 0 in this example).

Figure 34 shows the simplified schematic of the bookkeeping approach. In addition

to the register pair, the bookkeeping approach keeps track of coherence states of

shared memory blocks inside the ccMC. Depending on the state information, ccMC

either forwards a transaction to the opposite-side bus or sends a request directly to

the main memory. The bookkeeping approach is similar to the DSM’s directory-

based scheme in a sense that it keeps track of the state information (the directory
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Figure 32: The bypass approach.

information in DSM) in the memory controller. However, it is different from the

directory-based scheme because the goal is not to eliminate snooping, but to help

snooping for improving bus utilization. Furthermore, ccMC employs a small table to

cover shared memory regions based on the applications’ needs.

5.2.1 Bypass Approach

The bypass approach forwards a shared memory request indiscriminately to the

opposite-side bus for snooping. For example, suppose that Processor 1 (P1) in Fig-

ure 32 requests a shared memory block and misses its data cache. Consequently,

this transaction appears on bus 1, and the ccMC compares the address against the

register pair. Since the transaction is for the shared memory area, the ccMC requests

the bus 0’s mastership through the bus request (BREQ0) that is generated by the

comparison match, as depicted in Figure 32. After granted the bus 0’s ownership,

the ccMC bypasses the transaction to bus 0. Then, Processor 0 (P0) is able to snoop

the bypassed transaction. We employ the snoop-hit buffer depicted in Figure 32 to

expedite data transfer between processors when a snoop-hit occurs on a line with the

M state. Our current implementation of the snoop-hit buffer stores one cache line.

83



The bypass approach consumes bus bandwidth on both sides if a requested address

is within the shared memory region. This overhead comes from the fact that the

ccMC must claim the bus mastership of the opposite-side bus whenever a processor

requests a shared data. It happens whether the other processor has the data in its

cache or not. The advantage of the bypass approach is its simplicity and its small

hardware overhead. As illustrated in Figure 32, it only requires two comparators,

two multiplexers and one register pair.1 The bypass approach would be useful for

computation-bound applications because less memory traffic will appear on the bus.

The bypass mechanism makes separate buses effectively one single bus for shared

memory regions because processors are able to observe all the traffic bound for the

shared memory region. Therefore, the integrated protocols in the bypass approach

become the same as the ones studied for the shared-bus architecture in Section 4.2.

We summarize integrated protocols according to the combinations of four major pro-

tocols: MEI, MSI, MESI, and MOESI. We further discuss MBMP architectures where

processors do not have native coherence support.

5.2.1.1 MEI with MSI, MESI, or MOESI

The integrations with the MEI protocol do not allow the S state because of the same

reason illustrated in Table 5(a). We assume that the processor with the MEI protocol

is on bus 1 and the processor with others is on bus 0.

MSI protocol: We employ the read-to-write conversion in the ccMC. As depicted

in Figure 33, the ccMC changes a read transaction to a write when forwarding to the

opposite-side bus, on which a processor with the MSI protocol resides. As explained

in Section 4.2.3.1, the S state in the MSI protocol becomes equivalent to the E state

with the read-to-write conversion since only one processor stores a specific block in

cache at any point in time. Thus, the integrated protocol becomes equivalent to MEI.

1We only show the schematic diagram from bus 1 to bus 0 in this figure for brevity.
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Figure 33: The bypass approach with the integration techniques.

MESI protocol: As explained in Section 4.2.3.1, the read-to-write conversion

and the shared signal de-assertion are employed to remove the S state. The ccMC

applies the read-to-write conversion when forwarding transactions to bus 0 where the

processor has the MESI protocol. The ccMC de-asserts the shared signal in response

to a read transaction from P0. As a result, the integrated protocol becomes equivalent

to MEI.

MOESI protocol: The read-to-write conversion and the shared signal de-assertion

remove the S state. The read-to-write conversion also eliminates the O state. There-

fore, the integrated protocol becomes equivalent to MEI.

5.2.1.2 MSI with MESI, or MOESI

The integrations with the MSI protocol do not allow the E state to avoid the problem

discussed in Table 5(b). We assume that the processor 1 with the MSI protocol is on

bus 1 and processor 0 with others is on bus 0.

MESI protocol: The E state is completely removed by employing the shared

signal assertion in response to a read transaction from P0. Then, the integrated

protocol becomes equivalent to MSI.
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MOESI protocol: The same technique – shared signal assertion – is applied to

this combination. As discussed in Section 4.2.3.2, the O state has the same meaning

as the S state except a line with the O state is responsible for updating main memory

when displaced. Therefore, depending on which processor initiates cache-to-cache

transfer, the ccMC decides whether to update main memory. If a processor with the

O state supplies data via cache-to-cache transfer, the ccMC does not update main

memory. In the other case, the ccMC updates main memory as the S state implies.

Thus, the integrated protocol becomes equivalent to MSI with the O state enabled

5.2.1.3 MESI with MOESI

This combination preserves all protocol states. For the O state, the same discussion

made in the MSI and MOESI combination is applied for data consistency. If a pro-

cessor with the O state supplies data via cache-to-cache transfer, the ccMC does not

update main memory. In the other case, the ccMC updates main memory as the S

state implies. Thus, the integrated protocol becomes equivalent to MESI with the O

state enabled

5.2.1.4 Integration with no native protocol

A data cache without native coherence support behaves like having the MEI protocol

without the snooping capability. When a read miss occurs, a block is brought into

the cache and the corresponding valid bit is set, which is equivalent to the E state.

A subsequent write to the same line marks the block dirty, which is equivalent to the

M state. A write miss sets both the valid and dirty bits when the line is brought in,

which is also equivalent to the M state. Therefore, when integrating it with other

coherence protocols, the integrated protocol becomes equivalent to MEI. However,

due to the lack of the snooping capability, an interrupt is used to maintain coherence

for a processor with no coherence support. This incurs the hardware deadlock problem

described in Figure 20 that imposes restrictions on a system implementation.
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5.2.2 Bookkeeping Approach

Figure 34 shows the bookkeeping approach. Similar to the bypass approach, the book-

keeping approach maintains one pair of registers to specify a shared memory region.

Additionally, it requires a state table in the ccMC to keep track of the coherence

state information for each processor. For example, when a memory transaction from

bus 1 falls within the specified region, it records the coherence state of the memory

transaction in the corresponding entry of the state table. Depending on the state

information in the table, the ccMC decides whether to forward the transaction or

not. If the state table indicates the I, E, or S state in the corresponding entry, 2

the ccMC does not claim the bus mastership of the opposite-side bus (bus 0 in this

case) and brings the data directly from main memory. If the state table indicates

the M state, the ccMC forwards the memory transaction to the opposite-side bus As

such, it eliminates unnecessary forwarding to the opposite-side bus. For bandwidth-

bound applications, the bookkeeping approach can filtrate false coherence traffic and

increase the effectiveness of bus utilization. We also employ the snoop-hit buffer for

the performance improvement. The bookkeeping approach is more expensive than

the bypass approach in terms of hardware cost. We will estimate the cost of the

hardware implementations in Section 5.3.

The bookkeeping approach does not allow the E state of the coherence protocols,

with an exception when integrating with the MEI protocol. The issue caused by the

E state is illustrated in Table 8. In the example, we assume that P0 and P1 support

MSI and MESI protocols, respectively. There are a sequence of memory operations

a©, b©, and c© executed on the same block C. Operation a© incurs the I→E state

transition in P1 and updates the corresponding entry in the ccMC state table. The

subsequent write operation b© makes the E→M transition in the P1’s cache and it

2If a processor supports cache-to-cache transfer from the E or S state, the ccMC will claim the
bus mastership to initiate the transfer.
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Figure 34: The bookkeeping approach.

does not appear on the bus because of a cache-hit. Thus, the corresponding update

does not occur in the state table of the ccMC. The read operation c© from P0 then

will read a stale data from main memory, invoking the E→S transition in the ccMC

table. These state transitions are illustrated in Table 8 from column 3 to column 6.

To forbid the E state, we use the shared signal assertion in the ccMC in response to

a read transaction. The state transitions with this solution are illustrated in the last

4 columns of Table 8. With the shared signal assertion to P1 by the ccMC, operation

a© now makes the I→S transition. Then, operation b©, visible to the ccMC, invokes

the S→M transition in both the P1 and the ccMC state table. The operation c© then

receives up-to-date data from P1. It also makes the I→S transition in P0 and the

M→S transition in P1. The ccMC table coherently reflects the state transitions, as

shown in Table 8. The impact of eliminating the E state is rather insignificant because

the E state only accounts for a very small portion of the total state transitions. 3

Even though the E state is not allowed in general for the bookkeeping approach,

the transition to the E state is inevitable in the MEI protocol. Because the S state

3The simulation results with the SPLASH2 show that a cache line is in the E state only in 0.76%
of the time, as summarized in Table 6.

88



Table 8: Problem of the E state and solution in the bookkeeping approach.

seq.

Operat- Without shared signal assertion With shared signal assertion

ion on C state C state ccMC table C state C state ccMC table

a block in P0 in P1
P0 P1

in P0 in P1
P0 P1

C (MSI) (MESI) (MSI) (MESI)

a© P1 read I I → E I I → E I I → S I I → S

b© P1 write I E → M I E I S → M I S → M

c© P0 read I → S M I → S E → S I → S M → S I → S M → S

is absent from the MEI protocol, integrating MEI with other coherence protocols

requires that the ccMC employ the read-to-write conversion and/or share signal de-

assertion to eliminate the S state from the other protocols. The ccMC table in this

case maintains only the I and E states because a write operation to the E state line

does not appear on the bus. Here, the I state indicates the data is not in the cache,

and the E state indicates that data is in either the unmodified state (true E state)

or the modified state (hidden M state) in the cache. For each memory request, if

the ccMC table indicates that the line is in the E state in other processor’s cache,

the ccMC accesses the opposite-side bus and places a write transaction on the bus.

As such, a line with the E state becomes invalidated, or a line with the M state is

drained to main memory. Finally, the requester gets data either from main memory

or from cache-to-cache transfer depending on the state in the cache.

In the followings, we discuss integrated protocols according to the combinations

of four major protocols in the bookkeeping approach. We further discuss MBMP

architectures where processors do not have native coherence support.

5.2.2.1 MEI with MSI, MESI, or MOESI

The integrations with the MEI protocol do not allow the S state because of the same

reason illustrated in Table 5(a).
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MSI protocol: We employ the read-to-write conversion. As explained in Sec-

tion 4.2.3.1, the read-to-write conversion effectively removes the S state because only

one processor stores a specific memory block at any point in time. Therefore, the

integrated protocol becomes equivalent to MEI.

MESI protocol: We employ the read-to-write conversion and the shared signal

de-assertion to remove the S state. There are three transitions to the S state in MESI:

I→S, E→S, and M→S. As explained in Section 4.2.3.1, the read-to-write conversion

eliminates E→S and M→S transitions, and the shared signal de-assertion removes

the I→S transition. As a result, the integrated protocol becomes equivalent to MEI.

MOESI protocol: The combination also demands the read-to-write conversion

and the shared signal de-assertion. These techniques not only prohibits the state

transitions to the S state, but also prevents the transition to the O state because of

the read-to-write conversion. Therefore, the integrated protocol becomes equivalent

to MEI.

5.2.2.2 MSI with MESI, or MOESI

The integrations with the MSI protocol do not allow the E state due to the problem

discussed in Table 5(b).

MESI protocol: There is only one transition to the E state in the MESI protocol:

I→E. By employing the shared signal assertion, the E state is completely removed

from the protocol. Thus, the integrated protocol becomes equivalent to MSI.

MOESI protocol: The same technique – the shared signal assertion – is applied

to this combination. As discussed in Section 4.2.3.2, the O state has the same meaning

as the S state except a line with the O state is responsible for updating main memory

when displaced. Depending on which processor initiates cache-to-cache transfer, the

ccMC decides whether to update main memory. If a processor with the O state

supplies data via cache-to-cache transfer, the ccMC does not update main memory.
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In the other case, the ccMC updates main memory as the S state implies. Thus, the

integrated protocol becomes equivalent to MSI with the O state enabled

5.2.2.3 MESI with MOESI

This combination prohibits the E state to avoid the problem discussed in Table 8.

We employ the shared signal assertion to remove the E state. The transition to the

O state is permitted as long as the ccMC has the discretion to differentiate the O and

S states. As a result, the integrated protocol becomes equivalent to MSI with the O

state enabled.

5.2.2.4 Integration with no native protocol

The same discussion in Section 5.2.1.4 is applied for data consistency.

5.3 Hardware Cost Evaluation

We implemented the bypass and bookkeeping approaches using Verilog-HDL, and

synthesized them using Design Compiler from Synopsys with TSMC 0.18µ technology.

The bypass approach uses two comparators, two multiplexers, two registers for each

memory area, and a state machine to manage the forwarding. The ccMC also needs

the bus master logic to control buses for each processor. The synthesis result reports

356 gates.

The bookkeeping approach introduces additional cost that mainly comes from the

ccMC state table. Since the E state is not allowed as explained in Section 5.2.2, each

entry in the state table needs two 2-bit registers for keeping three states (M, S, and

I) for the MESI protocol and four states (M, O, S, and I) for the MOESI protocol.

Table 9 summarizes the synthesized results according to the different sizes of the

table. Note that all control logic overheads such as the table indexing are included

in evaluating the hardware cost.

The bypass approach would consume a negligible amount of power considering the
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Table 9: Hardware cost of the bookkeeping approach (cache line=32 bytes).

Shared memory Table size Synthesized results
area (KB) (Bytes) (Gates)

1KB 16B (32×4bits) 1,337
2KB 32B (64×4bits) 3,147
4KB 64B (128×4bits) 6,106
8KB 128B (256×4bits) 11,927
16KB 256B (512×4bits) 24,467
32KB 512B (1024×4bits) 50,715

small number of gate counts. The bookkeeping approach also would consume an in-

significant amount of power with small table sizes. Moreover, this power consumption

overhead will be compensated by reducing power-expensive off-chip memory accesses.

5.4 Experimental Setup

Figure 35 shows the simulation platform for performance evaluation. Depending on

the processor combination, we use two platforms shown in Table 10. Platform 1© has

a PowerPC755 with MEI and an ARM9TDMI with MESI. Its integrated protocol

is MEI. Platform 2© integrates an ARM9TMDI with MSI and another ARM9TMDI

with MESI. Its integrated protocol is MSI. We implemented the simulation platform

using Verilog-HDL and Seamless [79] processor models. The Seamless CVE and

ModelSim from Mentor Graphics were used as simulators. The PowerPC755 has a

32KB data cache with the MEI protocol. For the ARM9TDMI, we implemented an

8KB data cache with the MSI and MESI protocols using Verilog-HDL. The cache

line size is 32 bytes. The ARM9TDMI and the PowerPC755 operate at 50MHz and

100MHz, respectively.4 Main memory and buses are synchronized at 50MHz. The

cache miss penalty varies from 14 cycles to 45 cycles in the simulations. There are

two bus agents that may request bus mastership on each bus: a processor and a

4This low frequency is due to the limitation of the Seamless ARM9TMDI model. However, we
expect similar results at a higher frequency.
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Table 10: Processor combinations in Figure 35 and integrated protocols.

P0/Protocol P1/Protocol Integrated protocol

Platform 1© PowerPC755/MEI ARM9TDMI/MESI MEI
Platform 2© ARM9DTMI/MSI ARM9TDMI/MESI MSI

P0

Memory

Controller

 Memory

bus0 bus1

P1DMA0 DMA1

100Mbps

Ethernet
320x240 LCD 

controller

Figure 35: Simulation platform for the evaluation of the bypass and bookkeeping
approaches.

DMA engine. The DMA engine handles direct data transfer from peripheral devices

to local memory and vice versa. It is used to inject traffic on each bus. We modeled

a 100Mbps Ethernet interface on the bus 0 and a 320×240 resolution, 30 frames/sec

LCD controller on the bus 1. The DMA 0 manages data transfer from the RX buffer

to local memory and from local memory to the TX buffer, while the DMA 1 transfers

frame data for the display in LCD.

For the performance evaluation, we use the RTOS kernel and the micro-bench

simulations. As described also in Section 4.6, the simulated RTOS kernel is the

task insertion and deletion routines, which are based on a slightly modified version

of the Atalanta kernel routines [104]. As the baseline, we use the explicit software

synchronization mechanism. The micro-bench will be described in Section 5.5.2.

5.5 Simulation Results

5.5.1 Performance of the Bypass Approach

Figure 36 and Figure 37 show the simulation results with 2 tasks and 32 tasks on each

processor, respectively. Without the snoop-hit buffer, platform 1© and platform 2©
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show 2.20X and 1.64X speedups, respectively when 2 tasks are running on each pro-

cessor and the miss penalty is 14 bus cycles. With the snoop-hit buffer, the speedup

increases to a 2.28X in platform 1© and an 1.70X in 2©. The snoop-hit buffer boosts

the performance because it shortens data transfer latency through the ccMC upon

a snoop-hit. For 32 tasks with the same miss penalty, platform 1© shows 6.65X and

6.57X speedups with and without snoop-hit buffer, respectively. Platform 2© shows

4.78X and 4.71X speedups with and without snoop-hit buffer, respectively, in the

same condition.

Speedup differences between two platforms come from the performance difference

of the processors in the simulation platforms. Since the PowerPC755 is a two-way

superscalar machine running twice faster than the ARM9TDMI, the computation

time takes less in platform 1©. In other words, the impact of the memory access

latency becomes more conspicuous in platform 1©. In the baseline, software flushes

all the touched, shared blocks before exiting a critical section. This results in the

invalidations of the used shared blocks that will not even be touched by the other

processor. For example, TCBs’ priority fields are used only for rearranging tasks’

TCBs from doubly-linked lists based on tasks’ priorities. Nevertheless, the software

solution flushes the cache lines with the priority fields before exiting a critical section

because the fields are shared among processors. Next time, those fields should be read

again from main memory in the baseline, whereas it does not happen in the bypass

approach (i.e., coherence support in hardware). Therefore, platform 1© reports better

speedup numbers than platform 2©.

As shown in Figure 36 and Figure 37, the speedup with a low miss penalty is

higher than the one with a high miss penalty. As the miss penalty increases, the total

execution time is largely dependent on the memory access latency and the DMA

traffic consumes more bandwidth equally in the bypass approach and the baseline.

Since the software solution is already slow with a low miss penalty, the rate of the
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Figure 36: RTOS kernel simulation results of the bypass approach (2 tasks on each
CPU).

execution time increase is faster in the bypass approach than in the baseline, As a

result, the speedup with a low miss penalty is higher than the one with a high miss

penalty. It becomes saturated as the miss penalty becomes large enough.

Figure 36 shows similar speedup patterns between two platforms even though the

integrated protocols are different (MEI and MSI). This is a result from the shorter

lengths of the doubly linked lists. Since only two tasks are running on each processor,

the length of the doubly-linked list is two. The insertion and deletion of the linked

list demands the modification of fields in both lists, resulting in the useless S state.

On the other hand, in Figure 37, the MSI protocol enjoys the benefit of the S state

because there are 32 tasks on each CPU. In this case, only two or three TCBs need

to be modified depending on the position of insertion and deletion. Therefore, the

speedup slope in platform 2© is less steep than the one in platform 1©.
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Figure 37: RTOS kernel simulation results of the bypass approach (32 tasks on each
CPU).

5.5.2 Performance of the Bookkeeping Approach

In the previous RTOS simulations, the bookkeeping approach did not show any sig-

nificant performance improvement over the the bypass approach, so we did not show

them in Figure 36 and Figure 37. This is because the RTOS simulations use the tiny

working set due to the intolerable hardware simulation time. Note that only 56 cache

lines are needed for storing all the TCBs of the 32 tasks. This working set is com-

fortably fit into data caches. Processors do not refer to the state table in the ccMC

most of the time due to cache hits. The advantage of the bookkeeping approach is

shown when a processor misses its local cache and the state table indicates the I,

E or S state in the other processor’s cache. In this case, the requesting processor

acquires data directly from main memory instead of snooping the other processor’s

cache. Note that the latter always occurs in the bypass approach. As explained, pro-

cessors’ requests hit the caches most of the time due to the small working. The task

insertion and deletion mechanism incurs write operations to cache lines, resulting in
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the M states in the caches and the ccMC table. As a result, the advantage of the

bookkeeping approach was not clearly shown in our prior analysis.

To illustrate this advantage, we modeled a synthetic micro-bench by running one

single task on each processor and having each task access the same memory blocks.

Each task should acquire a lock to enter a critical section. Before exiting the critical

section, all the shared blocks accessed are forcibly evicted by contrived conflict misses

in the micro-bench. We use DMAs with the cycle-steal mode to inject traffic on

all buses like the RTOS simulations. We studied the performance sensitivity under

different bus bandwidth utilization by controlling the amount of the DMA traffic.

For example, the 25% bus utilization (x-axis) in Figure 38 means that the DMA 0

and the DMA 1 both request bus masterships every 32 cycles and transfer data for 8

cycles once granted.5

Figure 38 shows the speedups of the bookkeeping approach over the bypass ap-

proach as the DMA’s bus utilization increases from 10% to 90%. The bookkeeping

approach shows up to a 10% performance improvement compared to the bypass ap-

proach. In general, the performance continues to increase until the DMAs’ bus uti-

lization reaches 70%. After that, DMAs are very likely to block the ccMC’s snoop

requests and the processors’ requests in both approaches, resulting in the speedup

declines. We also observed some outliers cases. For example, when the number of

shared blocks is eight and DMAs’ bus utilization is 10%, the bypass approach shows

a slightly better performance. By analyzing the simulation waveforms, we found that

by coincidence, DMA operations are synchronized and periodically delay processors’

requests in the bookkeeping approach, but not in the bypass approach. Two other

cases show the same behavior when the bus utilization is changed from 10% to 25%

with two and four shared blocks.

5However, it does not mean that the DMAs always use 25% of the bus bandwidth because the
buses might be in use by processors or ccMC’s snoop requests when the DMAs request for the bus
mastership.
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Figure 38: Simulation results of the bookkeeping approach.

5.6 Conclusion and Discussion

This contribution also provided a generic methodology to support cache coherence

among heterogeneous processors in MPSoCs. This study extended our scope to non-

shared-bus-based MPSoCs. For efficient communication among physically separated

processors, we proposed the ccMC. In the ccMC, our techniques include the bypass

approach and the bookkeeping approach depending on the allowable hardware budget.

The bypass approach blindly forwards memory transactions to the opposite-side bus if

the condition is met. The bookkeeping approach additionally checks cache line states

for the shared region, and then filtrates unnecessary forwarding. The bypass approach

is inexpensive while providing a significant speedup over the software solution. The

RTOS kernel simulations report 6.65X speedup in platform 1© with a low miss penalty

and 32 tasks on each processor. The bookkeeping approach is comparably expensive

because it demands the state table in the ccMC. The micro-bench simulations report

up to a 10% performance improvement over the bypass approach when DMA traffic

occupies 70% of the buses’ bandwidth.
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The MPMP architectures provide seamless plug-ins of processors to communica-

tion interfaces. In other words, processors are able to use native communication inter-

faces unlike the shared-bus-based MPSoCs. For example, the ARM and the PowerPC

are able to use their own communication architectures (AMBA and CoreConnect, re-

spectively). However, the memory controller (ccMC) design becomes complicated

to provide separate interfaces for different communication architectures. There are

other complications involved in engineering because of unequal cache line sizes, dif-

ferent operating frequencies, and software issues. Like the discussion in Section 4.8, if

processors’ caches have unequal line sizes, the ccMC should forward multiple memory

transactions to the opposite-side bus, on which processor has a cache with a smaller

line size. If buses operate at different clock frequencies, the ccMC should also take

care of the clock synchronization and data buffering, as well as the protocol conver-

sion between communication interfaces. The application parallelization and memory

consistency model also complicate the design of MPSoCs as discussed in Section 4.8.
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CHAPTER VI

EVALUATION OF COHERENCE TRAFFIC EFFICIENCY

Coherence protocols were evaluated in several literatures [57, 66, 88, 107, 39, 40, 26,

49, 51, 50, 48, 21, 85, 58, 44]. Traditionally, the evaluations mostly used trace-based

simulations, focusing on protocols themselves. They followed state transitions of the

protocols and counted the number of consequent bus transactions in snoop-based pro-

tocols, and the number of network transactions in directory-based protocols. Since

those off-processor transactions play important roles in performance, the main focus

of the evaluations was to devise the optimized coherence protocols that incur less

off-processor transactions. As discussed in Section 2.3.1, in the coherence protocol

evaluations, many detailed factors were abstracted that might effect the performance

trade-offs in real systems [44]. Even though software-based simulation helps to eval-

uate relative effectiveness of coherence protocols, it often hinders to measure and

evaluate system-wide effectiveness of coherence protocols and its traffic because the

software model lacks the exact real-world modeling.

When workloads are parallelized and run natively on a symmetric multiproces-

sor (SMP) system, the speedup is dependent on three factors: First, how efficiently

workloads are parallelized. Second, how much communication is involved among pro-

cessors, which is the consequence of the first factor. Third, how efficiently the com-

munication mechanism manages communication traffic (for example, cache-to-cache

transfer between processors). While programmers make every effort to efficiently par-

allelize workloads, the underlying communication mechanism remains unmanageable

in the software layer, and it becomes the limiting factor of the speedup as the number

of processors increases. Despite the importance of the communication, it has not been
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feasible to separate its contribution from the speedups collected on SMP machines.

Oftentimes, because of the difficulty of the direct evaluation on real machines, soft-

ware simulators [36, 76, 86, 92, 84] were developed to characterize the multiprocessor

system performance. However, it is sometimes difficult to reach an unbiased conclu-

sion in the software-based simulation because the exact real-world modeling such as

I/Os is difficult. In addition, it hinders the broad range measurement of the system

behavior due to the intolerable simulation time.

This contribution proposes a novel method to measure the coherence traffic ef-

ficiency on multiprocessor systems. Using an Intel server system and an FPGA,

our method measured the intrinsic delay of coherence traffic. By natively executing

workloads on an off-the-shelf system, this study evaluated and analyzed the impact

of the communication mechanism on the overall system performance. It differs from

the prior work discussed in Section 2.4. Firstly, unlike the MemorIES, HACS, and

RACFCS, our method is an active emulation. Secondly, our work is based on a SMP

machine whereas RPM emulates ccNUMA architecture. Lastly, unlike the ACE, our

work implemented an L2 coherence cache. The coherence cache in FPGA not only

more actively participates in FSB transactions, but also comprehensively follows all

the FSB pipeline stages to enable cache-to-cache transfer for evaluation of the coher-

ence traffic efficiency.

This study begins by introducing the coherence mechanism of Pentium R©-III (P-

III) processor on the front-side bus (FSB). After discussing the shortcomings of mea-

suring the intrinsic delay of coherence traffic in multiprocessor systems, we introduce

a new method to evaluate coherence traffic efficiency. We then present our equipment

used to perform this study, and the evaluation metrics are discussed to quantitatively

analyze collected data. After compiling collected data, we conclude our evaluations

and discuss the possibilities to enhance the coherence traffic performance.
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6.1 Coherence Traffic

6.1.1 Coherence Traffic in Generic Snoop-based Coherence Protocols

In the generic snoop-based coherence protocols, the coherence traffic is generated in

the following circumstances.

• When a memory transaction hits on a line in the remote processor’s cache

• When a processor’s write operation misses its local cache

• When a processor’s write operation hits on a line with the S state in its local cache

First, if a memory read transaction hits on a line with the M state in the remote

processor’s cache, it incurs cache-to-cache transfer accompanying the state transitions:

I→S in the requesting processor’s cache, M→S or M→O in the remote processor’s

cache. The cache-to-cache transfer is to supply data from the remote processor to the

requesting processor. In the generic protocols, cache-to-cache transfer could occur

anytime when the snoop hits on a line with the E, S, M, or O state for the memory

read or write transaction. As discussed in Section 2.1.1, since the cache implemented

in SRAM is faster than the main memory usually implemented in DRAM, the pro-

tocols expect faster transfer when transferring data through cache-to-cache transfer.

However, this advantage is not necessarily present in modern bus-based SMP ma-

chines, in which intervening in another processor’s cache to obtain data may be more

expensive than obtaining the data from main memory [44]. Moreover, when a snoop

hits on the lines with the S state in multiple processors, a selection algorithm is needed

to determine which cache will provide the data, resulting in complicated hardware

and potentially adversely affecting the performance because of the arbitration mech-

anism [44]. Therefore, cache-to-cache transfer typically occurs when a snoop hits on

a line with the M or O state in modern multiprocessor systems.
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Second, a write miss in the local cache generates the read for ownership trans-

action. It not only involves data transfer either from main memory or from cache-

to-cache transfer, but also invalidates the same blocks located in remote processors’

caches. Third, when a processor’s write hits on a line with the S state in the local

cache, it generates the invalidation traffic without incurring data transfer, which is

often referred to as the upgrade miss.

While the state changes in caches do not result in a major performance impact,

the coherence traffic such as cache-to-cache transfer and invalidation traffic plays an

important role in the overall system performance, as it consumes memory bandwidth

on a shared bus.

6.1.2 Coherence Traffic on Pentium-III

The P6 (Pentium R©-Pro, Pentium R©-II, Pentium R©-III, and Celeron)-based SMP sys-

tems utilizes the FSB as a shared bus for communication. The FSB is a 7-stage

pipelined bus, consisting of request1, request2, error1, error2, snoop, response, and

data phases, as illustrated in Figure 39. Response and data phases are often over-

lapped. The FSB supports eight outstanding transactions. For cache coherence, the

P-III uses the MESI protocol. Two active-low bus signals (HIT# and HITM#) are

dedicated for the snooping purpose. The HIT# assertion indicates that one or more

processors have the requested block in one of the clean states (E or S). The HITM#

is asserted when the remote processor has the requested block in the M state, as

depicted in 1© of Figure 39. The snoop result of every memory transaction is driven

in the snoop phase of the pipeline. Depending on the cache line status of the remote

processors, the bus signal behavior and state transitions are different as shown in Ta-

ble 11. Table 11 assumes that an FSB transaction hits on a line with the M, E, or

S state in the snooping processor’s cache. Like the generic coherence protocols, there

are three kinds of coherence traffic on the P-III FSB.
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Figure 39: Timing diagram of cache-to-cache transfer on the P-III FSB.

• Cache-to-cache transfer

• Read-for-ownership

• Invalidation traffic for upgrade miss

In the P-III, cache-to-cache transfer is limited to snoop-hits on a line with the

M state. It occurs after the HITM# is asserted, as shown in Table 11. Because of

the lack of the O state, the P-III updates main memory simultaneously when cache-

to-cache transfer occurs. To update main memory, the memory controller should be

Table 11: State transition in the cache line and bus signal behavior in the snoop
phase on the P-III FSB.

FSB data State change State change FSB signal Cache-to-
traffic in request in remote assertion cache
type processor processor HIT# HITM# transfer

I → S
M → S

√ √

Read E, S → S
√

I → E I → I

Write I → M
M → I

√ √

E, S, I → I
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ready to accept data. Memory controller represents its readiness by asserting the

TRDY# (target ready) signal, as depicted in 2© of Figure 39. Afterwards, eight

words (32B) of data are transferred as shown in 3©, 4©, 5©, and 6©. Note that data

bus on the P-III FSB is 64-bit wide. Therefore, it takes at least four bus cycles to

transfer one cache line data (32B). The number of bus cycles taken depends on the

readiness of data from a processor or main memory. Figure 39 shows six cycles to

transfer one cache line.

The read-for-ownership transaction takes place when a write operation misses the

local cache. It generates a full-line memory read with invalidation on the P-III FSB.

The upgrade miss takes place when a write operation hits on a line with the S state

in the local cache. It initiates 0-byte memory read with invalidation on the P-III

FSB. The invalidation types are encoded in the request1 and request2 phases of the

pipeline. All remote processors’ caches, which may have the same line in the S state,

invalidate corresponding cache lines when the invalidation transaction is observed.

6.2 Evaluation Methodology

6.2.1 Shortcomings in Multiprocessor Environment

As discussed, when workloads are parallelized and run natively on SMP systems, the

speedup is dependent on three factors: Workload parallelization, consequent com-

munication among processors, and underlying communication mechanism. Often

times, programmers make use of performance monitoring to tune the performance

of parallelized applications and to minimize the communication traffic. However, the

underlying communication mechanism remains unmanageable in the software layer,

and it could become the limiting factor of the speedup as the number of processors

increases.

Despite the importance of the communication, it is not feasible to separate its con-

tribution from the speedups collected on SMP machines. The bus architecture in the
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Figure 40: Bus arbitration delay in SMP systems.

snoop-based multiprocessor makes it even more infeasible to measure communication

efficiency because of the arbitration delay and the pipeline stall incurred by multi-

ple outstanding requests from processors. We discuss these shortcomings assuming a

four-processor SMP platform, as shown in Figure 1.

6.2.1.1 Bus Arbitration Delay

In shared-bus-based multiprocessor systems, an arbiter mediates the bus mastership

one at a time. Typically, priority-based and/or round-robin-based arbitration are

used to grant the bus accesses for processors. Therefore, a processor with a low-

priority or a processor recently accessed the bus will have to wait until its next turn

to access the bus again. In the example of Figure 40, suppose that the processor 2’s

transaction incurs cache-to-cache transfer. All four processors are requesting for the

bus mastership at time t1. Processor 0 first gets granted for the bus access, followed by

Processor 1. Processor 2 is granted for the bus mastership at time t2. This arbitration

delay elongates the processor 2’s transaction by t2 - t1, causing an effectively longer

cache-to-cache transfer time. The arbitration delay is non-deterministic because it

depends on how workloads are parallelized and when cache misses occur.

6.2.1.2 Stall in Pipelined Bus

Modern shared-bus protocols provide the pipelined bus to increase throughput. For

example, the P-III FSB has a 7-stage pipeline, as illustrated in Figure 39. It is able

to accommodate up to eight outstanding transactions on the bus. The pipelined
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Figure 41: Delay caused by stalls in the pipelined bus.

bus also incurs the non-deterministic behavior of data transfer for bus transactions.

As an example, suppose that there are three outstanding transactions from different

processors on the FSB, as shown in Figure 41. We assume again that the processor 2’s

transaction incurs cache-to-cache transfer. Processor 0 finishes its transaction in the

shortest time because there are no previous transactions. However, the processor 1’s

transaction is stalled by three-clock cycles, as depicted in Figure 41, because the snoop

phase is overlapped with the data phase of the previous transaction. Note that the data

phase requires at least four bus cycles to transfer one cache line (32B). Even worse, the

processor 2’s transaction is stalled by six-clock cycles because of the overlaps with the

processor 0 and processor 1’s transactions. This six-clock delay becomes effectively

reflected on cache-to-cache transfer time. This behavior is non-deterministic because

it again depends on how workloads are parallelized and consequently how processors

manage cache misses. When the bus is idle, a bus transaction can be finished in the

shortest cycles. However, when the bus is in full use, the 8th transaction on the FSB,

for example, could potentially suffer severe stalls. In the P-III FSB, the snoop phase

also may be extended if it takes more time for snooping processors to determine hits

or misses.

6.2.1.3 Discussion

Measuring and evaluating the intrinsic delay of coherence traffic requires eliminating

non-deterministic factors such as arbitration delay and stalls in the pipelined bus.
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Unfortunately, these problems persist as long as parallel workloads are running on a

multiprocessor system. In the next section, we introduce our FPGA-based method-

ology, which is capable of eliminating these interferences and isolate the impact of

coherence traffic on system performance. Note that, our methodology did not at-

tempt to accurately model the coherence traffic of a given parallel workload running

on a SMP machine. Rather, our goal is aimed to analyze and understand how the

inter-processor traffic itself (cache-to-cache transfer and invalidation traffic) affects

the overall performance based on coherence traffic emulated by the use of an FPGA.

6.2.2 Methodology for Intrinsic Delay Measurement

We use an Intel dual processor system, which features two P-III processors connected

through the FSB. To remove discussed non-deterministic factors, one P-III has been

replaced with an FPGA board. From the P-III’s standpoint, we make the FPGA

behave as an L2 cache1 in a virtual processor on the FSB. For this, a cache is imple-

mented in the FPGA. Then, our strategy to measure the efficiency of the coherence

traffic is shown in Figure 42. Whenever the P-III evicts a modified cache line to main

memory, the FPGA seizes the line from the FSB and saves it into the implemented

cache. This is shown in 1© of Figure 42. When the P-III requests the same block

later, the FPGA indicates a snoop-hit by asserting the HITM# signal and provides

the requested block through cache-to-cache transfer, as shown in 2© of Figure 42.

In other words, the FPGA is helping the P-III to run workloads by supplying data

via cache-to-cache transfer. Then, we measure the execution times of the standard

benchmark with and without the FPGA,

This configuration completely removes the bus arbitration delay because only one

P-III is requesting for the bus mastership. In other words, the FSB is always granted

for the remaining P-III. The pipeline stalls incurred by multiple processors’ requests

1Note that P-III has an 8KB L1 and a 256KB L2 cache. The cache line size of 32 bytes.
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Figure 42: Evaluation methodology of coherence traffic.

are also completely removed because again, only one processor is monopolizing the

bus. Even though one processor may initiate multiple transactions on the bus, it

does not disturb our measurement because the same thing happens in our baseline.

The baseline is to measure the execution times of benchmarks on one P-III without

the FPGA, which will be discussed in Section 6.5. Consequently, this evaluation

scheme is able to isolate impact of the intrinsic delay of the coherence traffic on

system performance, and enables its efficiency evaluation by measuring and comparing

execution times of benchmarks.

In this configuration, three kinds of coherence traffic are generated on the P-III

FSB as if there are two P-III processors in the system. First, cache-to-cache transfer

is generated when the FPGA finds the requested block in its cache. When the FPGA

provides data via cache-to-cache transfer, there are two possible state transitions in

the P-III’s cache.

• The I→M transition if cache-to-cache transfer is incurred by a P-III’s write miss

• The I→S transition if cache-to-cache transfer is incurred by a P-III’s read miss
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Second, the read-for-ownership transaction, which is known as the full-line (32B)

memory read with invalidation on the P-III FSB, is generated by the internal write

miss in the P-III. As mentioned, it incurs the I→M transition in the P-III, and accom-

panies cache-to-cache transfer if the block is found in the FPGA. Third, invalidation

traffic, which is known as the 0-byte memory read with invalidation on the P-III FSB,

is generated by a subsequent P-III’s write to the same block after the I→S transition.

By changing the cache size in the FPGA and measuring native execution times of

workloads, we study the sensitivity of system performance on the intrinsic delay of

coherence traffic. In this experiment, the more the P-III evicts replaced cache lines

onto the FSB, there are better chances for the FPGA to incur coherence traffic when

the P-III requests it later, leading more accurate evaluation of coherence traffic effi-

ciency. Therefore, as long as the reasonable number of evictions occurs, the selection

of the benchmark programs running on the P-III does not make any difference in

evaluations.

6.3 Experiment Infrastructure

Figure 45 shows the equipment setup for our experiments. There are three major

components — an Intel server system, a host computer, and a logic analyzer. The Intel

server system originally features two P-III processors. For this work, one processor

was replaced with the FPGA board as depicted in Figure 43(b). Therefore, the P-III

and the FPGA board are connected through the FSB, and the memory controller

(MC) intermediates the main memory accesses. The FPGA board contains a Xilinx’s

Virtex-II (XC2V6000) [115], logic analyzer ports, and LEDs for debugging purposes.

Each FSB signal is mapped to one Virtex-II pin. The FSB operates at 66MHz while

P-III runs at 500MHz. The Intel server system also comes with 2GB main memory

(4 PC100 SDRAMs).

The host computer is used for synthesizing our hardware design and programming
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Figure 43: Experiment equipment for coherence traffic efficiency measurement.

the FPGA with the generated bitstreams. The host computer also collects statistics

from the FPGA board, which sends the number of events occurred every second

through UART for post-processing. In this way, the disturbance to the Intel server

system is completely eliminated during the execution of benchmark programs. Note

that the system would be disturbed if the statistics was saved directly on the Intel

server system because of the file access every second. The logic analyzer (K420) from

Tektronix is used for debugging our hardware design. It is connected onto the FPGA

board to probe the FSB and internal hardware signals.

6.4 Hardware Design

We used VHDL for the hardware implementation. The design is then synthesized,

placed & routed, and downloaded to the FPGA fabric using Xilinx’s ISE tool [113].

We used ModelSim SE [80] from Mentor Graphics to verify the hardware design.
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Figure 44: Hardware design schematic in the Virtex-II FPGA for efficiency evalua-
tion.

However, because of the complexity of the FSB protocol, only certain simple func-

tions were verified with ModelSim. After passing these simple functional tests, the

design was tested directly on the Intel server system. Especially, this debugging

step caused lots of system crashes until the design completely meets and follows the

FSB protocol. System crashes came from supplying the wrong data from the FPGA

to the P-III through cache-to-cache transfer. Figure 44 demonstrates the hardware

schematic designed for the Virtex-II FPGA. It consists of several state machines, a

direct-mapped cache, statistics registers, and the FSB interface. Now we detail each

component.

6.4.1 State Machine

The main state machine keeps track of a bus transaction on the FSB and manages

all internal and external operations. As shown in Figure 44, it is composed of three

paths to perform the followings:

• To seize evicted cache lines from the FSB and store into the cache in the FPGA.

• To initiate cache-to-cache transfer that occurs when the P-III’s requested block is

found in the implemented cache inside the FPGA.
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Table 12: BRAM usage in the Virtex-II FPGA (XC2V6000) according to the cache
sizes.

Cache size 1KB∼16KB 32KB 64KB 128KB 256KB
BRAM usage 6% 12% 24% 45% 85%

• The rest that follows all other transactions on the FSB, including instruction read,

I/O transactions, etc.

Since the P-III allows up to eight outstanding transactions on the bus, the FPGA

should be able to track all eight transactions, concurrently. Thus, the same state

machine is instantiated eight times, as shown in Figure 44.

6.4.2 Cache

To keep evicted cache lines, we implemented a direct-mapped cache. For the exper-

iments, several versions varying from 1KB (32 cache lines) to 256KB (8192 cache

lines) were designed. The cache’s TAG, data, and valid bits were implemented with

the dual-port block RAM (BRAM) inside the FPGA. One port is configured as the

read port, and the other one is configured as the write port. Table 12 shows the

BRAM usage information inside the XC2V6000 FPGA for various cache sizes. From

1KB to 16KB, the BRAM usage remains the same (6%) since the size of the basic

block is fixed even when the required block is smaller than the basic block. With a

256KB cache, 85% of the BRAM is mapped to the FPGA fabric. In our implemen-

tation, the critical path is from the TAG lookup to driving the snoop result on the

bus. All FSB signals are latched inside the FPGA prior to their use. Even though it

exacerbated the timing budget, it is an inevitable choice for stable data processing.

6.4.3 Statistics Registers

We designed counter registers to collect statistics such as the number of cache-to-

cache transfers, invalidation traffic, cache line evictions, and data read transactions
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on the FSB. Whenever those events occur, the appropriate counter is incremented,

and is reset to zero after sending it to the host computer. The statistics is sent every

second to the host computer via the UART port. The UART is configured with 9600

baudrate.

6.4.4 FSB Interface

As explained in the cache design, the FSB signals are latched before being processed.

The state machine makes state transitions depending on the latched FSB signals. Es-

pecially, when the state machine goes through the “cache-to-cache transfer” path, the

FPGA actively participates in the bus transaction. Cache-to-cache transfer involves

assertion of several FSB signals including HITM#, 64-bit data bus (DATA[63:0]),

data-ready (DRDY#), and data-busy (DBSY#). The DRDY# and DBSY# signals

are used to inform the right time to latch data by the P-III and/or by the memory

controller. Figure 39 illustrates the usage of those signals. The DBSY# signal is

kept asserted until all 4 quadwords are transferred. Then, when the DRDY# signal

is asserted, data is available as indicated 3©, 4©, 5© in Figure 39. The last data is

available when the DRDY# signal is asserted and the DBSY# signal is de-asserted,

as shown in 6© of Figure 39. For the timing reason, our implementation allows two

cycles to drive the data bus when cache-to-cache transfer occurs, meaning that the

DRDY# signal is asserted every other cycle. After collecting the number of cache-

to-cache transfers occurred, this effect is compensated in the efficiency calculation to

be explained in Section 6.6.3.

6.5 Experiment Procedure

To measure and analyze the coherence traffic efficiency, we ran the SPEC2000 bench-

mark natively under Redhat Linux 2.4.20-8 on the remaining P-III of the Intel server

system. Eight benchmark programs from SPEC2000 were executed for 5 times. Then,

the average is calculated from the statistics gathered. Each batch run takes about
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Table 13: Evaluation metrics for coherence traffic evaluation.

Metric Unit

Number of cache-to-cache transfers #/second
Number of increased invalidation traffic #/second
Hit rate of coherence cache in the FPGA Percent (%)
Execution time difference compared to baseline second

15 hours on the Intel server system. By changing the cache size from 1KB to 256KB

in the FPGA, we report and analyze the behavior of coherence traffic. The baseline

system has a single P-III without the FPGA. As a result, all the memory transactions

initiated by the P-III are serviced from main memory. In other words, cache-to-cache

transfers and associated invalidation traffic never occur in the baseline. As discussed

in Section 6.2, because of the nature of the experiment methodology, the benchmark

selection does not effect the efficiency measurement of the coherence traffic as long as

the reasonable number of eviction traffic is generated on the FSB. Table 13 summa-

rizes the metrics used to report measured coherence traffic and evaluate its efficiency.

6.6 Experiment Results

6.6.1 Cache-to-cache transfer

Figure 45(a) shows the average cache-to-cache transfers occurred every second, and

Figure 45(b) shows hit rates of the coherence caches in the FPGA. The hit rate is

calculated based on Eq (2), meaning how many times the FPGA is able to supply

data when the P-III requests memory blocks.

hit rate (%) =
# cache-to-cache tranfer

# data read (full cache line) on the FSB
× 100 (2)

As the cache size in the FPGA increases, the number of cache-to-cache transfers

also increases for all the benchmark programs. With a 256KB cache in the FPGA,
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(a) Average cache-to-cache transfer per second
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(b) Hit rate of coherence caches in the FPGA
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(c) Average increase of invalidation traffic per second

Figure 45: Coherence traffic measurement results.
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twolf shows the highest transfer frequency (804.2K/second), whereas gap shows the

lowest (20.2K/second). With a 256KB cache, the hit rate can go as high as 64.89% in

gzip and as low as 2.24% in gap. On average, as the cache size increases, the overall

cache-to-cache transfer increases from 5.4K/second to 433.3K/second, and the hit

rate varies from 0.2% to 16.9%. Memory-bound programs do not necessarily show the

highest cache-to-cache transfer frequency because they might not use the evicted cache

lines later and/or because conflict or capacity misses occur in the coherence cache.

For example, mcf shows the comparably small number of cache-to-cache transfers.

The low hit rate 4.5% even with a 256KB cache indicates that most of data requests

in mcf were serviced from main memory.

6.6.2 Invalidation Traffic

Figure 45(c) shows the increased amount of invalidation traffic per second, compared

to the baseline. With a 256KB cache in the FPGA, twolf again shows the highest

peak (306.8K/second). On average, as the cache size increases, overall invalidation

traffic increases from 1.7K/second to 157.5K/second. As explained in Section 6.1.2,

invalidation traffic is incurred by two scenarios: a© 0-byte memory read with invali-

dation, b© full-line (32B) memory read with invalidation. Figure 45(c) includes both

traffic even though we observed that type a© accounts for the major part (> 99%).

This indicates that SPEC2000 benchmark programs read data first and subsequently

write to the same cache line, mostly generating type a© traffic.

In general, Figure 45(c) shows the similar pattern to the average cache-to-cache

transfers shown in Figure 45(a). This is explained as follows. When a memory read

hits the cache in the FPGA, the FPGA initiates cache-to-cache transfer to supply

data, causing the I→S transition in the line of P-III’s cache. A subsequent write

to the same line by the P-III generates type a© traffic because of a upgrade miss,

as the cache line is in the S state. As measured, SPEC2000 benchmark programs

117



tend to read data first and subsequently write to the same line. Therefore, the more

cache-to-cache transfer occurs, the more likely invalidation traffic is to be generated.

The baseline system also generates invalidation traffic even though cache-to-cache

transfer never occurs. This is due to cache flush instructions. When a page fault

occurs, the P-III internally executes a cache flush instruction, which appears on the

FSB as invalidation traffic. Depending on the Linux system services running in the

background, the amount of invalidation traffic varies over time. In Figure 45(c), in-

validation traffic sometimes decreases in the cases when the cache size in the FPGA is

small enough, e.g., 1KB or 2KB. With small caches, the hit rate and the correspond-

ing frequency of cache-to-cache transfer decrease significantly. For this reason, overall

invalidation traffic is more sensitive to the system noise generated by the Linux system

services. Especially, gcc is rather susceptible to the Linux system perturbation. The

page faults caused by the large number of malloc() calls in gcc induce inconsistent

patterns.

6.6.3 Execution Time

Figure 46 shows the increase of the overall execution time as the cache size increases.

It shows all the collected data from five runs. As explained in Section 6.4, our

implementation allowed two cycles to drive each data on the FSB for the timing

reason. This effect was removed in Figure 46 by the linear approximation based on

Eq (3), where 15.15ns is the period of the FSB clock frequency (66MHz), total #

c-to-c is the total number of cache-to-cache transfers, and the number 4 represents

that four quadwords (32B) are transferred each time.

time (second) = measured time − (15.15ns × 4 × (total # c-to-c)) (3)

On average, the total execution of the baseline takes 5,635 seconds (93.9 minutes).
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Figure 46: Execution time increase compared to the baseline (5 runs, baseline =
5635 seconds).

As shown in Figure 46, the execution time increases compared to the baseline, as the

number of the coherence traffic increases. In other words, the benchmark execution

assisted by the coherence traffic is more time-consuming than the one without it. With

a 256KB cache, the execution time increased up to 191 seconds. There are two reasons

that cause the inefficiency of coherence traffic. First, as explained in Section 6.1.2,

main memory is simultaneously updated for each cache-to-cache transfer. This means

that even when the P-III is ready to drive the FSB for the data transfer, it should wait

until the memory controller is ready to accept data. Because of the busy schedule

of the pipelined FSB, the memory controller would not promptly respond to cache-

to-cache transfer requests. The second reason comes from invalidation traffic. As

explained in Section 6.6.2, the increase of invalidation traffic follows a similar pattern

to the number of cache-to-cache transfers. With a 256KB cache, overall invalidation

traffic increased by 157.5K/second on average as shown in Figure 45(c). Even though

such invalidation involves no data transfer, it still takes non-negligible amount of time

since one FSB slot is needed for each invalidation.
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6.6.4 Intrinsic Delay Estimation

The pipelined nature of the FSB makes it difficult to exactly breakdown the contri-

bution of each coherence traffic to the execution times. Some coherence traffic might

be injected to the FSB when the bus is idle. In this case, only pure pipeline stages are

reflected into the latency. On the other hand, in some cases, coherence traffic might

be delayed by long snoop and/or data phases of previous transactions when pipelined

with other traffic. Therefore, our estimation is done by closely observing the FSB

waveforms of coherence traffic in the logic analyzer and considering the FSB pipeline

stages. By roughly estimating 5 ∼ 10 FSB cycles for each invalidation traffic and 10

∼ 20 FSB cycles for each cache-to-cache transfer, the time spent for each coherence

traffic is calculated using Eq (4).

Execution time (second) =

(average occurrences/second) × (total execution time)

× (clock period/cycle) × (latency for each traffic)

(4)

Average occurrences/second = 157.5K/second

Total execution time = 5806 (= 5635 + 171) seconds

Clock period/cycle = 15.15 ns/cycle

Latency for each invalidation traffic = 5 cycles

(5)

For example, the time spent for invalidation traffic with a 5-cycle latency and a

256KB cache in the FPGA is calculated by plugging the numbers of Eq (5) into Eq (4),

and Table 14 summarizes estimated times according to different latencies. Even with

a 10-cycle latency for each invalidation traffic, it requires only 138 seconds, which is

less than the average increase (171 seconds) of the total execution time. Therefore,
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Table 14: Run-time estimation for each coherence traffic according to latencies
(256KB cache in the FPGA).

Coherence traffic
Invalidation traffic Cache-to-cache transfer

Latencies 5 ∼ 10 cycles 10 ∼ 20 cycles
Times spent 69 ∼ 138 seconds 381 ∼ 762 seconds

the difference (33 seconds) in this calculation comes from cache-to-cache transfers

unless each invalidation traffic requires more cycles. Based on this calculation, it is

not unreasonable to say that cache-to-cache transfer in the experimented Intel sever

system, which takes roughly 6.5% ∼ 13% of the total execution time, is not as effi-

cient as expected. In other words, cache-to-cache transfer on the P-III FSB is slower

than getting data directly from main memory. 2 Even though clearly shown in Fig-

ure 46, this trend would be more conspicuous with a bigger cache size and/or high

associativity cache implemented in the FPGA, as more coherence traffic is generated.

6.6.5 Opportunities for Performance Enhancement

Coherence traffic plays an important role in the performance of multiprocessor sys-

tems. In the P-III FSB, the fact that main memory should be updated simultaneously

upon cache-to-cache transfer would be the main reason for the slowdown. The O state

in the MOESI protocol is specially designed for this purpose. It allows cache-to-cache

transfer without updating main memory. However, a processor with the O state line

is responsible for updating main memory when the line is displaced. With the O

state, the memory controller need not represent its readiness.

Another alternative is to include cache line buffers in the memory controller,

2It does not mean that cache-to-cache transfer is not good. Note that without cache-to-cache
transfer, two memory transactions are necessary when a snoop hits on a line with the M state: one
for writing back the modified block to main memory, the other for reading the same block from
memory. Cache-to-cache transfer reduces the number of memory transactions from two to one.
Therefore, it clearly has the advantage over non-cache-to-cache transfer.
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similar to the snoop-hit buffer discussed in Section 4.3.1. The memory controller

receives cache-to-cache transfer data in this buffer temporarily before updating main

memory. As long as the buffer space is available, the memory controller is ready to

accept data from the snoop-hit processor. It would enable the prompt response for

faster cache-to-cache transfer. Like the snoop-hit buffer, if the memory controller is

designed to have an ability to compare addresses on the FSB and supply data to

a processor when hit on a buffered line, it would further reduce the memory access

latency.

Invalidation traffic is also inevitable in multiprocessor systems. In the P-III FSB,

the snoop phase is the 5th-stage of the pipeline, and remote processors inform a master

processor of the snoop results in the snoop phase. Advancing the snoop phase to an

earlier stage bear a potential of reducing the latency. It could reduce the effective

cache-to-cache transfer latency, too. However, it requires the faster TAG-lookup in

data caches. Deep pipelined-bus and faster bus speed would also help relieve the

impact of invalidation traffic even though it complicates the hardware to process

requests in shorter time and to accommodate more outstanding transactions.

6.7 Conclusion and Discussion

In this contribution, we measured the intrinsic delay of coherence traffic, and analyzed

its efficiency using a novel FPGA approach on a P-III-based server system. The

proposed approach eliminates non-deterministic factors in measurements such as the

arbitration delay and stall in the pipelined bus. Therefore, it completely isolates the

impact of coherence traffic on the system performance. Our case study shows that

the performance of the SPEC2000 benchmark assisted by the coherence traffic was

actually degraded. The overall execution time of the benchmarks increased up to 191

seconds over 5635 seconds of the baseline with a 256KB cache implemented in the

FPGA, where cache-to-cache transfer and invalidation traffic occurred 433.3K/second
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and 157.5K/second on average, respectively. Performance degradation is attributed

to the following reasons. First, cache-to-cache transfer in the MESI protocol requires

main memory to be updated simultaneously. It often delays cache-to-cache transfer

since the memory controller would not respond promptly for the update requests

because of the busy schedule of the pipelined FSB. Second, in proportion to the

number of cache-to-cache transfers, invalidation traffic also increased to a frequency of

157.5K/second on average. Even though invalidation traffic involves no data transfer,

it still takes non-negligible amount of time since one FSB slot is needed for each

invalidation.

To reduce the latency of coherence traffic, we discussed architectural possibili-

ties. The inclusion of the O state would curtail the latency of cache-to-cache transfer

because main memory need not to be updated simultaneously upon cache-to-cache

transfer. Cache-line buffers in the memory controller could shorten the latency be-

cause the memory controller is able to accept data while buffer spaces are available.

Advancing the snoop phase to an earlier stage could reduce both cache-to-cache trans-

fer latency and invalidation traffic latency. Deep pipelined-bus and faster bus speed

would also help relieve the impact of invalidation traffic. However, all these archi-

tectural enhancements come at the expense of additional hardware. Thus, thorough

investigations are necessary to measure the trade-offs.
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CHAPTER VII

CONCLUSION

This thesis made three contributions. The first two contributions addressed communi-

cation problems among heterogeneous processors in MPSoCs. The third contribution

evaluated the coherence traffic efficiency with a novel methodology.

7.1 Cache Coherence Protocol Integration on Shared-bus-

based MPSoCs

In this thrust, we provided a generic solution for efficient communication among

processor IPs in MPSoCs. We limited our scope to the shared-bus-based MPSoCs

and proposed a communication mechanism through cache coherence protocols. The

coherence can be maintained with the following integration techniques: the read-to-

write conversion and the shared signal assertion/de-assertion. These techniques can

be implemented inside wrappers around processors with a minimal hardware cost.

The integrated system-wide protocol is composed of the states that heterogeneous

processors have in common, except the O state. With the generic integration tech-

niques, SoC designers are able to utilize coherence hardware resources available in

the processor IPs.

To enhance the system performance, we proposed the snoop-hit buffer. The snoop-

hit buffer shortens the memory access latency by internally supplying data to the

master processor when a snoop hits on a line with the M state. We also proposed

the RBCC to revitalize the lost states. Depending on the shared area information

among processors, the RBCC selectively enables the lost states in processors that have

more states in common than the system-wide integrated protocol. We discussed the

implication and limitation of integrating processors with no native coherence support.
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In such an environment, the interrupt should be used to maintain coherence due to

the lack of the snooping capability. The use of the interrupt incurs the hardware

deadlock problem that imposes the restrictions on the way locks were implemented

by the system and used by the programmer.

The micro-bench and RTOS kernel simulations were performed to measure the

advantages of the integration techniques, the snoop-hit buffer, and the RBCC. In the

micro-bench simulations, the integration techniques with the snoop-hit buffer showed

an 11.8% ∼ 57.1% performance improvement over the baseline even in the worst-case.

In the best-case, we could achieve a 51% ∼ 426% performance improvement. For the

evaluation of RBCC, we simulated a part of the Atalanta RTOS kernel. The RBCC

with snoop-hit buffer enhanced the performance by a 4.5% ∼ 43.0% for the 2T-2T

case, by a 15.3% ∼ 77.0% for the 2T-16T case.

This outcome of this research provides a generic solution for communication among

heterogeneous processors. Nevertheless, the implementation demands elaborate ex-

amination since processor IPs could have unequal block sizes and they could operate

at different clock frequencies. In reality, in addition to the communication issue, the

design of shared-bus-based MPSoCs requires engineering efforts due to the follow-

ing reasons. It is a challenge to design a shared-bus protocol that provides superset

functionalities of distinct processor interfaces. Software-related issues such as RTOS,

synchronization, workload parallelization, and memory consistency models should

also be taken care of for a successful implementation.

7.2 Cache Coherence Support on Non-shared-bus-based MP-

SoCs

This research thrust extended our scope of prior work to non-shared-bus-based MP-

SoCs. Compared to the shared-bus-based MPSoCs, non-shared-bus-based MPSoCs

relieve an engineering challenge because processors can take advantage of their na-

tive interface protocols. However, the communication among processors is even more
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problematic because communication channels are physically separated. To enable

and support efficient communication via cache coherence protocols, we proposed the

use of a cache coherence-enforced Memory Controller (ccMC) that bridges separate

communication links. Depending on the hardware budget in MPSoCs, we proposed

two implementation alternatives for the ccMC: the bypass approach and the book-

keeping approach. The bypass approach blindly forwards memory transactions to

the opposite-side bus if the condition is met. The bookkeeping approach additionally

checks the state information in the processors’ caches through the state table in ccMC

and then filtrates unnecessary forwarding.

For performance evaluation, we performed the RTOS kernel and micro-bench sim-

ulations. In RTOS kernel simulation, the bypass approach showed a 6.65X speedup

in the PowerPC755 and ARM9 platforms, with a low miss penalty when running 32

tasks on each processor. In the micro-bench simulation, the bookkeeping approach

achieved up to a 10% performance improvement over the bypass approach where

DMA traffic occupies 70% of the bandwidth of both buses.

Similar to the shared-bus-based MPSoCs, the design of non-shared-bus-based MP-

SoCs requires substantial engineering efforts to elaborate the following issues: unequal

block sizes, different operating clock frequencies, and software issues. In MPSoC de-

signs, the design methodology plays a key role in reducing the time-to-market design

cycle. By providing generic solutions for communication, our research contributed to

addressing one of the methodology issues in MPSoCs.

7.3 Evaluation of Coherence Traffic Efficiency

In this study, we measured the intrinsic delay of coherence traffic and analyzed its

efficiency using a novel FPGA approach on an Intel server system. Our methodol-

ogy completely eliminated the non-deterministic factors in measurement such as bus

arbitration delay and stall in the pipelined bus.

126



We implemented a coherence cache in an FPGA on the Intel server system. The

FPGA communicated with an Intel Pentium-III processor via the front-side bus. The

cache in the FPGA behaves as an L2 cache of a virtual processor on the Intel server

system. The implemented cache takes evicted cache lines from the FSB and supplies

data when the P-III processor requests it later. By varying the cache sizes from 1KB

to 256KB, we measured the execution time of SPEC2000 benchmark and compared

it with the baseline. The experiment showed that the performance assisted by the

coherence traffic was actually degraded. The overall execution time of the benchmarks

increased up to 191 seconds with a 256KB cache in the FPGA, where cache-to-cache

transfer and invalidation traffic occurred 433.3K/sec and 157.5K/sec, respectively, on

average.

Performance degradation is attributed to the following reasons: inefficient cache-

to-cache transfer because of simultaneous memory update, invalidation traffic in-

creases. To reduce the latency of coherence traffic, we discussed architectural pos-

sibilities: the inclusion of the O state, cache-line buffers in the memory controller,

advancing the snoop phase to an earlier stage, deep pipelined-bus, and faster bus

speed. Nevertheless, all these architectural enhancements come at the expense of ad-

ditional hardware. Therefore, thorough investigations are necessary to measure and

evaluate the trade-offs.

Throughout this work, we demonstrated a novel approach using FPGA to carry

out architecture evaluation on a real system. There are advantages of using FPGA

as an alternative to the conventional simulation-based research using high level lan-

guages. First, the entire applications and workloads can be natively executed and

emulated on the off-the-shelf system. Such a simulation is very difficult to do by

using a cycle-based architecture simulator due to the intolerable simulation times.

Second, system activities and overheads are automatically emulated during the na-

tive execution, thereby enabling a more accurate and a broader range analysis for the
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entire system behavior. In addition, our FPGA approach is highly flexible, so proces-

sor architects are able to evaluate the performance of new architecture enhancements

and perform pre-silicon verification for future proliferation.
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