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Abstract
The Energy-Delay product or ED product was proposed as a
metric to gauge design effectiveness. This metric is widely
used in the area of low-power architecture research, how-
ever it is also often improperly used when reporting a new
architecture design that addresses energy-performance ef-
fectiveness. In this paper, we discuss two common falla-
cies from the literature: (1) the way the ED product is cal-
culated, and (2) issues of introducing additional hardware
structures to reduce dynamic switching activities. When
using the ED product without meticulous consideration, a
seemingly energy-efficient design could turn out to be a
more energy-consuming one.

1. INTRODUCTION
The Energy-Delay product (ED product), advocated by
Gonzalez and Horowitz [9], was introduced as a metric ca-
pable of coupling both the energy consumption and perfor-
mance of alternate architecture design choices. In this met-
ric, the performance is measured in terms of the delay until
execution is complete, whether completion constitutes the
end of the program or simply meeting a constraint as in
video coder. The ED product has subsequently been ap-
plied widely in the literature, analyzing everything from
network protocol selection to TLB arrangements [11, 15,
30].

The Energy Delay product was also presented at a time
when the common process technology was 0.25-µm or larger.
Leakage current was generally an order of magnitude less
– or better – than dynamic switching currents in architec-
ture designs [6]. This is no longer the case, however, and
leakage current must be accounted for in all contemporary
designs that use sub-0.13-µm layouts, referred to as Deep
Sub-Micron (DSM) processes. Recent research has simi-
larly ignored or downplayed the effects of leakage current
in order to study new architectural techniques for reduc-
ing dynamic energy alone, potentially leading to erroneous
conclusions when applying the same technique for proces-
sors fabricated using DSM processes.

2. COMMON FALLACIES
Batteries, when used in a platform, do not only supply the
energy needed for the CPU but also provide the power for
the rest of the system, e.g. a notebook PC hard-disk drive
and TFT display. When architects evaluate performance
and energy using cycle-accurate architectural simulators
with built-in power/energy analyzers [5, 8, 36], the perfor-

mance numbers in Instructions Per Cycle (IPC) typically
consider the entire system effects including all the cache
hierarchies and the DRAM memory. The energy savings
are then reported as a proportion of only the particular
functional block under examination, e.g. L1 cache or the
branch target buffer. The ED product is generated ac-
cordingly by the researchers. This calculated result can be
misleading.

Most proposals fail to estimate the additional transistors
(and buses) required to implement the hardware assumed.
Additional hardware brings additional leakage power and
potentially more switching power. Many architectural level
low-power techniques propose adding new hardware schemes
to exploit power reduction opportunities by filtering, di-
verting, or monitoring events over a baseline design in
order to attain the lower energy profiles while tolerating
some, if not zero, performance degradation. As DSM pro-
cesses become more prevalent, each of these added power
components must be addressed in a meticulous manner
to avoid incorrect conclusions. Ignoring the growing pro-
portion of leakage energy, incorrectly evaluating the total
system energy expenditure, and failing to address the un-
derlying consumer of energy within a module can reduce
or even invalidate results.

In this paper, we address the following potential fallacies
encountered in low-power architecture research:

1. Which energy (E) are you looking at?

2. Additional hardware can be harmful.

We now explore exactly how these pitfalls can lead to prob-
lematic results unless proper care is exercised during anal-
ysis.

3. ANALYTICAL ANALYSIS OF ENERGY VS.
PERFORMANCE

Calculating an ED product begs a question of which en-
ergy is being evaluated. When examining one component
of a system, such as a Flash drive, careful design choices
can result in respectable energy savings. Yet if the Flash
drive consumes only 10% of the total system power, re-
ducing the energy of the drive by 5% overall amounts to a
system reduction of only 0.5%. Equivalent savings could
be attained by optimizing the access patterns to disk or
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other techniques that require no hardware redesign. In-
cluding the delay impact of alternate designs exacerbates
this situation.

Similarly, optimizations made to subcomponents of a CPU
must be balanced against the larger picture of energy con-
sumption within a complete system. To understand whether
optimizations make sense at the large-scale vision, the re-
lationship between the consumption of CPU energy and
the rest of the system is explored first.

3.1 Which Energy (E) are you looking at?
In this section, we create a very simple equation dubbed
the Complete Energy-Delay Product (CEDP). An energy-
delay effective design should yield a CEDP value less than
1.0, given that 1.0 represents the baseline or reference sys-
tem.

Equation (1) describes a simple, necessary condition to be
satisfied for attaining a lower Energy-Delay product, i.e.
an energy efficient design. In this equation, the original
energy dissipated by a particular functional unit u with re-
spect to the CPU, before applying any energy optimization
technique, is denoted by the ratio RCPU (u); the energy
dissipated by the CPU with respect to the overall plat-
form under the same energy source is denoted by Rsys(u);
and Rsaved(u) represents the ratio of energy saved for u by
applying a particular low-power microarchitectural tech-
nique. The term ∆D

D
represents the additional execution

delay, if any, of the overall performance induced by the new
design.

[1 − Rsys(CPU) · RCPU (u) · Rsaved(u)] ·
(

1 +
∆D

D

)

≤ 1.0 (1)

First, assume that our processor uses of a dedicated power
source, an exclusive battery reserved for the CPU itself.
In other words, no other competing devices share the same
power source and hence Rsys(CPU) = 1.0, leading to the
simplification of Equation (2), from which we solve for ∆D

D

to obtain Equation (3).

[1 − RCPU (u) · Rsaved(u)] ·

(

1 +
∆D

D

)

≤ 1.0 (2)

∆D

D
≤

RCPU (u) · Rsaved(u)

1 − RCPU (u) · Rsaved(u)
(3)

Using Equation (3), we then plot the curves shown in Fig-
ure 1 with a spectrum of RCPU (u) varying from 5% to
99%.

Each curve draws the boundary condition of an effective
system, assuming the energy savings of a particular func-
tional unit u is equal to Rsaved(u). In other words, designs
with new ∆D

D
values falling in the area above each curve

in Figure 1 represents ineffective designs for a given ratio
of energy saving — Rsaved(u) in u. The X-axis is plotted
on RCPU (u) given that Rsys(CPU) is 1.0. For instance, a
value of 0.6 means 60% of the overall original energy con-
sumption is contributed by u. The Y-axis, plotted on a log
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Figure 1: Delay limit vs. Power weighting

Pentium Pro StrongARM SA-110

Instruction Fetching 22.2% ICACHE 27%

Integer Execution Unit 14.3% Instruction Unit (IBOX) 18%

ReOrder Buffer 11.1% DCACHE 16%

Data Cache Unit 11.1% CLOCK 10%

Reservation Station 7.9% Integer MMU (IMMU) 9%

Floating-Point Unit 7.9% Integer Exec. Unit (EBOX) 8%

Global Clock 7.9% Data MMU (DMMU) 8%

Memory Order Buffer 6.3% Write Buffer (WB) 2%

Register Alias Table 6.3% Bus Interface Unit (BIU) 2%

Branch Target Buffer 4.7% Phased Locked Loop (PLL) < 1%

Table 1: Power distribution for commercial proces-
sors

scale, indicates the limit of the extra delay (∆D
D

) allowed
in the overall system delay (CPU in this example) for an
effective system design. Note that Figure 1 is also appli-
cable when Rsys(CPU) is less than 1.0, i.e. when sharing
the power source with other devices, by using the value of
Rsys(CPU) · RCPU (u) on the X-axis.

We examine a simple example to illustrate the applicability
of Figure 1: Assume a novel microarchitectural technique
is proposed which can reduce the energy consumption by
50% for the branch target buffer (BTB) and its associated
branch predictor in a processor. Looking at the curve with
Rsaved=50%, if the original BTB and branch predictor con-
sume 10% of overall platform energy (i.e. the X-axis value
is 0.1), then the new design can only afford to lose around
3% performance in delay (i.e. Y-axis value is 0.03) in order
to make the new system effective in terms of energy and
performance using ED product as the metric. Moreover,
if the processor shares the same power source with other
devices such as DRAM memory and/or TFT display, the
affordable performance loss will be dramatically subdued.
For example, when the CPU only consumes 25% power of
the battery, i.e. X=0.025, from Figure 1, the performance
cannot be compromised for more than 1% for an energy
efficient design by the definition of the ED product.

In order to get more understanding about the interaction
between energy and performance, data from two commer-
cial processors are used for demonstration. Table 1 reca-
pitulates the power distribution on two popular processors
used in high performance and embedded/handheld sys-
tems, the Pentium Pro and StrongARM SA-100. The data
shown are copied from the relevant literature [19, 20]. Sim-
ilar to Figure 1, we use Equation (3) for each functional
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Figure 3: Maximum delay tolerance (Z-axis)in % as
a function of energy saved in u (X-axis) vs. power
distribution of u (Y-axis)

unit in Table 1 to construct Figure 2. Again, this figure
assumes that the CPU has a dedicated battery source.

The X-axis represents the percentage of energy saved by
applying some energy optimization technique to a partic-
ular functional unit, while the Y-axis represents the allow-
able performance degradation for keeping the optimized
design energy efficient. Using the Pentium Pro processor
as an example, if one proposes a technique that can reduce
the energy of the ReOrder Buffer by 30%, the new Pen-
tium Pro processor can only afford to lose 3% performance
over baseline to be energy efficient. As aforementioned, in
a realistic situation when the CPU shares the battery with
other peripherals, the allowable loss would be much less
than 3%.

To see how the total system energy plays a role in deter-
mining energy efficient designs, we now stop using the as-
sumption that the CPU has a dedicated power supply. For
the CPU consuming overall platform energy of 25%, 50%,
75% and 100% each, Figure 3 illustrates a general trend of
how the energy efficient design space changes as two pa-
rameters vary — (1) percentage of energy saved Rsaved(u)
for u, and (2) power distribution Rsys(CPU)·RCPU (u) of u

with respect to the entire target system. This figure depicts
the relationship between the original energy weight of the
functional unit u (shown on the Y-axis) being optimized
(shown on X-axis) with the total system delay tolerance.
The Z-axis plotted in percentage of additional performance
degradation represents the maximum delay a modified de-
sign, u, tolerates for an energy efficient design. The X-axis
plots the energy saved for u from 0%, i.e. no energy opti-
mization, to 100% wherein u is completely eliminated; the
Y-axis plots the power distribution of u with respect to the
target system prior to optimization. Mostly, the tolerable
performance delays are less than 10% in practical cases.
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Figure 4: The percent of energy required to be
dissipated by the target module, u, over the entire
platform.

Examining a more realistic scenario will further illustrate
the concept, we use data from the filter cache study re-
ported by Kin et al [13]. In this work, they showed a 58%
L1 cache energy reduction by trading off a 21% IPC degra-
dation. Figure 4 illustrates a snapshot of Figure 3 when
Rsaved(u), i.e. energy saved for u, is fixed at 58%. Tracing
from the Y-axis by a 21% line (the bold horizontal line
in Figure 4), we see four possible outcomes. When the
CPU represents 100% of the system power, then the fil-
ter cache is an efficient design if the total L1 cache power
exceeds 30% of the entire CPU. Similarly, when the CPU
consumes 75% of the total power, the L1 caches must con-
sume at least 40% of overall power; for the CPU using
50%, the L1 caches must consume 60% overall; and when
the CPU consumes only 25% of the total power, the filter
cache cannot be an energy efficient design at all1.

The filter cache study was targeted at the StrongARM
SA-110 processor. As can be seen in Table 1, the SA-110
dissipates a combined 43% of CPU energy in the L1 data
and instruction caches. When this work is evaluated as a
stand-alone system, where the CPU has a dedicated power
supply, it is an energy efficient choice. However, as we
have demonstrated, if the SA-110 CPU in a system design
consumes much less than 75% of total system power then
this is not an effective solution at all.

We observe that it is insufficient to examine energy-delay
issues from the narrow perspective of just the component
being optimized. Some presentation of the total system im-
pact must also be made in order to fully evaluate the design
trade-offs.

3.2 Additional Hardware can be Harmful
Another pitfall in the Rsaved term from Equation (1) is the
historical insignificance of the leakage energy estimates.
In spite a slew of literatures have been raising attention
and proposing new techniques for reducing leakage energy,
most of the them isolated leakage and dynamic switching

1The static energy consumed by introducing an addi-
tional component such as a filter cache is revisited in Sec-
tion 3.2.2.
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Figure 2: Maximum delay tolerance limits for two commercial processors.

power to two independent subjects in their studies. With
the advance of DSM techniques, leakage or static energy
dissipation can no longer be ignored or considered indepen-
dently from dynamic power consumption, especially when
they also consume power from the same supply – batteries.
The problem is that IDDQ grows exponentially with the
threshold voltage [6]. Before examining how the leakage
current is impacting contemporary work, we re-examine
in a new manner the basic power equations that govern
CMOS designs.

3.2.1 Switching Activity
The various factors contributing to the power problem can
be represented by a set of simple equations. We distinguish
between the short-circuit, dynamic, and leakage power as
follows: PSC represents the transient current flow during
transition change from the power supply to ground; PDY N

is the power consumed by the charging and discharging
of capacitive elements during switching; and PL represents
the power consumed when the inputs are stable, also called
the leakage power. We use similar notations and conven-
tions as contemporary texts [22, 32, 34].

PL = IDDQ · VDD (4)

PSC = ISC · VDD (5)

PDY N = a · f · C · V 2
DD (6)

P = PL + PSC + PDY N (7)

Classically, the power dissipation from PDY N has domi-
nated the total power consumption. PL and PSC could be
discarded. PL has been historically on the order of micro-
Watts, while the total power was on the order of Watts.
PSC has been at most 5-10% of PDY N . In low-power ar-
chitecture research, a large number of work suggests novel
designs that reduce PDY N .

In order to evaluate the energy impact when a new design is
proposed, some estimate of any change in total transistor
count is necessary, ∆T . A second estimate of the delay

(or speedup) caused by the new model on the clock speed,
∆F , is also required. The final impact is the application
slowdown, ∆S. If only Equation (6) is considered, then
to achieve a “winning” efficiency the activity coefficient, a,
must be reduced by some quantity.

Analytically extracting a from the reference model vs. the
new model, we solve for anew in Equation (8). The safe
assumption is that the average short-circuit current drawn,
ISC, will scale linearly so long as ∆T is less than a few %
of the total transistor count, T . Sufficient examination of
this results in an insight that so long as the ratio shown in
Equation (9) is satisfied, a more power-efficient solution is
present. (This uses the approximation that C = Cgateavg ·
T .)

anew ≤
Pref − PLnew

− PSCnew

fnew · Cnew · V 2
DD

(8)

aref

anew

≥

(

1 +
∆T

T
+

∆F

F
+

∆F · ∆T

F · T

)

(9)

For example, in a 100M transistor design base, a new mod-
ule is added at an extra 1% to the total transistor count.
This new module also affects the critical path such that
a 5% performance delay is incurred. So long as the ra-
tio aref : anew exceeds 1.06 (1 + .05 + .01 + .05 · .01), the
new design consumes less energy than the original design.
This pattern is true irrespective of ∆T , ∆F , and all other
parameters – except IDDQ. If PL ≤ 0.02·P , then these pat-
terns are true to an accuracy of 0.2%, and leakage current
can be ignored. In other words, if the target manufactur-
ing process ≥ 0.25-µm, then these equations hold true. If
the conditions (1) ∆F � F and (2) ∆T � T are also true,
then Equation (9) can be reduced to Equation (10).

aref

anew

≥

(

1 +
∆T

T
+

∆F

F

)

(10)

This result is at first obvious, yet also deceptively strong.
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The entire viability of any design from a purely energy-
efficiency perspective has been reduced to three variables:
(1) the new switching probability, anew; (2) the change in
total transistors, ∆T ; and (3) the change in clock speed,
∆F . Given any two of these values, the maximum tol-
erance for the third is easily calculated.

While this insight is useful, it fails to account for the
delay incurred to system users. The results from Equa-
tion (9) and Equation (10) do not include any factors to
consider the slower execution of programs. (This is not
necessarily the same as the clock frequency change, ∆F .)
To also include the delay impact, again the ED product
is used. By using the reference application delay, D, we
then solve for anew from the revised baseline equation of
Pref · D2 = Pnew · (D + ∆D)2. Extracting a revised ratio
which incorporates ∆D, we obtain a new way to view the
ED product.

aref

anew

≥

(

1 +
∆T

T
+

∆F

F

)

·

(

1 +
∆D

D

)2

(11)

The ratio from Equation (11) works as excellent approxi-
mations based on three underlying principles: (1) ∆T �
T , (2) ∆F � F , and (3) PL � P . While the first two prin-
ciples generally hold true, the third principle is dependent
upon process technology. As earlier work has shown [6],
when the target process is ≥ 0.25µm, IDDQ is very small
and can generally be ignored. When the process scales
from 250 nm to 70 nm, however, PL is projected equal or
surpass PDY N at 70-nm [2]. When this occurs, the errors
introduced from the ratios above exceed 15%.

3.2.2 Leakage Impact
The total leakage current has many contributors in the
physical design process. The total leakage contributors lie
in the physical mediums used in construction of devices,
given that the real world fails to match ideal circuit mod-
els. The major contributor due to process shrinking is the
sub-threshold current. This is the current that flows even
though the gate voltage is less than the threshold voltage
(e.g., Vgs < Vt).

Architecture researchers have proposed implementing ad-
ditional structures to reduce energy consumption, such as
Pyreddy and Tyson’s dual speed pipeline [24], Vahid and
Gordon-Ross’s loop table [33], or Iyer and Marculescu’s
run-time profiling hardware [12], to name a few. In the
following discussion, we use the dual speed pipeline as an
example design to illustrate the looming issues of these
choices in a DSM era. This example will highlight the im-
pact of increasing leakage currents, as well as provide im-
plications in dynamic power consumed by additional hard-
ware modules.

Assume a processor with a high-speed datapath. One way
to reduce power consumption suggested in [24] is to intro-
duce a slower but less power hungry datapath in addition
to its fast counterpart. Similar to the power reduction idea
by exploiting execution slack, instructions are scheduled
to different speed datapaths, exploited either statically by
compilers or dynamically by the hardware, based on the
criticality of each instruction. If the result of the instruc-

Datapath Speed Higher (D ↑) Lower (D ↓)

Dynamic Energy/Instruction (J) DE↑ DE↓

Leakage Power (Watt) LP↑ LP↓

Table 2: Terms used for a dual speed pipeline.

tion is needed immediately as part of the critical path of
the program control flow graph, then this instruction is
scheduled and dispatched to the fast datapath. The slow
datapath will consume less energy than the fast datapath.
This may be achieved by using lower supply voltage and/or
higher threshold voltage while designing the slower datap-
ath. Similar techniques were investigated recently in [23,
28]. Table 2 illustrates the notation and symbols used in
this example.

Table 3 shows the dynamic and static energy characteris-
tics of two different datapath designs, Single pipeline and
Dual pipeline. In the dual speed pipeline, a slow data-
path, represented by D ↓, is introduced. For simplicity,
we assume that all the instructions have the same execu-
tion latency and the total execution time is proportional
to the number of instructions executed through the fast
datapath (D ↑), namely, instructions on the critical path.
For each datapath, the same dynamic energy is dissipated
for each instruction in that datapath. Moreover, to get
the best case energy savings for the dual datapath design,
we assume negligible energy consumption of the additional
hardware to coordinate the two datapaths.

Given the total number of instructions and the number of
instructions dispatched to D ↓ are N and x, respectively,
then the execution time2 Td of the program can be written
as Ts ·

N−x
N

where Ts represents the execution time on the
Single datapath machine. The total energy (TE) consumed
by Single and Dual machines are represented by TEs and
TEd in Equation (12) and Equation (13).

TEs = LP↑ · Ts + DE↑ · N (12)

TEd = (LP↑ + LP↓) · Ts ·
N − x

N
+

DE↑ · (N − x) + DE↓ · x (13)

For the Dual machine to be more energy efficient, TEd

must be equal to or smaller than TEs, leading to Equa-
tion (14). Assuming the ratios of the slow datapath versus
the fast one is r for both of the dynamic energy and leakage
power as shown in Equation (15), and by replacing LP↑ ·Ts

with LEs, we rewrite the new inequality as Equation (16).
In reality, the ratios of the dynamic and leakage power can
be different due to different Vdd and Vt, but we assume
they are the same for simplicity.

2Note that the execution time could be slower than Ts ·
N−x

N
, i.e. closer to 1, if the non-critical instructions in the

Single machine model cannot be completely hidden.
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Machine model Single (D ↑) Dual (D ↑ +D ↓)

Inst Executed N on D ↑ x on D ↓, (N-x) on D ↑

Execution Time Ts Td = (N−x)
N

· Ts

Leakage E (LE) LP↑ · Ts (LP↑ + LP↓) · Td

Dynamic E (DE) DE↑ · N DE↑ · (N − x) + DE↓ · x

Total Energy LP↑ · Ts + DE↑ · N
(

LP↑ + LP↓

)

· N−x
N

· Ts + DE↑ · (N − x) + DE↓ · x

Table 3: Equations used for a dual speed pipeline.
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x ≥
LP↓ · Ts

LP↑·Ts

N
+

LP↓·Ts

N
+ DE↑ − DE↓

(14)

r =
DE↓

DE↑

=
LP↓

LP↑

(15)

x ≥
r · LEs

LEs

N
+ r·LEs

N
+ DE↑ − DE↓

(16)

Since N · DE↓ is the total dynamic energy consumed by
a program for the Single machine, hence the ratio of static-
to-total energy can be represented as the R in Equation (17).
The final inequality can be expressed as Equation (18).
On the left-hand side, it indicates that the minimal ratio
of the number of instructions that are needed for the slow
datapath in order to make the Dual machine more energy
efficient than the Single one.

R =
LEs

LEs + N · DE↑

(17)

x

N
≥

r · R

(1 + r)R + (1 − r) (1 − R)
(18)

Using Equation (18), Figure 5 plots the minimum percent-
age of instructions needed to be dispatched to the slow
datapath as a function of static-to-total energy ratio in or-
der to save overall energy. As shown in prior projections
from the industry [18, 31], the ratio of static energy con-
sumption to the total energy increases dramatically in ev-
ery technology generation. Thus, the static energy penalty
due to the additional hardware becomes more significant.

The active static-to-total energy ratio is in the ballpark of
20% for current process generation. When migrating down
to 70nm, the static leakage energy becomes dominant with
a ratio more than 50%.

Clearly, the minimum percentage of instructions increases
as the ratio of static energy to the total energy increases.
For example, for a slow datapath executed at 75% of the
fast datapath energy (r = 0.75), with a 50% static-to-total
energy ratio (R = 0.5), we need 37.5% or more of the total
instructions to be dispatched to the slow datapath for be-
ing energy efficient. In other words, compilers or a special-
ized hardware have to identify at least 37.5% instructions
off the critical path for a given application.

Figure 5 also illustrates a sweep of curves plotted for a
slow datapath consuming from 20% to 90% energy of what
the fast datapath consumes. Given that lower energy con-
sumption is achieved by lowing the datapath speed, if the
speed of the slow datapath is considerably less than that
of the fast datapath for energy reduction reason, the over-
all performance may be further degraded by non-critical
instructions becoming critical, leading to an energy ineffi-
cient design.

Using Equation (19) derived from prior equations, we plot
Figure 6 that shows the energy savings for a variety of dif-
ferent static-to-total energy ratios, R, in which the slow
datapath is assumed to consume (a) 75% energy of its fast
datapath counterpart (r = 0.75) and (b) half the energy
of its fast datapath counterpart (r = 0.5). For r = 0.75,
even with a static-to-total energy ratio less than 20%, the
energy saving is less than 10% until the machine could
find 40% of the instructions to be off the critical path and
dispatched to the slower datapath, which could be rather
difficult and degrade performance. For r = 0.5, although
the instruction percentage is reduced to 30%, the potential
performance degradation due to the even lower frequency
datapath is likely to become a hindrance for it to be fea-
sible. Furthermore, this energy saving is with respect to
the datapath only, and according to our discussion in Sec-
tion 3.1, the overall energy efficiency probably cannot tol-
erate any tiny performance loss. It also complicates the
design complexity and verification efforts.

TEs − TEd

TEs

= (2Rr − r + 1)
(

x

N

)

− rR (19)

Similar issues exist in other techniques and one can ap-
ply similar analytical model to evaluate the energy effi-
ciency when the leakage energy consumption of the addi-
tional hardware could become an overkill. For example,
loop tables described in [33] also obtain energy savings at
the expense of additional transistors. An average of 34%
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Figure 6: Energy savings versus % instructions issued to the slow datapath.

dynamic energy savings was shown for commercial micro-
processors by nearly tripling the transistor count. When
the static energy increase is taken into account, the dy-
namic energy reduction will be equal to the static energy
increase for a technology generation where static energy to
total energy ratio is 25%. The problem of leakage power is
exacerbated when the entire system is put into deep sleep
mode, in which only leakage energy is consumed.

Note that there exists another class of research in which
additional hardware mechanisms are employed for dynamic
thermal detection and management [4, 10, 14, 25, 27].
These temperature-aware architecture designs attempt to
avoid overheating issues by dynamically entering the low-
power mode when the max-power dissipation budget is
reached during execution. In these designs, performance
is typically compromised in favor of keeping the proces-
sor’s operating temperature under a safe bound. Such a
design is aimed at lowering the cost of packaging and cool-
ing systems, thus maximizing energy efficiency is less a first
priority.

Additional hardware modules will consume additional leak-
age power, reducing battery life when idle or in sleep mode.
While the extra hardware is consuming no switching activ-
ity as discussed in section 3.2.1, it still represents a prob-
lem in the total system energy picture as shown in Sec-
tion 3.1. Any low-power architecture research that intro-
duce new hardware components should take static energy
into consideration in localized evaluation, while still por-
traying the overall energy-delay situation.

4. RELATED WORK
With the increasing importance of power modelling in cur-
rent architecture research, various tools and methods have
been developed. At the device-physics level [2], analytical
models are constructed based on the underlying principles
of fabrication methods and materials used. These models
are very accurate, but can take substantial time to evalu-
ate due to their complexity. The precision and elegance of

an analytical model, however, has led to much work trying
to reduce the complexity while still maintaining sufficient
accuracy in results.

Macromodeling [1, 21] can be a top-down approach to us-
ing large-scale approximations of behavior or probability-
based models to generate power signatures. These models
have been applied to the power grid within chips [3], as well
as “cycle-accurate” simulators on an RTL basis [35]. Vari-
ous projects have attempted to correlate and compare the
errors between macro-models and more traditional designs
[1].

The alternative bottom-up approach incorporates the de-
sign and/or layout of gates with simulation in detail, gen-
erally via SPICE-based tools. The results of these models
are then fed up into systems that approximate power on
the larger scale. Such methods can be reduced to basic
gate designs via compound gate breakdown [7], or analysis
of the analog underpinnings for use by higher-level tools
[26].

Regardless of whether top-down or bottom-up approaches
are used, all macro-models share in common the need for
training based on input vectors. While the simulated ar-
chitecture programs substantially match the characteris-
tics of the training data, for those programs that deviate
the reported results can be off by over 20%.

Popular tools such as Wattch [5] and SimplePower [36] in-
clude cycle-based power analysis support based on event
enumeration for each microarchitectural block. Other ef-
forts are trying to tie models in to the instruction set, such
that estimation of power in a processor can be determined
by the program to be run [29, 17]. Researchers also com-
bine various methods by hand to derive interesting results
[16]. While these tools are powerful and useful, care must
be exercised in reporting and interpreting the results to
avoid the problems and confusions discussed in this paper.
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5. CONCLUSIONS
The objective of this paper is not to invalidate any prior
published work in low-power architectural or microarchi-
tectural techniques. Instead, we hope that more meticu-
losity and preciseness will be paid to the way the energy
and performance are evaluated and reported in order to
eliminate misconceptions and erroneous conclusions. It is
insufficient to assume the CPU is the only power drain in a
system that includes DRAM, network, graphics, and many
other components. When evaluating the energy-delay im-
pact of an architectural design, it is imperative to be more
precise as to how the energy is being measured, and what
process is being targeted. As we moved into the DSM
era, leakage currents will increasingly dominate the total
power dissipation. As new architectural designs are pro-
posed, analysis of whether leakage power offsets any gain
in dynamic power should be considered and evaluated in a
more precise manner.
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