
Can Multi-Level Cell PCM Be Reliable and Usable? Analyzing
the Impact of Resistance Drift

Sungkap Yeo Nak Hee Seong Hsien-Hsin S. Lee
sungkap@gatech.edu nhseong@ece.gatech.edu leehs@gatech.edu

School of Electrical and Computer Engineering
Georgia Institute of Technology

Atlanta, GA 30332

ABSTRACT
There are several emerging memory technologies looming on the
horizon to compensate the physical scaling challenges of DRAM.
Phase change memory (PCM) is one of such candidates proposed
for being part of the main memory in computing systems. One
salient feature of PCM is its multi-level cell (MLC) property which
can be used to multiply the memory capacity at the cell level.How-
ever, due to the nature of PCM that the value written to the cell can
drift over time, PCM is prone to a unique type of soft errors, pos-
ing a great challenge for their practical deployment. To address
this reliability issue, many researchers proposed material-based or
architectural solutions. In this paper, we analyze the resistance drift
problem using both analytical models and Monte Carlo simulation
and show the fundamental limit in prior architectural solutions. Ac-
cording to our findings, four-level PCM is unusable given itssoft
error rate and scrubbing time needed.

1. INTRODUCTION
Phase-change memory (PCM) is a promising alternative memory

technology for future computing systems. Based on chalcogenide
compound made of Ge, Sb, and Te (GST), the value of stored data
is represented using its material state indicated by its current resis-
tance level. When a PCM cell is heated up to a temperature over
the melting point and cooled down within several tens of nano-
seconds, the cell becomes a high resistive amorphous state.On
the other hand, the PCM cell becomes a low resistive crystalline
state when it is exposed to a temperature lower than the melting
point and cooled down slowly. The resistance of a PCM cell is
known to be103 Ohms in the crystalline state and106 Ohms in
the amorphous state. Moreover, when we alter the temperature and
the duration induced to the PCM cell, researchers found thatthe re-
sistance can be anywhere in between these two states. Multi-level
cell (MLC) PCM exploits these intermediate states in-between the
crystalline and amorphous states to store more data per cell.

Although the MLC PCM increases information density, this tech-
nique requires a finer-grain control over the resistance of acell.
To make the resistance of a cell within a predefined range, The
MLC PCM requires an iterative-writing mechanism, which reads
the resistance immediately followed by a write to check whether
the cell needs to be rewritten or not. This iterative-writing compro-
mises the write latency. Recent studies show that the write latency
of a four-level cell is about 4x∼ 8x slower than that of a Single
Level Cell (SLC) PCM [11]. Besides the performance issue, a far
more critical problem of making MLC PCM practical is its relia-
bility concern caused by the resistance drift. The resistance drift is
the phenomenon that the resistance of a PCM cell increases over

Table 1: Configuration Variables of Four-Level Cell PCM
When t0 = 1 s.

Storage Level Data
log10 R α

µR σR µα σα

0 01 3.0
1

6

0.001

0.4 × µα
1 11 4.0 0.02
2 10 5.0 0.06
3 00 6.0 0.10

time. Such drifting was not a problem in SLC PCM because the
rate of resistance drift is proportional to the initial resistance of
the cell and is nearly-zero for the crystalline state. However, re-
searchers found that the resistance of cells at the the intermediate
states written in the MLC PCM can cross the state boundary and
lead to undesirable errors due to state changes. This new type of
soft errors caused by resistance drift, if left unaddressed, will make
MLC PCM completely useless. In this paper, we present the first
attempt to mathematically formulate the soft error rates ofMLC
PCM. With this analytical model, we evaluate the previouslypro-
posed ideas for reducing errors and show that four-level PCMis an
infeasible solution as main memory.

2. ANALYTICAL ERROR MODEL AND VAL-
IDATION

By measuring the resistance drift of PCM reset and set states
from iterative experiments, Ielminiet al. [7, 8] found that the drift
can be represented with a power-law model shown as the following:

Rdrift(t) = R × { t

t0
}α (1)

whereR andt0 are normalization constants andα is a drift expo-
nent. Because the main cause of the drift is the structural relaxation
of the amorphous state, the drift exponent of the reset stateis much
larger than that of the set state in the experiments. In otherwords,
the drift exponent will increase as a portion of the amorphous state
in a PCM cell increases.

As mentioned earlier, the resistance drift causes soft errors in the
multi-level-cell (MLC) PCM. To estimate the reliability impact of
resistance drift, we make the following assumptions for thenor-
malization constants and a drift exponent for each storage level.
According to the experiments of Nirschlet al. [9], the iterative
write-and-verify sequence adjusts the programmed resistanceRp

to be located within a desired resistance range for a given storage



level, wherelog10 Rp follows a normal (Gaussian) distribution. In
this paper, we assume that the logarithm of a normalization resis-
tance,logR will follows a normal distribution ofN(µR, σ2

R). In
addition, a desired programmed resistance range for a givenstate is
set to the range within10µR±2.75×σR Ω and the upper and lower
sensing boundaries for the state are set to10µR±3×σR Ω. The value
of a drift exponent is also assumed to follow a normal distribution
of N(µα, σ2

α). The parameters we use in our drift analysis are
based on the previous works [1, 15] and described in Table 1.

In MLC PCM, a transient (soft) error can occur when the re-
sistance of a cell is drifted above the upper boundary of its pro-
grammed state. From the state-boundary settings describedabove,
the condition of a soft error can be represented as follows.

Rdrift(t) > 10µR+3×σR (2)

In other words, when considering the values in Table 1, the target
resistance values for the four storage levels are103, 104, 105, and
106Ω, respectively, and the three sensing boundaries between two
adjacent levels are103.5, 104.5, and105.5Ω. For instance, when
the resistance of a cell that was programmed for the storage level 2
becomes larger than105.5 Ω, the cell is sensed as the next storage
level, which generates a soft error.

By using the assumption thatlog10 R andα follow normal dis-
tributions as shown in Table 1, we can calculate the probability of
such soft error type. First, we define two more variables,m =
log10 R andn = log10 t. By substituting Equation (1) withm and
n, we obtain the following.

log10(Rdrift(t)) = log10 R + α log10 t = m + nα. (3)

Thus, the condition of a soft error can be rewritten as follows.

m + nα > µR + 3σR

nα > µR + 3σR − m

As α follows N(µα, σ2
α), nα follows N(nµα, (nσα)2). The prob-

ability for nα to be more thanµR + 3σR −m can be calculated as
follows.

(Probability of soft error for a givenm)

= 1 − Φ(
µR + 3σR − m − nµα

nσα
)

whereΦ(x) =
1√
2π

Z x

−∞

e
−x2/2

dx

(4)

Here, we also take the effect of the iterative writing into account.
As mentioned earlier, cell programming iterates a write-and-verify
sequence untillog10 R is less thanµR + 2.75σR or larger than
µR−2.75σR. It means the probability density function of a random
variablem, f(m) is as follows.

f(m) =



1

K
φ(m−µR

σR
) µR − 2.75σR < m < µR + 2.75σR

0 otherwise,

whereK =

Z µR−2.75σR

µR+2.75σR

φ(
m − µR

σR
)dm,

andφ(x) =
1√
2π

e
−x2/2

(5)

Therefore, we can obtain the probability of soft error as a func-
tion of time (t = 10n) by integrating Equation (4) with a random

1.E-15

1.E-13

1.E-11

1.E-09

1.E-07

1.E-05

1.E-03

1.E-01

1.E+01

2
^1

2
^2

2
^3

2
^4

2
^5

2
^6

2
^7

2
^8

2
^9

2
^1

0

2
^1

1

2
^1

2

2
^1

3

2
^1

4

2
^1

5

2
^1

6

2
^1

7

Time (sec)

P
ro

ba
bi

lit
y 

o
f S

o
ft 

E
rr

o
r 

'

Storage Level 1 (Simulated results)
Storage Level 2 (Simulated results)
Storage Level 1 (Equation (3))
Storage Level 2 (Equation (3))

Figure 1: Probability of Soft Error of Four-level Cell PCM
Over Time

variablem for µR − 2.75σR < m < µR + 2.75σR.

(Probability of soft error)

=

Z µR−2.75σR

µR+2.75σR

(1 − Φ(
µR + 3σR − m − nµα

nσα
))f(m)dm

(6)

We evaluate Equation (6) and also run Monte Carlo simulations
to verify these equations. In the simulator, we first implement a
random number generator, which draws normally distributedran-
dom numbers at given mean and variance. The main loop starts
by pickingR andα from their corresponding normal distributions
in Table 1. If log10 R is less thanµR − 2.75σR or larger than
µR + 2.75σR, the simulator picksR andα again for emulating
write-and-verify (iterative writing) process. OnceR and α are
picked, the simulator calculatesRdrift(t) by using Equation (1).
Finally, Rdrift(t) is evaluated whetherlog10 Rdrift(t) is larger
thanµR + 3σR or not. By definition,log10 Rdrift(t) larger than
µR + 3σR generates a soft error. The simulator repeats the main
loop for one billion times and collects the number of soft errors.
For example, if the simulator finds ten soft errors out of one billion
trials, the soft error rate becomes10−8. Figure 1 and Table 2 show
the results side by side. We omit the soft error rates for set and
reset states,i.e., , the storage level 0 and 3, because (i) resistance
drift in level-3 states does not lead to a soft error, and (ii)the er-
ror rates of level-0 states are too small to be evaluated and can be
ignored. For example, Mathematica 8.0 shows the first non-zero er-
ror rate for level-0 states whent = 235 or 1090 years, and the error
rate is2.3 × 10−18. Similarly, note that three data points for inter-
mediate states (level-1 and level-2 states) are missing andmarked
as “too small” because either (i) Mathematica 8.0 cannot evaluate
Equation (6) or (ii) Monte Carlo simulation found no error inone
billion trials. By comparing results from two independent sources,
we validate the accuracy of our theoretically derived Equation (6)
by simulation. When the soft error rate is larger than0.01%, the
difference is negligible. For the lower soft error rates, the differ-
ence comes from insufficient trials in the Monte Carlo simulations.
One billion trials were too small to detect such low error rates.

3. REVISITING FOUR-LEVEL CELL PCM
Given the soft error rates in Table 2, it is clear that withoutany



Table 2: Probability of Soft Error of Four-Level Cell PCM

Storage Level 1 Storage Level 2
Elapsed Time (sec) Equation (6) Simulation Equation (6) Simulation

2 (too small) (too small) 5.85E-06% 7.40E-06%
22 1.59E-12% (too small) 0.02% 0.02%
23 5.85E-06% 7.40E-06% 0.12% 0.12%
24 7.45E-04% 7.57E-04% 0.28% 0.29%
25 0.01% 0.01% 0.52% 0.53%
26 0.02% 0.02% 0.85% 0.86%
27 0.05% 0.05% 1.30% 1.31%
28 0.08% 0.08% 1.90% 1.91%
29 0.12% 0.12% 2.67% 2.68%
210 0.17% 0.17% 3.64% 3.66%
211 0.22% 0.22% 4.84% 4.87%
212 0.28% 0.29% 6.29% 6.32%
213 0.35% 0.36% 7.99% 8.04%
214 0.43% 0.44% 9.95% 10.01%
215 0.52% 0.53% 12.16% 12.24%
216 0.62% 0.63% 14.61% 14.70%
217 0.73% 0.74% 17.27% 17.38%

mechanism for reducing the soft error rates, 4LC-PCM is infeasible
to be used as a main memory. Thus, researchers have proposed sev-
eral drift-tolerant approaches such as error correction schemes [1,
16, 10, 15], data encoding schemes using relative resistance dif-
ference [10, 16], a reference cell scheme [6], a time-aware drift
estimation scheme [15], and most recently an efficient scrubbing
scheme [1]. Among them, we focus on the most recent work by
Awasthi et al. They proposed an architectural mechanism com-
bining a memory scrubbing scheme with a strong error-correction
scheme, which achieves lower soft error rates than others aiming to
use PCM for main memory in systems. However, as we will show
subsequently, even with the most efficient scrubbing mechanism,
the soft error rate of 4LC-PCM is still much higher than that of
DRAM. DRAM experiences soft errors mainly induced by particle
strikes and its soft error rate (SER) is known to be an averageof
25, 000 ∼ 75, 000 FIT (failures in time per billion hours of opera-
tion) per Mbit,i.e., 25 × 10−12 ∼ 75 × 10−12 per bit-hour [12].

0%

10%

20%

30%

40%

50%

60%

2
^7

2
^8

2
^9

2
^1

0

2
^1

1

2
^1

2

2
^1

3

2
^1

3

2
^1

5

2
^1

6

Scrubbing Period (sec)

S
cr

ub
bi

ng
 O

ve
rh

e
a

d
fo

r 
1

6
G

B
 P

C
M

Figure 2: Scrubbing Period Versus Scrubbing Overhead

3.1 Estimating Scrubbing Overhead
In this section, we compare the SER of 4LC-PCM to that of con-

temporary DRAM technology and argue that 4LC-PCM is not fea-
sible for main memory due to reliability concern. First, we assume

a 16GB PCM main memory using a 256B data block1 as a basic
access unit as assumed in the prior literature [14, 13]. According
to the recent paper of Choiet al. [3], the read and write laten-
cies in SLC PCM are120ns and150ns, respectively. Considering
iterative write-and-verify steps are required for MLC PCM,how-
ever, we assume that scrubbing one cache line takes at least1µs.
Also, we assume that each storage level has the same probability of
occurrences.

Figure 2 shows the scrubbing overhead as the scrubbing period
increases. Here, the scrubbing overhead is defined as (Time used
for scrubbing)/(Scrubbing period). The 16GB PCM has 64M cache-
lines. Thus, 67.1 seconds (= 64M × 1µs) are required for scrub-
bing the entire physical PCM. If we use the scrubbing period of
45 minutes as in the DRAM memory system for real servers [12],
the SER of a PCM cell programmed to storage level 2 becomes
around5%, which is significantly higher than that of DRAM. New
memory technologies must have the similar level of SER as that of
DRAM. However, here we show that 4LC-PCM with scrub mech-
anisms cannot satisfy such conditions. As shown in Table 2, even
when the memory controller performs nothing but scrubbing (100%
overhead, in other words, the memory controller will not have time
to respond to any memory request), the SER of storage level 2 in
4LC-PCM is about 0.9% which is still significantly high. To main
a very low SER and reduce the scrubbing overhead simultaneously,
the maximum PCM capacity must be limited. Our next section will
show the largest capacity of 4LC-PCM the scrubbing mechanism
can support for different combinations of target SER and scrubbing
overhead.

3.2 Reducing Capacity to Achieve Low Soft
Error Rates

Another way of lowering SER of 4LC-PCM is to limit the max-
imum capacity. We assume the capacity of 4LC-PCM as 16GB in
Section 3.1 when estimating the scrubbing overhead. Because the
scrubbing overhead proportionally increases with the capacity, as-
suming 8GB of capacity results in halving the overhead. If wefur-

1A large last-level DRAM cache is typically used to compensate
for the relatively slower PCM access latencies. Its cacheline size is
assumed to be 256B



Table 3: Maximum Capacity of Four-Level Cell PCM by Soft
Error Rates and Scrubbing Overhead

Scrubbing Overhead
Scrubbing

Period (sec)
SERcombined 100.0% 12.5% 1.0%

2 1.46E-06% 488MB 61.0MB 4.88MB
22 0.005% 977MB 122MB 9.77MB
23 0.030% 1.95GB 244MB 19.5MB
24 0.071% 3.91GB 488MB 39.1MB
25 0.132% 7.81GB 977MB 78.1MB

ther reduce the capacity, we can achieve lower SER. Table 3 shows
the results. In Table 3, we calculate the maximum capacity of4LC-
PCM for different combinations of SER and scrubbing overhead.
The leftmost column represents the scrubbing period for each 256B
memory block. The next column represents the combined SER,
which is an average of SER of all four states in 4LC-PCM. How-
ever, because the third storage level shows significantly larger SER
than the other levels, this combined SER is close to one fourth of
the third storage level’s SER. In addition, we show the maximum
capacity by each given scrubbing overhead. When the overhead
is 100%, the memory controller cannot service any request from
the upper memory hierarchy. Since 100% scrubbing overhead is
impractical, the third column of Table 3 can be viewed as an up-
per bound. The table also shows the maximum capacity when the
scrubbing overhead are set to 12.5% and 1.0%, respectively.For
example, if we design 4LC-PCM with the scrubbing overhead of
1.0%, leaving 99% of the time for servicing memory requests,the
maximum PCM capacity will be merely 4.88MB for achieving an
average of 1.46E-06% SER. Note that when 4LC-PCM comprises
multiple ranks or banks, scrubbing can be performed in parallel.
Thus, when one bank is being scrubbed, the other banks can re-
spond to requests from the CPU. However, even with four ranks
with four banks each, the maximum capacity amounts to 78.1MB,
which is still substantially below the main memory capacityre-
quired in any computing system. In sum, although lower SER can
be achieved by reducing the capacity of 4LC-PCM, then the maxi-
mum capacity becomes totally unusable.

3.3 Using Error-Correcting Codes
Error-correcting codes (ECC) can be applied to compensate the

SER of 4LC-PCM. For example, the industry standard (72,64) Ham-
ming code [4] can correct single bit errors by adding 8 redundant
bits on top of 64 bits data.2 This scheme is commonly found in
main memory of server systems because of the simplicity in en-
coding and decoding. Moreover, stronger ECC can also be usedto
protect data from multiple bit errors. For example, BCH codes [2,
5] correct 8, 16, 24, or 40 bits errors from 256, 512, 1024 bytes
of data depending on the size of the redundant bits. Because de-
coding BCH codes require more computing power and time than
(72,64) Hamming code, these codes are not frequently used for
latency-sensitive devices such as main memory but commonlyused
in slower devices such as NAND-based storage. With the combined
SER for each cell of 4LC-PCM developed in previous sections,we
calculate the error rates after applying (72,64) Hamming code and
various BCH codes. Note that for every ECC evaluated in this sec-
tion, we fix the data size as 256 bytes.

(72,64) Hamming code corrects one bit error, and thus, having
more than two bit errors among 72 bits is incorrectable. In addition,

2The capacity overhead is 12.5%.

since storing 72 bits requires 36 4LC-PCM cells, the probability of
having more than two bit errors out of 36 cells can be calculated
as follows. Note that by using grey codes as in Table 1, one step
change in storage levels can be limited to affect only one bitin two-
bit data. Thus, two bit errors can happen only when two 4LC-PCM
cells are changed due to resistance drift.

Probability of having at least two bit errors

=Perror(64b) = 1 − P (no errors) − P (one bit error)

=1 − (1 − SERcombined)36

−
 

36

1

!

(1 − SERcombined)35(SERcombined)

(7)

Now we calculate the probability of incorrectable errors in256
bytes. 256 bytes comprises 32 of 64 bits data, therefore, to re-
construct the entire 256 bytes, all 32 blocks should not generate
any error. If we define the result of Equation (7) asPerror(64b),
then the probability of incorrectable error for 256 bytes isdefined
as follows.

Perror(256B) = 1 − (1 − Perror(64b))32 (8)

The fourth column in Table 4 shows the results. In Table 4, we take
the scrubbing period, scrubbing overheads, andSER from Table 2
and calculate the probability of incorrectable errors. When the error
rates are compared to that without ECC, (72,64) Hamming code
reduces the error rates, but those rates are still too high for practical
use. The results indicate that 4LC-PCM must use stronger ECCthat
requires more redundant bits and higher computational overheads.

Now we calculate the probability of incorrectable errors with
stronger ECC. On top of 256 bytes of data, BCH-8 corrects up to
8 bits errors by adding 12 redundant bytes, and BCH-16 corrects
up to 16 bits errors by adding 24 redundant bytes.3 We generalize
Equation (7) for calculating the probability of having at leastn bit
errors out ofm bits as follows.

Probability of having at leastn bit errors out ofm bits

= 1 −
n−1
X

k=0

 

m

k

!

(1 − SERcombined)m−k(SERcombined)k

(9)

Table 4 also shows the results from Equation (9). When the scrub-
bing period is27 seconds, the scrubbing overhead is 52.4%, and
Perror(256B) is 0.949% for BCH-8 and2.96 × 10−5% for BCH-
16. These error rates are significantly smaller than that of 4LC-
PCM with (72,64) Hamming code; however, still105 ∼ 108 times
higher thanPerror(256B) of DRAM without ECC support.

This section shows that 4LC-PCM requires ECC schemes stronger
than BCH-16. Implementing BCH-24 or BCH-32 is a common
practice in some applications with high soft error rates. For ex-
ample, MLC-NAND based devices implement ECC stronger than
BCH-16. However, MLC-NAND based devices could implement
rich ECC since they are not latency sensitive and only transfer a
few tens of mega bytes per second. On the contrary, 4LC-PCM is
latency sensitive and transfers more than a few giga bytes per sec-
ond as main memory of a system. All in all, such requirements
for rich ECC prevent 4LC-PCM from being used as main memory
of commodity systems because of the high cost and performance
issues. Firstly, implementing a memory controller with complex
error-correcting mechanisms is expensive. Since the current trend
is to integrate memory controllers on the same die with the proces-
sor cores, vendors need to design and fabricate a separate CPU for
3The capacity overheads are 4.7% and 9.4%, respectively.



Table 4: Probability of Incorrectable Errors by ECC and SERcombined for 16GB 4LC-PCM

Probability of Incorrectable Errors for 256 Bytes
= Perror(256B)

Scrubbing Period
(Overheads)

SERcombined No ECC (72, 64)
BCH-8

(256B+12B)
BCH-16

(256B+24B)
BCH-24

(256B+36B)
BCH-32

(256B+48B)

27 seconds (52.4%) 0.325% 96.4% 18.0% 0.949% 2.96E-5% 4.11E-11 % (too small)
28 seconds (26.2%) 0.475% 99.2% 33.7% 7.38% 4.00E-3% 1.09E-7% 6.24E-12%
29 seconds (13.1%) 0.668% 99.9% 54.3% 29.2% 0.184% 6.68E-5% 3.65E-9%
210 seconds (6.6%) 0.91% 100% 75.1% 64.0% 3.08% 1.09E-2% 6.17E-6%
211 seconds (3.3%) 1.21% 100% 90.3% 90.0% 20.5% 0.53% 2.43E-3%
212 seconds (1.6%) 1.57% 100% 97.6% 98.7% 58.9% 7.83% 0.22%

supporting 4LC-PCM. A complex memory controller requires chip
area and design effort, which increases the chip cost. Secondly, the
higher computational overhead in decoding increases the memory
latency and degrades the performance. As a result, the majority of
commodity systems with DRAM as main memory do not even im-
plement (72,64) Hamming code. We argue that suggesting stronger
ECC mechanism only limits the application of PCM.

4. CONCLUSION
This paper reveals that achieving error rates of DRAM with 4L-

PCM is infeasible in practice. We first present the analytical model
for calculating SER of MLC PCM. Our model takes the following
things into account; (1) the effect of the resistance drift,(2) the
distribution functions of the resistance att0 = 1s, (3) the distri-
bution functions of the rate of resistance drift, and (4) theeffect of
iterative writing. The model is verified by comparing the theoret-
ically derived results to the results from Monte Carlo simulations.
In addition, we use mean and deviation of distribution functions
from other studies to show the relationship among the SER, scrub-
bing periods, and scrubbing overheads for 4LC-PCM. Furtheranal-
ysis shows that 4L-PCM cannot be used as main memory given its
high error rates and scrubbing overheads. The most criticalprob-
lem of 4L-PCM is high SER of the third storage level, which is
about109 ∼ 1011 times higher than that of DRAM. With all our
in-depth analysis, due to resistance drift, 4L-PCM is either unre-
liable for practical deployment or one has to limit its capacity to
some unreasonable small size, both indicating that main memory
based on 4L-PCM (or PCM with more levels) cannot be reliable
and usable at the same time. More research is called for to in-
vestigate other novel alternatives to exploit the use of intermediate
resistance states and take advantage of them beyond SLC PCM.

5. ACKNOWLEDGMENT
This research was sponsored by NSF CAREER Award CNS-

0644096, an IBM Faculty Award and gift from Intel Corporation.
The authors would also like to thank the support of Dr. Jude Rivers
and Dr. Viji Srinivasan from IBM Research.

6. REFERENCES
[1] M. Awasthi, M. Shevgoor, K. Sudan, B. Rajendran,

R. Balasubramonian, and V. Srinivasan. Efficient scrub
mechanisms for error-prone emerging memories. In
Proceedings of the International Symposium on High
Performance Computer Architecture, 2012.

[2] R. Bose and D. Ray-Chaudhuri. On a class of error
correcting binary group codes.Information and control,
3(1):68–79, 1960.

[3] Y. Choi, I. Song, M.-H. Park, H. Chung, S. Chang, B. Cho,
J. Kim, Y. Oh, D. Kwon, J. Sunwoo, J. Shin, Y. Rho, C. Lee,

M. G. Kang, J. Lee, Y. Kwon, S. Kim, J. Kim, Y.-J. Lee,
Q. Wang, S. Cha, S. Ahn, H. Horii, J. Lee, K. Kim, H. Joo,
K. Lee, Y.-T. Lee, J. Yoo, and G. Jeong. A 20nm 1.8V 8Gb
PRAM with 40MB/s Program Bandwidth. InProceedings of
the 2012 IEEE International Solid-State Circuits
Conference, 2012.

[4] R. Hamming. Error detecting and error correcting codes.Bell
System Technical Journal, 29(2):147–160, 1950.

[5] A. Hocquenghem. Codes correcteurs d’erreurs.Chiffres,
2(2):147–156, 1959.

[6] Y. Hwang, C. Um, J. Lee, C. Wei, H. Oh, G. Jeong, H. Jeong,
C. Kim, and C. Chung. Mlc pram with slc write-speed and
robust read scheme. InVLSI Technology (VLSIT), 2010
Symposium on, pages 201–202. IEEE, 2010.

[7] D. Ielmini, A. Lacaita, and D. Mantegazza. Recovery and
drift dynamics of resistance and threshold voltages in
phase-change memories.Electron Devices, IEEE
Transactions on, 54(2):308–315, 2007.

[8] D. Ielmini, S. Lavizzari, D. Sharma, and A. Lacaita. Physical
interpretation, modeling and impact on phase change
memory (pcm) reliability of resistance drift due to
chalcogenide structural relaxation. InElectron Devices
Meeting, 2007. IEDM 2007. IEEE International, pages
939–942. IEEE, 2007.

[9] T. Nirschl, J. Phipp, T. Happ, G. Burr, B. Rajendran, M. Lee,
A. Schrott, M. Yang, M. Breitwisch, C. Chen, et al. Write
strategies for 2 and 4-bit multi-level phase-change memory.
In IEEE International Electron Devices Meeting, 2007.
IEDM 2007, pages 461–464, 2007.

[10] N. Papandreou, H. Pozidis, T. Mittelholzer, G. Close,
M. Breitwisch, C. Lam, and E. Eleftheriou. Drift-tolerant
multilevel phase-change memory. InMemory Workshop
(IMW), 2011 3rd IEEE International, pages 1–4. IEEE.

[11] M. Qureshi, M. Franceschini, and L. Lastras-Montano.
Improving read performance of phase change memories via
write cancellation and write pausing. InProceedings of the
International Symposium on High Performance Computer
Architecture, 2010.

[12] B. Schroeder, E. Pinheiro, and W. Weber. Dram errors in the
wild: a large-scale field study. InProceedings of the eleventh
international joint conference on Measurement and modeling
of computer systems, pages 193–204. ACM, 2009.

[13] N. H. Seong, D. H. Woo, and H.-H. S. Lee. Security Refresh:
Protecting Phase-Change Memory against Malicious Wear
Out. IEEE Micro, 31(1):119–127, 2011.

[14] N. H. Seong, D. H. Woo, V. Srinivasan, J. A. Rivers, and
H.-H. S. Lee. SAFER: Stuck-at-fault error recovery for
memories. InProceedings of the 43rd IEEE/ACM
International Symposium on Microarchitecture, 2010.

[15] W. Xu and T. Zhang. A time-aware fault tolerance scheme to
improve reliability of multilevel phase-change memory in the
presence of significant resistance drift.IEEE transactions on
very large scale integration (VLSI) systems,
19(8):1357–1367, 2011.

[16] W. Zhang and T. Li. Helmet: A resistance drift resilient
architecture for multi-level cell phase change memory
system. InIEEE/IFIP International Conference on
Dependable Systems & Networks, pages 197–208, 2011.


