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SUMMARY

This thesis describes the efficient design of a future many-core processor that

can provide higher performance under the limited chip power budget. To achieve

such a goal, this thesis first develops an analytical framework within which computer

architects can estimate achievable performance improvement of different many-core

architectures given the same power budget. From this study, this thesis found that

a future many-core processor needs (1) energy-efficient parallel cores and (2) a high-

performance sequential core. Based on these observations, this thesis proposes an

energy-efficient broad-purpose acceleration layer that can be snapped on top of a

conventional general-purpose processor. In addition to such an energy-efficient paral-

lel cores, this thesis also proposes different architectural techniques to further boost

the performance of sequential computation while those parallel cores are idle. In par-

ticular, this thesis develops low-cost architectural techniques to enhance the memory

performance of a host core by utilizing those idle parallel cores. This idea is evaluated

in two different system architectures: one with the aforementioned acceleration layer

and the other with an emerging integrated CPU and GPU chip.
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CHAPTER I

INTRODUCTION

Unsustainable power consumption and ever-increasing design and verification com-

plexity have driven the microprocessor industry to integrate multiple cores on a single

die, called a multicore processor, as an architectural solution to sustaining Moore’s

Law [44]. With dual-core and quad-core processors on the market and an oct-core

processor on the horizon, researchers are already a step ahead. They are investigat-

ing architectures, compilers, and programming models for a many-core processor with

hundreds or even thousands of cores on a single platform [49, 57].

To integrate this number of cores on a single die, computer architects must address

the problem of the fundamental physical limit, power consumption, to make a many-

core architecture viable. For future many-core processors, low power will be not

only a feature, but also a design constraint. In other words, achieving the goal of

integrating a large number of cores onto one chip boils down to one issue, how to

design many processing cores so that they do not consume more power than the chip

power budget.

To address this question, we proposed an analytical framework within which com-

puter architects can estimate achievable performance improvement of different many-

core architectures given the same power budget [127]. This study provided us two

interesting insights. The first insight is that building smaller, but more efficient

parallel processors provides greater performance than replicating a state-of-the-art

superscalar processor. The second insight is that sequential performance is not only

important to improve overall performance, but also critical to achieve higher energy

efficiency.
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To achieve both energy efficiency and best-of-class single-thread performance, we

also proposed a 3D-integrated broad-purpose acceleration layer that can be snapped

on top of a conventional superscalar processor die [125]. Building such an efficient

acceleration layer with a conventional superscalar processor poses several challenging

problems. The first problem is binary compatibility between the host processor and

the acceleration layer. Because the host superscalar processor is a complex instruction

set computer (CISC) superscalar processor such as Intel Core and each parallel core

in the acceleration layer is an energy-efficient, very long instruction word (VLIW)

processor, the host processor should have an efficient mechanism to solve the problem

of binary heterogeneity. The second problem is efficient interaction between the host

processor and the parallel cores. As the host processor issues instructions in an

out-of-order fashion by nature, either the parallel cores should be able to roll-back

from misspeculation, or the host processor should be able to issue instructions in a

different way. The third problem is designing an efficient interconnection network.

As an interconnection network shares the same area and power budget with all other

computation resources, the interconnection network should be as efficient as possible

so that we can implement more computation resources instead. In this research, we

designed the acceleration layer focusing on these three problems.

Although such an efficient asymmetric, heterogeneous many-core processor can

provide high performance when running well-parallelized applications, such an archi-

tecture has a certain drawback: parallel cores are underutilized when the processor

runs a single-thread application or the sequential code of a multi-thread application.

During such a sequential computation phase, parallel cores of an asymmetric many-

core processor remain idle while consuming area and power if not properly turned

off. Instead of leaving them idle, we envision that we can utilize them to achieve

higher single-thread performance by virtualizing them as a last-level cache and a data

prefetcher. In the meantime, the overhead of such architectural techniques should be

2



low enough that they do not compromise the efficiency of the baseline asymmetric

many-core processor. Thus, in this research, we propose low-overhead architectural

techniques that can virtualize these idle resources for higher single-thread performance

and evaluate their hardware and power overheads [126].

In addition, we also design and evaluate such an idea in a CPU and GPU integrated

platform, which many industry leaders plan to commercialize [128]. From this study,

we found that we have lots of interesting challenges in such an integrated platform.

For example, a conventional GPU does not have large cache or scratch pad memories.

Furthermore, the GPU pipeline is optimized for throughput, not for latency, which

makes our goal, reducing memory latency, even more challenging. In this study,

we address these challenges by exploiting properties of a conventional GPU with

negligible hardware overhead so that our new proposal does not harm the performance

of conventional 3D graphics or general-purpose GPU applications.

The remainder of this document is organized as follows. Chapter II enumerates

prior studies related with this thesis. Chapter III proposes an analytical framework

within which computer architects can estimate the energy-efficiency of different many-

core designs. Chapter IV proposes a 3D-integrated broad-purpose acceleration layer

that provides a power-scalable parallel execution engine. Moreover, Chapter V pro-

poses low-overhead architectural techniques to reuse such an accelerator, when it is

idle, as a virtualized last-level cache or a virtualized data prefetcher. Chapter VI

further extends the idea of reusing idle heterogeneous cores for boosting the single-

thread performance of central processing units (CPUs) on the same die; It proposes

architectural techniques to reuse idle graphics processing unit (GPU) cores for the

same purposes. Chapter VII concludes this dissertation.
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CHAPTER II

ORIGIN AND HISTORY OF THE PROBLEM

2.1 Amdahl’s Law

Amdahl’s law [5] is used for predicting the maximum performance improvement when

a new technique for improving the performance of a system applies to a subset of the

system. A very good usage of it is parallel software. Parallel software programmers

use Amdahl’s law to estimate the theoretical maximum speedup of their parallelized

software. Recent studies use Amdahl’s law to estimate the performance of future

many-core processors. Cho and Melhem extended the original Amdahl’s law to find

the optimal clock frequencies for serial and parallel code of a parallel program [24].

Hill and Marty proposed an extended Amdahl’s law to show how much speedup can

be achieved with different many-core processor designs given a fixed chip area [51].

2.2 Massively Parallel Processors

While this research revisits the massive single-instruction, multiple-data (SIMD) con-

cept of massively parallel processors (MPPs), this research expands and interprets the

SIMD concept with modern requirements and technological constraints. The closest

architectures are Maspar MP-1 [10, 82, 93] and Thinking Machines CM-2 [122]. Both

of these machines centered the concept of a very large number of processing tiles for

parallel calculations. This style of SIMD machine was broadly characterized as hav-

ing a stand-alone front-end system that consists of a host processor. Both machines

take advantage of the relatively free wire latency compared to the transistor switch-

ing speed and have a reasonable communication latency between nearest-neighbor
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processing elements (four cycles for CM-2 and eight cycles for Maspar). The nearest-

neighbor connections are supplemented with sophisticated networks, which allow all-

to-all, unstructured, and long-distance communication. The high number of process-

ing elements (PEs) led to a sophisticated global network design with many layers of

switches and crossbars. In the case of CM-2, it provided an n-way hypercube inter-

connect that linked clusters of PEs to other clusters. MP-1 utilized a multi-stage,

multi-pass network that enabled arbitrary communications patterns albeit with sub-

stantially higher latency and setup costs.

Other important SIMD machines include Solomon [111], IBM GF-11 [69], and

Illiac IV [13]. Some hybrid efforts between a multiple-instruction, multiple-data

(MIMD) and a SIMD architecture were undertaken [115] but remain on the fringe.

Systolic arrays [12, 70] resemble SIMD machines but were tailored for applications

whose computations fit a narrower structure. In most cases, for higher efficiency,

programmers need to map execution and data flow of an application in details to

the target machine. Tarantula [33] extended Alpha instruction set architecture (ISA)

with a slew of new instructions. EV8 understands an entire vector ISA for a re-

naming, a retirement, and a speculation issue and supports deep conditionals via

masks. However, it does not support communication among vector units except for

gather-scatter operations. VIRAM1 [38] is a vector processor with embedded dynamic

random access memory (DRAM) for mobile multimedia devices.

Common SIMD use in modern processors is most evident in streaming SIMD

extension (SSE) and 3DNow! extension as well as AltiVec or VMX Power Architecture

extensions. These instructions were added to baseline ISAs to enable programmers

and compilers to exploit data parallelism in media applications.

Imagine [4, 64, 106] is a stream-model processor but acts as a co-processor. Imag-

ine uses a 128 KB stream register file to contain data while each attached arithmetic

cluster has a local register file and several dedicated arithmetic logic units (ALUs)
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to operate on stream data in a producer-consumer model. Imagine capitalizes on an

eight-wide SIMD ability inside each full ALU tile. The drawback is that each of the

eight sub-ALU blocks is wired with a crossbar to full streaming register files, and

applications must be ported to a stream-based model for exposing the parallelism.

2.3 Tiled Architecture

Non-SIMD tile-based architectures, e.g., MIT RAW [117, 116] and UT-Austin TRIPS [108],

have also been proposed. The RAW processor provides local instruction and data

caches, contains 64KB of random access memory (RAM) in each processor tile for

programming a dynamic and static router, and has its ALU bypass network tied

directly into the interconnection network. To support its programming model, the

RAW also has large memory space and additional modes dedicated to routing logic

based on application needs for either static or dynamic routing. This approach re-

quires extra logic and power compared to a pure SIMD design. TRIPS is tile-based,

but it uses more sophisticated ISA mechanisms relying on a compiler analysis and

static placement of computation. It also provides separate interconnection networks

for data and instruction movement, and each tile has a complete CPU. The whole

design is intended to support highly speculative parallelization techniques.

2.4 Accelerator Architecture

IBM Cell Broadband Engine [52], an alternative to tile-based designs, hosts eight

synergistic processor elements (SPEs) on a PowerPC host. These SPEs are complete

with instruction fetch, decode, and branch control and work in a MIMD fashion. Each

SPE also provides 256KB of static random access memory (SRAM) for local program

and data. SPEs are connected to a planar ring network and perform direct memory

access (DMA) operations to transfer information from and to memory.

Recently, a general-purpose graphics processing unit (GPGPU) [77] has been at-

tracting more interest from the high-performance computing market. Tesla [95] is a
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GPGPU-based on a multi-threaded architecture for high-performance computing. It

has 128 multi-threaded processors and supports up to 76.8 GBps of off-chip mem-

ory bandwidth but supports only IEEE 754 single-precision floating point operations.

PhysX [3] is a specialized accelerator dedicated only to real-time physics to enrich

game playing. ParallAX [129] was recently proposed as a future physics processor

with detailed behavioral analysis of physics simulation.

2.5 Snap-On 3D Stacked Layers

In addition to its various advantages, 3D IC stacking technology also allows computer

architects to snap on a new feature on top of a conventional product with reasonable

cost. Mysore et al. proposed integrating specialized monitoring hardware stacked on

top of the processor die using the 3D IC stacking technology [90]. On the other hand,

Madan et al. proposed integrating a redundant checker processor on a second die to

improve reliability of a processor [79].

2.6 Software Caching

Many systems have used software caching techniques. To improve the programma-

bility of synergetic processing elements (SPEs) on IBM Cell/BE, IBM provides a

software cache library as a part of the IBM Cell software development kit [7, 32]. The

MIT Raw processor used software caching to emulate both instruction [84] and data

cache [86]. The Stanford VMP multiprocessor handled cache misses using software

techniques [22]. Furthermore, prior studies developed advanced compiler techniques

to better manage a software cache memory [123, 62, 20]. While the goal of all these

prior studies is to improve the programmability or the performance of a processor

with their local scratch-pad memory, our proposed design is to provide a virtualized

last-level cache to a host processor to improve the single-thread performance of the

host processor.
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2.7 Shared Cache Management

To use on-chip memory resources more efficiently, researchers have focused on manag-

ing a shared cache [67, 130, 18, 47, 53, 102, 42]. Zhang and Asanovic proposed a new

cache management policy called victim replication, which combines the advantages

of private and shared schemes in a tiled CMP [130]. Chang and Sohi used private

caches for both dynamic sharing and performance isolation [18]. Harris proposed a

synergetic caching policy that groups neighboring cores into a cluster to have shared

memory space among them [47]. While these prior studies attempt to manage shared

cache more efficiently, our work addresses the underutilization issue of heterogeneous

multicore processors by virtualizing unused PEs.

2.8 Non-Uniform Cache Architecture

To tackle the long latency problem of the last-level cache, researchers proposed a non-

uniform cache architecture (NUCA). Kim et al. proposed an adaptive, non-uniform

cache structure [65]. On the other hand, Huh et al. studied an optimal degree

of cache sharing in a NUCA [56]. Unlike the original NUCA proposal, NuRAPID

decouples the tag and data array to enable flexible data placement [23]. Although

our research adopts the idea of a NUCA, we propose an architectural solution called

time-zoning to provide non-uniform cache access latency on a SIMD engine with a

strictly synchronized execution model.

2.9 Prefetching Techniques

Hardware prefetching is widely investigated by prior studies [19, 60, 92, 63, 92, 74, 26].

These hardware prefetchers use dedicated hardware blocks to predict and bring in

the cache lines in advance whereas COMPASS is designed to reuse the existing GPU

hardware and leverage their programmability and flexibility so that one (e.g., software

vendors) can write or select the most appropriate COMPASS shader to improve the

8



performance of their applications. On the other hand, software prefetching was also

investigated by prior studies [16, 21], and various data prefetch instructions were

added in almost every commercial microprocessor. These techniques basically insert

software instructions into a code so that a future memory fetch can be initiated in

advance. COMPASS is different from a conventional software prefetching technique

because of the following. First, COMPASS does not consume any compute bandwidth

of the main processor, rather, it leverages the idle GPU to perform the task. Second,

it emulates a hardware prefetcher and its associated hardware (e.g., prefetch table).

As we demonstrated, the emulated table oftentimes is much larger than the practical

size of a real hardware table. Third, COMPASS does not require re-compilation of a

code.

Helper thread techniques [30, 25, 78, 6, 73, 89] were proposed to prefetch cache

lines by precomputing load addresses. They often relied on another thread running

on the same processor (e.g., SMT or Multicore) to achieve their goal. As such, they

could diminish the return if they compete the same resources needed by their master

thread. Similar to software prefetching, these techniques usually run a stripped-down

slice of the original program to precompute miss addresses and bring in those data in

time. An event-driven helper thread [37] is proposed to emulate a hardware prefetcher

on an idle CPU.
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CHAPTER III

EXTENDING AMDAHL’S LAW FOR

ENERGY-EFFICIENT COMPUTING IN THE

MANY-CORE ERA

In 1967, Gene Amdahl proposed an often overlooked law of scaling: Sequential compu-

tation of a program largely limits the maximum achievable speedup [5]. This implies

that any nonparallel execution or intercore communication will rapidly diminish the

performance scalability for parallel applications regardless of the amount of additional

computation resources. A simple, yet insightful, observation, Amdahl’s law continues

to serve as a guideline for parallel programmers to assess the upper bound of the

attainable performance.

Unfortunately, beyond performance, computer architects face another grand chal-

lenge: energy efficiency. Architects should carefully design a future many-core pro-

cessor so that its power consumption does not exceed its power budget [87]. For

example, a 16-core processor with each core consuming an average of 20 watts will

lead to 320 watts total power when all cores are active. This level of consumption

can easily exceed a single-chip power budget. In other words, the amount of power

that each core consumes will dictate the number of cores that architects can integrate

on-die. Apparently, power is becoming more critical than performance in scaling up

many-core processors. Thus, before integrating a large number of cores on-chip to

provide desired performance and throughput, architects must maximize the power

efficiency of each core.

Tackling these new design challenges requires extending Amdahl’s law to account
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Figure 1: Many-core design styles.

for implications of power scalability in the coming many-core era. As the original Am-

dahl’s law demonstrates, a simple analytical model can provide computer architects

with useful insights. By using simple analytical models at the early design phase, ar-

chitects can easily understand energy-efficiency limits, some feasible many-core design

options, and future directions for making many-core processors more scalable.

3.1 Many-Core Design Styles

For this study, future many-core architectures are classified into three types. The

first is a symmetric many-core processor that simply replicates a state-of-the-art su-

perscalar processor on a die, as in Figure 1(a). High-end multicore processor vendors

such as Intel and AMD use this approach. It is flexible and general enough to run dif-

ferent processes simultaneously while providing the best single-thread performance.

Additionally, it can run independent threads spawned from one process to improve

the performance of a single application. We use P to represent a single state-of-the-art

superscalar processor and P* to represent this type of many-core design style.

As Figure 1(b) shows, the second design style is a symmetric many-core processor

that replicates a smaller, yet more power-efficient, core on a die. Embedded many-

core processors, such as PicoChip [29], Connex Machine [43], and TILE64 [120], use
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this approach. The performance of a processing core using this approach is not

as high as that of a state-of-the-art superscalar processor. However, architects can

integrate more processing cores on a die using this approach; thus the aggregate on-

chip performance might be comparable to P*. We use c to denote a smaller, more

power-efficient processing core and c* to represent this many-core design style.

The third design style, shown in Figure 1(c), is an asymmetric many-core processor

that contains many efficient cores (c*) and one full-blown processor (P) as the host.

The Sony-Toshiba-IBM (STI) Cell Broadband Engine [52] is an example of such a

heterogeneous implementation. This design style lacks the flexibility to run different

processes simultaneously. Nevertheless, the single-thread performance on the host

processor should be high because it guarantees state-of-the-art sequential performance

for certain applications. Moreover, it provides highly parallel performance when the

efficient cores are in use. We use P+c* to represent this design style.

3.2 Augmenting Amdahl’s Law

While Amdahl mainly focused on performance scalability back in the 1960s, we are

more interested in the power scalability or energy efficiency of future many-core pro-

cessors. Here, we develop analytical power models of each design and formulate

metrics to evaluate energy efficiency on the basis of performance and power models.

3.2.1 Models for P*

According to Amdahl’s law, the formula for computing the theoretical maximum

speedup (or performance) achievable through parallelization is as follows:

Perf =
1

(1 − f) +
f

n

, (1)

where n is the number of processors, and f is the fraction of computation that pro-

grammers can parallelize (0 ≤ f ≤ 1).
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To model the power consumption for a P* many-core processor, we introduce a

new variable, k, to represent the fraction of power the processor consumes in idle state

(0 ≤ k ≤ 1). We assume that one superscalar processor in active state consumes a

power of 1. By definition, the amount of power one full-blown processor consumes

during the sequential computation phase is 1, while the remaining (n− 1) full-blown

processors consume (n − 1)k. Thus, during the sequential computation phase, P*

consumes 1 + (n − 1)k. For the parallel computation phase, n full-blown processors

consume n amount of power. Because it takes (1−f) and f/n to execute the sequential

and parallel code, respectively, the formula for average power consumption (denoted

by W ) for a P* is as follows:

W =
(1 − f) × {1 + (n − 1)k} +

f

n
× n

(1 − f) +
f

n

=
1 + (n − 1)k(1 − f)

(1 − f) +
f

n

.

(2)

Now, we can model performance per watt (Perf/W), which represents the per-

formance achievable at the same cooling capacity, based on the average power (W)

in Equation (2). This metric is essentially the reciprocal of energy, because perfor-

mance is defined as the reciprocal of execution time. Because Perf/W of single-core

execution is 1, Perf/W benefit of a P* is expressed as

Perf/W =
1

(1 − f) +
f

n

×
(1 − f) +

f

n
1 + (n − 1)k(1 − f)

=
1

1 + (n − 1)k(1 − f)
.

(3)
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In addition to Perf/W, we can model performance per joule (Perf/J), a metric to

evaluate the performance achievable within the same battery life cycle or, more specif-

ically, energy. Perf/J is equivalent to the reciprocal of Energy-Delay Product [40].

Using Equation (1) and Equation (3), performance per joule is as follows:

Perf/J =
1

(1 − f) +
f

n

×
1

1 + (n − 1)k(1 − f)
.

3.2.2 Models for c*

The performance model of a c* many-core processor has been a topic of Mark Hill

and Michael Marty’s recent research [51]. This model assumes that one larger core

consumes the same amount of die area that several smaller cores consume. We slightly

modified this performance model to accommodate arbitrarily sized cores. To model

the performance difference between a full-blown processor (P) and an efficient core

(c), we introduce a new variable, sc. This variable represents the performance of an

efficient core, normalized to that of a full-blown processor (0 ≤ sc ≤ 1). Since the

performance of each efficient core is sc, the formula for calculating the performance

model of a c* is as follows:

Perf =
sc

(1 − f) +
f

n

.

To model the power consumption of a c*, we need two new variables: wc and

kc. The first variable represents the relative power consumption of an active efficient

core to that of an active full-blown processor (0 ≤ wc ≤ 1); the second represents the

fraction of idle power of an efficient core normalized to the overall power consumption

of the same core (0 ≤ kc ≤ 1). During the sequential computation phase, one efficient

core in active state consumes wc, and all idle cores consume (n−1)×wc×kc. During

the parallel computation phase, all efficient cores consume n × wc. Because it takes
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(1−f)/sc and f/(n×sc) to perform sequential and parallel computation, respectively,

the average power consumption by a c* is

W =

1 − f

sc

× {wc + (n − 1)wckc} +
f

nsc

× nwc

1 − f

sc

+
f

nsc

=
wc + (n − 1)wckc(1 − f)

(1 − f) +
f

n

.

Thus, the following equations can represent Perf/W and Perf/J:

Perf/W =
sc

wc + (n − 1)wckc(1 − f)

and

Perf/J =
sc

(1 − f) +
f

n

×
sc

wc + (n − 1)wckc(1 − f)
.

3.2.3 Models for P+c*

Hill and Marty have also studied the performance model of a P+c* many-core pro-

cessor [51]. We slightly modify this performance model. Executing the sequential

code at the host processor (one P) takes (1− f), whereas executing the parallel code

using the efficient cores takes f/(n − 1)sc. (A P+c* many-core processor contains

one P and (n − 1) c cores.) Note that we assume the host processor to be idle while

the efficient cores are executing the parallel code. Thus, the formula for computing

performance improvement using a P+c* is as follows:

Perf =
1

(1 − f) +
f

(n − 1)sc

.
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During the sequential computation phase, the amount of power the full-blown

processor consumes is 1, and the amount the efficient cores consumes is (n − 1)wckc.

During the parallel computation phase, its full-blown processor consumes k, while

the efficient cores consume (n− 1)wc. Because executing sequential and parallel code

takes (1 − f) and f/(n − 1)sc, the average power is

W =

(1 − f) {1 + (n − 1)wckc} +
f

sc











k

n − 1
+ wc











(1 − f) +
f

(n − 1)sc

. (4)

Consequently, the Perf/W of a P+c* is expressed as

Perf/W

=
1

(1 − f) {1 + (n − 1)wckc} +
f

sc











k

n − 1
+ wc











(5)

and the Perf/J of a P+c* as

Perf/J

=
1

(1 − f) +
f

(n − 1)sc

×

1

(1 − f) {1 + (n − 1)wckc} +
f

sc











k

n − 1
+ wc











.

(6)

3.2.4 Power-Equivalent Models

Because the limited power budget is one of the most critical design constraints, com-

paring different designs without considering the single-chip power budget is meaning-

less.
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Two main factors limit power growth on a single chip: power supply and power

density. Power supply is proportional to the energy cost for sustaining machines in

data centers as well as a concern for the battery life of portable devices. Power density

pertains to the extra complexity and cost of thermal control mechanisms. From the

power budget perspective, take, for example, a full-blown processor and an efficient

core that consume 20 W and 5 W, respectively. Given a 160-W maximum power

budget, we can integrate only eight full-blown processors or 32 efficient cores on a

single die. Thus, to perform an apples-to-apples comparison for a given power budget

envelope, we developed power-equivalent models by converting the number of cores

of a c* or P + c* to an equivalent number of full-blown processors of a P*.

Let Wbudget be the single-chip power budget and nP ∗ be the maximum number of

full-blown processors we can implement on a P* die. Because the amount of power

consumption by a full-blown processor is modeled as 1, nP ∗ full-blown processors on a

die can consume up to nP ∗. Therefore, the maximum number of full-blown processors

on a P* is nP ∗ = Wbudget.

Conversely, nc∗ cores of a c* consume power up to nc∗ × wc, which should be

less than or equal to Wbudget. So, the maximum number of efficient cores on a c* is

nc∗ = Wbudget/wc.

Similarly, nP+c∗ cores of a P+c* consume power up to 1 + (nP+c∗ − 1)wc. Again,

a single-chip power budget, Wbudget, constrains the number of cores that an architect

can implement on a chip. Consequently, the maximum nP+c∗ is

nP+c∗ = 1 +
Wbudget − 1

wc

.

Using these equations, we can uniformly represent and compare performance,

Perf/W, and Perf/J of each many-core style with respect to a single-chip power

budget.
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3.3 Evaluation

3.3.1 Evaluation of a P*

Figure 2(b) shows the Perf/W of a P*. Unfortunately, parallel execution on a P*

consumes much more energy than sequential execution to complete the task. In the

ideal case of f = 1, in which we can parallelize the entire code, P* can achieve the

maximum Perf/W — that is, 1. In other words, a sequential execution and its parallel

execution version will consume the same amount of energy only when the performance

improvement through parallelization scales linearly. Otherwise, a P* must dissipate

more energy to finish the same task. This occurs because performance does not scale

linearly, as Figure 2(a) shows, but the amount of idle power does scale linearly with

the number of cores.

Another interesting implication of this outcome addresses battery life. If one

wants to optimize the system for a longer battery life, it is better to run several

processes on different cores rather than parallelize each process and time-multiplex

multitask them. Although the number of processes is less than the number of cores,

spawning as few threads as possible so that different processes can run simultaneously

is more power efficient. This improved efficiency is because Perf/W becomes worse

as the number of cores increases. Furthermore, this result implies that maximizing

and balancing parallelization among processors is also important, not only for higher

performance but also for power-supply efficiency and extended battery life. However,

no matter how well the code is parallelized or its performance scales, parallelization

on a P* many-core processor will always consume more energy unless the parallel

performance scales perfectly linearly.

Figure 2(c) shows the Perf/J of a P*. The evaluation result demonstrates that, if

the performance of a parallelized application scales well, one can expect performance

improvement at the same energy budget. In other words, a P* can extract greater per-

formance when running embarrassingly parallel applications given the same amount
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Figure 2: Performance, performance per watt, and performance per joule of a P*
(k = 0.3).

of energy. For example, when f = 0.9 and k = 0.3, a 16-core P* can achieve more

than four times speedup than a single-core processor using the same amount of energy.

However, parallelization on a P* does not always lead to better Perf/J, as Fig-

ure 2(c) shows. For example, an application, half of which we can parallelize (f = 0.5),

loses energy efficiency if it runs on eight full-blown processors. This means that, from

both the Perf/W and Perf/J perspectives, efforts to parallelize applications that can

not be parallelized well might not be useful at all.

Another interesting observation is the existence of an optimal number of cores

to achieve the best possible Perf/J. So, if one is particularly interested in tuning a

system for this metric, dynamic monitoring and adaptively adjusting the system will

be helpful. For example, given a 32-core P*, it is wise to enable only 17 full-blown

processors when running an application with f = 0.9 — that is, 90 percent of it

can be parallelized. In this case, it is best to completely shut off the remaining 15

full-blown processors to suppress unnecessary idle energy consumption.

3.3.2 Evaluation of a c*

To evaluate the performance and power consumption of a c*, we must model the

relationship between the performance and the size of a core. To do this, we use Fred

Pollack’s performance efficiency rule [101]. It states that, given the same process
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Figure 3: Performance, performance per watt, and performance per joule of a c*
(sc = 0.5, wc = 0.25, and kc = 0.2).

technology, the state-of-the-art processor provides 1.5 to 1.7 times higher perfor-

mance and consumes 2 to 3 times the die area compared with its previous-generation

counterpart. This means that a processor that consumes T times more transistors

can provide only
√

T times higher performance. On the other hand, the rule also

implies that the processor is
√

T times less efficient in terms of area. Another rule of

thumb used in this evaluation is that the amount of power consumption of a core is

proportional to the number of transistors it contains.

Figure 3 shows the analytical results of a c*. In this analysis, we assume that each

efficient core c has one-fourth the number of transistors of a full-blown processor P.

We then model the amount of power consumption of this efficient core as one fourth

of that of a full-blown processor (wc = 0.25). We also assume the performance of the

efficient core as one half of that of a full-blown processor (sc = 0.5) and its fraction

of power to be 20 percent (kc = 0.2).

Figure 3(a) shows that the maximum speedup of this c* is not as high as that

of P*. The primary reason is that the sequential performance of an efficient core is

lower. As Amdahl’s law says, sequential performance strictly limits the maximum

speedup, and a c* design quickly levels off the speedup. Figure 3(b) shows that, when

the number of cores is small, a c* consumes less energy than a single-core, full-blown
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Figure 4: Performance, performance per watt, and performance per joule of a P+c*
(k = 0.3, sc = 0.5, wc = 0.25, and kc = 0.2).

processor baseline. This occurs mainly because the performance-to-power ratio of

an efficient core is better than that of a full-blown processor. Unfortunately, as the

number of cores increases, the amount of energy consumption becomes higher than

that of a single-core full-blown processor baseline. Furthermore, Figure 3(c) shows

that the Perf/J of a c* is not good either, unless the application is embarrassingly

parallel — that is, it has high f values. This means that performance saturation is

the major contributor that leads to a low Perf/J.

3.3.3 Evaluation of a P+c*

Figure 4(b) shows the Perf/W of a P+c*, where sc, wc, and kc are modeled as 0.5, 0.25,

and 0.2, respectively. Unlike a P* or c*, whose Perf/W monotonically decreases, an

optimal number of cores exists that consume the least amount of energy to execute an

application. For example, we can improve the Perf/W of an embarrassingly parallel

application (f = 0.9) by about 50 percent when eight cores execute it.

However, Perf/W becomes worse than that of a one-core baseline processor when

the number of cores exceeds a certain peak. There are two reasons for this result:

relative power efficiency of efficient cores and performance saturation. When the

number of cores is small, the additional performance benefit gained by adding one

efficient core to the host processor dominates additional power overhead, so Perf/W
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Figure 5: Power-equivalent models (k = 0.3, sc = 0.5, wc = 0.25, and kc = 0.2).

increases. However, once performance improvement starts to saturate, as Figure 4(a)

shows, additional power overhead dominates. Thus, Perf/W decreases, as in Fig-

ure 4(b). In an energy-constrained environment such as embedded systems, how to

spawn the optimal number of threads and turn off unused cores is an interesting topic

of investigation.

Figure 4(c) shows the Perf/J of a P+c*. Because of its low-latency sequential

execution and energy-efficient parallel execution, a P+c* achieves the best Perf/J

compared with the two previous designs.

3.3.4 Evaluation of Power-Equivalent Models

In addition to evaluating each many-core design style on its own, we use power-

equivalent models to perform cross-design comparisons. Because the power budget is

the major design constraint, the amount of power one core consumes determines the
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number of cores architects can implement on a single die. So, to compare different

many-core designs, it is better to study performance and energy efficiency with the

same power budget, rather than with the same number of cores.

Figure 5 shows the evaluation results with power-equivalent models. We as-

sume each efficient core to consume one-fourth the power of a full-blown processor

(wc = 0.25) and its performance to be half that of a full-blown processor (sc = 0.5).

As Figure 5(a) and Figure 5(d) show, the power-equivalent performance of a P+c*

is found to be highest in most cases. The power-equivalent performance of a P* ap-

proaches that of a P+c* when f is small. As f increases, the difference between them

grows, because a P+c* can have more cores at the same power budget. The power-

equivalent performance of a c* improves as f increases, as Figure 5(a) and Figure 5(d)

show, but it is still the lowest among the three in most cases.

When f = 0.9 and the relative power budget is very low, the power-equivalent

performance of a c* is the highest (a pointer highlights this area in Figure 5(d)). In

other words, in terms of performance itself, a c* is preferable only when applications

contain a huge amount of parallelism, and the system is extremely power-limited.

Embedded devices designed for multimedia or data-streaming applications fall into

this category.

Figure 5(b) and Figure 5(e) show power-equivalent Perf/W. When the relative

chip power budget is small, a c* consumes the least amount of energy to finish a

task. However, when the budget is reasonably large, a P+c* always consumes the

least amount of energy. We explain these relationships as follows: When the power

budget is small, a c* can finish the task quickly owing to more processing power.

As the power budget increases, this benefit diminishes because of the performance

saturation resulting from its low sequential performance. This effect continues to

degrade the c* as the budget increases and eventually causes the Perf/W of a c* to

become even worse than that of a P*.
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Similarly, Figure 5(c) and Figure 5(f) show that the Perf/J of a c* is the highest

only when the power budget is low and the task is embarrassingly parallel (f = 0.9).

However, as the power budget increases, the Perf/J of a c* many-core processor is

worse than that of the other designs. Instead, a P+c* is the most power-scalable.

Thanks to its high sequential performance along with energy-efficient parallel com-

putation capability, it achieved the highest Perf/J. To better understand the design

spectrum, we also performed several sensitivity studies with different sizes of c and

with different relationships between the performance and the power using these mod-

els. These studies showed similar trends.

3.4 Summary

Extending Amdahl’s law to take power and energy into account, this study clearly

demonstrates that a symmetric many-core processor can easily lose its energy effi-

ciency as the number of cores increases. To achieve the best possible energy efficiency,

this study suggests a many-core alternative featuring many small, energy-efficient

cores integrated with a full-blown processor. This study also show that by knowing

the amount of parallelism available in an application prior to execution, one can find

the optimal number of active cores for maximizing performance for given cooling ca-

pacity and energy in a system. To further optimally control the number of active

cores in an adaptive manner, a future many-core runtime needs to have the capabil-

ity of dynamic per-core power profiling and a feedback mechanism to manage thread

dispatch.
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CHAPTER IV

A 3D-INTEGRATED BROAD-PURPOSE

ACCELERATION LAYER

As shown in Chapter III, to provide high performance given a fixed power budget,

computer architects should design a many-core processor that consists of a host pro-

cessor designed for the highest single-thread performance and smaller but more cores

designed for power-efficiency. One approach to achieve this goal is to incorporate on-

die special-purpose accelerators with general-purpose cores. From an area-efficiency

standpoint, however, it is impractical to specialize and accelerate all possible applica-

tions of interest. Furthermore, implementing several application-specific accelerators

on a general-purpose platform has many drawbacks, such as longer design turnaround

time, higher nonrecurring engineering cost, inflexibility, and lack of backward or for-

ward binary compatibility.

To address these issues, this study proposes a broad-purpose accelerator design

called parallel- on-demand (POD). Based on complex instruction set computer (CISC)

superscalar processors (such as the Intel 64, formerly known as the Intel EM64T,

processor), POD revisits several massively parallel single instruction, multiple data

(SIMD) designs yet focuses on novel challenges including backward and forward binary

compatibility, on-chip wire delay, and efficient interaction with a superscalar host

processor. Furthermore, with emerging 3D die-stacking technology, a processor can

flexibly snap a POD layer on top of a conventional general-purpose processor die

with the ability of virtualizing different generations of a POD design. The snap-on

feature of POD also lets processor vendors optionally upgrade a product during the

packaging phase.
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4.1 POD Architecture

Figure 6 is a high-level block diagram of the POD architecture, which consists of two

die layers: a general-purpose processor (an Intel 64 processor) as the bottom layer and

a snap-on accelerator, the POD layer. The general-purpose processor layer can be a

die of a conventional multicore processor with design hooks. Depending on the target

market segment, one can stack a POD layer on top at packaging time to improve

performance per joule for certain applications such as high-definition multimedia, 3D

games, or scientific computing. (The performance in performance per joule is defined

as the inverse of execution time.)

During operation, the host Intel 64 processor fully boots a normal OS and runs

every legacy application under that OS without deviating from current performance.

At the instruction decode stage, the host processor might encounter a block of code

written for POD to accelerate. In such a case, instructions within the block are broad-

cast to the POD layer through an instruction bus (IBus), of which each instruction
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has the same fixed size. The processor might also broadcast 64-bit immediate values.

The POD layer is essentially a massively parallel SIMD processing element (PE)

array. The target SIMD PE array is a sea of n×n tiles, where n = 8 in Figure 6. The

PE array executes instructions broadcast through the IBus and generates a flag-tree

output that is tied together logically via an OR gate (ORTree) and is routed back to

the host pipeline. The computed results from the PEs can be retrieved through the

data return buffer (DRB) or memory hierarchy.

4.2 Heterogeneous ISA

Each PE tile contains a high-performance arithmetic unit with its own private register

file and local SRAM memory (Figure 7). To provide a baseline performance level and

support a subset of the host instruction set to facilitate PE virtualization, we use an

existing 128-bit streaming SIMD extension (SSE) engine from a contemporary Intel

64 processor in POD.
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Although each PE will ideally be capable of decoding conventional CISC instruc-

tions for execution, this approach will require a large instruction decoder for each

PE. This is less desirable when considering performance per square millimeter or

performance per joule. Instead, to make each PE compact and efficient, we chose a

very long instruction word (VLIW) execution model for the PE. The PE instructions,

each 12 bytes wide, are broadcast from the host processor. Each 12-byte word forms

a partially predecoded VLIW packet of three instructions that eliminate the CISC

decoding overheads in POD. Each VLIW packet has a fixed format of one G (generic),

one X (SSE), and one M (memory) pipeline instruction. Because the host processor

orchestrates the execution of PE instructions, there is no need for implementing an

instruction cache within the PE. Furthermore, because each PE is executing the same

instruction and there is no instruction equivalent to a branch, no branch predictor or

associated flush/control logic is required, which keeps the PE small and simple.

Because the host processor will orchestrate and broadcast POD instructions, we

enhanced the Intel 64 instruction set architecture (ISA) to handle such heterogeneous

instructions. To enable this, we added a new instruction prefix byte called SendBits

to the existing Intel 64 ISA. When this prefix byte is encountered, it indicates that

the following 12-byte word is an encapsulation of three POD operations. The host

processor will then dispatch the 12-byte VLIW to the POD array. Also, we rely on

the compiler or assembler to schedule and pack the three-way VLIW instructions.

Unlike conventional massive SIMD machines, the POD integrates a massive SIMD

PE array with a modern out-of-order host processor. To ensure execution correctness,

we should address two major challenges in the host processor: recovery from mis-

speculation and out-of-order dispatch of POD instructions. To support speculative

execution, we need some recovery mechanism to roll the machine back to the cor-

rect architectural state. For example, Tarantula, which had relatively narrow SIMD

engines attached to a superscalar processor, implemented a recovery mechanism in
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each PE [33]. Unfortunately, this results in substantial overhead to both the area and

power for a massively parallel SIMD engine. To simplify the PE design (and build

as many PEs as possible), we design the host processor of POD to broadcast POD

instructions in a non-speculative manner. In other words, the POD instructions will

not be dispatched from the host processor until its preceding branches are resolved.

From a performance standpoint, as long as the code that runs on the host proces-

sor does not depend on the results from the POD, this approach will not degrade

performance 1.

Another issue is that the host processor might reorder the POD instructions, which

might lead to incorrectness because the PE is ignorant of program order. To prevent

such reordering, we strongly order the POD instructions by implementing an IBits

queue along with a conventional out-of-order pipeline (Figure 8), similar to the store

queue found in an out-of-order processor. When a SendBits instruction is issued,

its 12-byte immediate field (encoding a VLIW POD instruction) is entered into the

IBits queue. Upon the retirement of the SendBits instruction from the reorder buffer

(ROB), the corresponding 12-byte immediate value is latched onto the IBus and is

1This is the case for all of benchmark programs that we evaluated in this study, except k-means.
The host processor does not issue any data-dependent instruction that reads data updated by the
POD immediately for these benchmark programs. This event is extremely rare even in k-means
simulation.
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broadcast to PEs.

4.3 Wire-Delay-Aware Design

To enable SIMD-style instruction execution where every PE executes each instruction

at the same global clock cycle, we have two design candidates: executing an instruc-

tion immediately upon arrival to a POD row, leading to a north-south time-zone

effect, or buffering each arriving instruction for sufficient time such that every PE

will execute the same instruction at the same instant.

The time-zone effect can be challenging for programmers and architects to work

around, as any given row will be executing instruction j while the preceding row is

executing j+1 and the successor row is executing j−1. To avoid undesired complexity

for programmers, architects, and compilers, we use a buffering model to eliminate the

time-zone effect and enable lock-step execution.

Figure 9 shows such a model for a single column in the POD. Instructions are

broadcast using the IBus and queued before being executed by the PE. For n rows,

it takes n− 1 cycles before every PE executes the instruction. The queue size shrinks

monotonically as the location of a PE gets farther away from the host processor2. For

an n × n POD, where n = 8, there are seven entries for the bottom-most PE while

no queue is needed for the topmost PE. The delay units (D block) are inserted to

delay each instruction broadcast to synchronize the SIMD execution. Similarly, when

gathering results (such as EFLAGS) from PEs, the results from the PEs closer to the

host processor must be delayed and wait in their queue until the farther results arrive

for combining. Figure 9 depicts such queuing in the propagation paths with correct

delay queues on the left side. Compared to the previous immediate execution model,

there is no overhead to the PEs with this implementation except for a buffer to hold

the instructions broadcast. The round-trip latency for the host processor to evaluate

2Although each PE is identical, programmable fuses are burned after die manufacture to set the
used numbers of slots in the queue.
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the conditional loop also remains the same, which, for n rows, is 2× (n+f0)+ l cycles

where 2n cycles are consumed for instruction and EFLAGS propagation, 2f0 is fan-in

and fanout latency between the host processor and PEs in the first row, and l is the

actual instruction latency.

Regardless of how the PEs are connected to each other, the instruction and data-

value broadcast from the host processor are arranged as a fan-out tree. The bottom-

most row of the PE array will receive the same instruction at the same cycle. The

instruction is then passed up to the next row in sequence. This fan-out tree is im-

plemented on a POD layer so that the number of die-to-die vias between a general-

purpose processor layer and a POD layer remains unchanged (Figure 6), regardless

of the number of PEs. This constant interface lets us extend a POD layer without

redesigning a general-purpose layer every time we introduce a new product.
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4.4 Energy-Efficient Interconnection Network

Figure 6 also shows that POD adopts a folded torus network [27]. To minimize

latency and maximize packing, we designed each PE to be small enough so that

signal propagation time over one PE is less than one clock cycle. Ideally, each side of

a PE will be no longer in any direction than 95 percent of the wire distance in one

clock cycle with all surrounding line drivers, buffers, and so forth. The ordering of the

number labels inside the PEs of the leftmost column in Figure 9 indicates the north-

south nearest neighbor connection pattern. In the same way, the communication links

for each row are laid out in east-west direction. In addition to providing shorter links,

such a layout also leads to deterministic communication latency. The significance of

such deterministic latency is that we can disable communication-related logic and

wires safely when they are not used. Moreover, the lock-step execution model will

make the entire computation predictable and fully debuggable. There are no tricky

issues such as race condition, live lock, deadlock, and so on found in normal SMP-style

many-core processors.

At any given moment, only one direction (input and output) must be enabled.

Because each nearest-neighbor communication pattern has a known latency, and be-

cause the communication is directed by communication instructions, the links are

disabled during the course of pure computation or when links in the other direction

are not being used. Furthermore, no power-hungry routers are required for this point-

to-point network. All we need are a single 4:1 multiplexer and a 1:4 demultiplexer for

input and output, respectively. This reduced power profile allows growth of the POD

array to be limited by the average power consumption of each PE and the manufac-

turing die reticle. This approach contrasts with other tiled designs such as the Raw

processor from MIT [117] or the TRIPS processor from the University of Texas [108]

where any of the interconnection network links could be active at the same time due

to dynamic routing.
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Each PE can communicate with its nearest neighbor by either directly moving a

register value of up to 128 bits or by transferring memory in 64-bit chunks. Because

the nearest-neighbor latency for a folded torus is targeted to be two cycles or less, this

allows for high-throughput computation even when the algorithm requires neighboring

registers and memory values. A fully synchronized computation model allows register

transfer operations to utilize full communication bandwidth without any network

overhead, such as additional latency due to contention and header encoding overhead.

In the case of memory transfer operations, only a half communication bandwidth can

be utilized because the upper 64 bits are used to encode other information such as

memory addresses.

When one PE needs to communicate to another PE in a non-nearest-neighbor fash-

ion, we use the k-permutation routing in our interconnect design [41]. Rather than

providing dynamic-wormhole-routing hardware support for a relatively infrequent op-

eration, we use a dedicated algorithm to drive the collective POD multiplexers into

a series of sweeps to migrate all data to the intended targets. These algorithms re-

quire each PE to support n hardware buffer slots (permutation queue) of the bit size

matching the point-to-point link width in an n × n SIMD array.

The basic algorithm proceeds by having all PEs send messages to the east, with

each message stopping when it reaches its target column. This takes n − 1 hops,

and at the end at most n messages will be buffered in any one PE. At the end of

this sweep, every message in every POD row will be in its target column. Then,

the same algorithm needs to be applied to the north. This process requires as many

as n2 steps until all the buffered messages reach their target PE. As messages reach

their target PE, they are processed (stored into the appropriate memory location).

This two-phase sweeping algorithm ensures that for any permutation of routing, even

all-to-one, all messages are delivered after a fixed latency. This fixed routing would

not be an optimal solution, but each PE needs to enable only one link at the same

33



time, which is more energy efficient. Although the fixed latency might be high for

such generic routing support, we have made the trade-off to keep nearest-neighbor

communications fast, which is a much more frequent event than generic routing. To

reduce the high latency of a full any-to-any communication, we also support more

optimized row-only and column-only sweeps of just n − 1 steps for more structured

communication.

4.5 Virtual Address Support

Aside from a 128-Kbyte private local SRAM dedicated to each PE, applications must

also be able to communicate with the system memory through normal loads and

stores. To manage this interaction, we further enhance each PE with two unidirec-

tional memory buses (MBuses) to the main memory via an interface called the row

response queue (RRQ). One bus streams data back from main memory to the PEs in

the row while the other bus streams data from the PEs in the row to the main mem-

ory. Because the system memory operations of all PEs are synchronized by barrier

operations, PEs can safely disable their MBus and its related logic to minimize energy

consumption when they are not communicating with the system memory. The RRQ

is the queuing point for transactions in both directions and, in turn, is connected to

a memory ring with the last level cache (LLC) of the host processor and all memory

controllers (MCs). The ring is good not only for easy arbitration and high throughput

but also for a POD layer and a general-purpose layer to be merged into one system

as Figure 6 shows.

System memory accesses use virtual addresses acquired from the host processor.

All n2 PEs share one pipelined translation look-aside buffer (TLB), which is external

to the host processor but managed by it. The external TLB (xTLB) in Figure 6

need not be organized along traditional lines; the TLB lookup is not as critical as

it is in the host processor. This allows for a superpipelined, high capacity xTLB to
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be implemented, much like the texture sampler TLB in a general-purpose graphics

processing unit. In the event of a fault or miss event in the TLB, the host processor is

notified, and the request in the RRQ control ring is flagged as a TLB failure. When

the host processor updates any TLB entry, a dedicated control signal in the RRQ

control ring is set to indicate that any prior TLB failure may now retry.

4.6 Minimal ISA Modification in the Host Processor

As we discussed earlier, the host processor manages the SIMD execution inside PEs

completely. To enable this, we extend the host processor ISA with five new instruc-

tions and three modified instructions. The new instructions are

• SendBits, to broadcast instructions to PEs;

• GetFlags, to obtain the return status;

• DrainFlags, which assures that the initial setup of a known state in the flag tree

is complete;

• SendRegister, to broadcast a host register value to PEs;

• GetResult, to obtain a return buffer value from PEs without using system memory

as a go-between.

The three modified host instructions are the various fence operations (load, store,

and combined) that are extended for monitoring the return status of memory interface

system of POD.

4.7 POD Virtualization

There are two main reasons for virtualizing the POD accelerator. The first is to

provide execution compatibility for various POD sizes. Without such resilience in

the design, software vendors would need to recompile their code to fully utilize all

PEs for each particular platform. To virtualize the number of PEs, we hardwired

six variables in POD: the number of PEs in each row, the number of PEs in each
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column, the number of PEs, x- and y-coordinates of each PE, and the PE ID. The host

processor can retrieve the first three values by using a CPU identification (CPUID)

instruction, and each PE can retrieve all six values from the protected memory space

of its local memory, which is preset at boot time. By forcing each PE to read these

six values from its local memory, the same POD binary code can continue to improve

performance as the number of PEs grows.

The second reason for POD virtualization is to circumvent the compatibility issue

of running POD code on a platform without an integrated POD acceleration layer.

There are several potential solutions; one can rely on a software or hardware binary

translator. Because the POD ISA inherently originates from Intel 64 ISA, the POD

code can be dynamically translated into Intel 64 ISA-compatible instructions. Three-

operand POD operations can be translated into two-operand Intel 64 ISA instructions

at the cost of less efficiency3. The fact that the number of PE registers is greater

than that of the host processor can result in reduced efficiency. Communication

instructions can be simply ignored as if there is only one PE. Masking operations can

be converted into branch instructions. Local memory of a PE can be emulated by

copying the original data into a virtual memory space of the same size as the local

memory of a PE.

4.8 Physical Design Evaluation

POD aims for a 3 GHz clock speed assuming a 45 nm or better process. For this

target frequency, the memory ring is capable of a bandwidth up to 192 gigabytes per

second (Gbytes/s), servicing up to eight 24 Gbytes/s MCs before any modification is

required. For an 8 × 8 POD array, with each PE containing 128 Kbytes of SRAM,

connected in a torus, the peak performance of single-precision and double-precision

3An fma, or floating-point multiply and add, instruction needs to be translated into two Intel 64
ISA instructions, and it introduces a rounding error between the original code and the translated
code.
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IEEE FP operations is 1.5 Tflops and 768 Gflops, respectively.

Based on published data from Intel [46] and the die photo of its 45-nm Intel Xeon

processor E5472 (formerly code-named Penryn), a single PE is estimated to occupy

approximately 1.90 mm2. In other words, the entire 8×8 PE array will amount to 122

mm2. We assumed each RRQ, given the complexities of the various bus wirings and

the ring interfaces, will be allotted an area on par with that of each PE. Therefore,

the POD layer will amount to 137 mm2. Compared to one E5472 core (22.26 mm2),

one PE consumes 9 percent of die area because it does not have a CISC decoder, an

instruction cache, branch predictors, TLBs, out-of-order execution related circuits,

and so on.

Given that a PE consumes roughly 9 percent of die area of a single core, we used

the E5472 product specification [58] and a simple heuristic that power consumption of

a certain block is proportional to the number of transistors in the block, to calculate

that a PE will consume 1.37 W. Consequently, we expect 64 PEs and eight RRQs

to consume 103.6 W. We additionally modeled The global interconnection power

consumption using the Berkeley Predictive Technology Model [17]. We use 1.25 V, 3

GHz, and 0.5 for supply voltage, clock frequency, and switching factor, respectively.

Based on these models, we expect the 96-bit IBus and two 80-bit MBuses to consume

1.90 and 3.16 W overall. This interconnect power is low mainly because all global

communication links are highly pipelined, and each PE is extremely small.

In sum, we expect a POD layer to peak at 108.7 W. Assuming that a dual-core

processor is bonded with a POD layer, and these two cores are fully utilized, we

expect both layers to consume 148.7 W. In common scenarios, this maximum power

is unlikely to be reached because the host processor will not be fully active while the

POD layer is in operation. During this period, the host processor is only active for

decoding encapsulated POD instructions, resolving branches for POD control, and so

forth.
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Table 1: POD benchmark.

Name Description Dataset Type
DenseMMM Dense Matrix-Matrix Multiplication based on

Cannon’s algorithm [72]
512×512 matrix SP

FPa

FFT One-dimensional complex number Fast Fourier
Transform

1,024 points SP
FP

IDCT IEEE 1180 8×8 Inverse Discrete Cosine Transform
used in MPEG2 decoder of MediaBench [71]

8×8 points DP
FPb

OptionPricing A financial application that computes the risk of
a portfolio by projecting future option prices

256 data set SP
FP

DownSampling 2:1 image down-sampling application using 1×7
low-pass filter

2112×2112 image SP
FP

Histogram A MapReduce-style image histogram application
from Phoenix application set [104]

6816×5112 image INTc

LinearRegression A MapReduce-style linear regression application
from Phoenix application set [104]

4M data points in
two dimensional
space

SP
FP

K-means A MapReduce-style mean-based data clustering
application of Minebench [91]

17,695 data points
in 18 dimensional
space

SP
FP

CollisionDetectionA collision detection algorithm heavily used in
physics simulation

128K pairs of
bounding spheres

SP
FP

RayCasting A 3D rendering algorithm onto a 2D screen A 1024×768 scene
of two balls in a
room

SP
FP

MotionEstimationAn motion estimation (optical flow) algorithm
based on the Lucas-Kanade method [76]

A 64×64 image
with 3×3 windows

Mostly
INT

Viterbi The Viterbi algorithm (or Hidden Markov Model) 1024 states and
512 outputs

SP
FP

Turbo An extrinsic log-likelyhood ratios (LLR) based on
BCJR algorithm [9]

Turbo code for the
CDMA 2000 stan-
dard

INT

a A single-precision floating point application
b A double-precision floating point application
c An integer application

4.9 Performance Evaluation

We developed a cycle-level POD simulator to carry out our performance study. This

simulator models every single feature of the PEs and memory subsystem, including

RRQ, xTLB, and memory controller. It also accurately models on- and off-chip

communication bandwidth. Off-chip DRAM bandwidth is modeled as 4×32 Gbytes/s

(four on-chip memory controllers where each can provide 32 Gbytes/s bandwidth)

and DRAM latency as 50 ns, unless otherwise stated. To evaluate the performance
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of POD architecture, several data-parallel benchmark programs (Table 1) are ported

using inline assembly because we do not have a fully-fledged compiler yet. To factor

out performance improvement due to larger on-chip memory as the number of PEs

increases, we assume that the aggregate size of the on-chip memory to remain the

same regardless of the number of PEs for a fair comparison. For example, a PE of

1 × 1 POD has 8 Mbytes of local SRAM, while each PE of 8 × 8 POD has a 128

Kbyte SRAM only. We also conservatively assume that the access latency of 8 Mbyte

SRAM is equivalent to that of a 128 Kbyte SRAM, which is three cycles for a load or

one cycle for a store. In reality, the access time of an 8 Mbyte SRAM of the baseline,

a 1 × 1 POD, will be much longer, so the actual speedup will be even greater than

our results indicate.

Figure 10 shows relative performance improvement, normalized to the performance

result of a 1×1 POD. As the number of PEs increases, so does the achieved gigaflops4.

The figure shows that the trend of the speedup is approaching linear. When it runs

a compute-intensive application, such as DenseMMM or OptionPricing, it achieves

more than 800 Gflops. In the case of DenseMMM, very low latency (two cycles) of

neighbor-to-neighbor communication makes it possible to completely hide communi-

cation overhead with computation. The reason the performance does not show an

ideal linear speedup is that the efficiency of each PE decreases, although not severely,

because the working set of each PE becomes smaller when we increases the number

of PEs to 64.

We found that the highly communication-intensive benchmark FFT also shows

fairly good speedup. To demonstrate how effectively PEs exchange data, we chose a

small input size (1,024 points) so that the computation latency could not hide the

communication latency. Clearly, as the number of PEs increases, communication

4We count each add, sub, mul, div, max, min, and cmp as one floating-point operation, and fma
as two.

39



4
16

64
869.3

GFLOPS 113.3
GFLOPS

134.8
GFLOPS

860.2
GFLOPS

91.6
GFLOPS

68.2
GFLOPS

504.6
GFLOPS 66.8

GFLOPS

95.6
GFLOPS 174.0

GFLOPS

0
DenseMMM

(SP FP)
FFT

(SP FP)
IDCT

(DP FP)
Option
Pricing

(SP FP)

Down
Sampling
(SP FP)

Histogram
(INT)

Linear
Regression

(SP FP)

K-means
(SP FP)

Collision
Detection
(SP FP)

Ray
Casting
(SP FP)

Motion
Estimation

(Mostly INT)

Viterbi
(SP FP)

Turbo
(INT)

Pe
rfo

rm
an

ce

1x1 POD 2x2 POD 4x4 POD 8x8 POD

Figure 10: Relative performance (normalized to 1 × 1 POD).

overhead becomes dominant, but POD can still achieve good performance improve-

ment because of high-efficiency communication architecture of POD. Similarly, we

also found that another highly communication-intensive benchmark, Viterbi, shows

fairly good speedup.

Unfortunately, out of 13 benchmark programs that we ported, we found that we

cannot improve the performance of Turbo well. As shown in the figure, a speedup

on four processing elements (PEs) is found to be only 1.65x, and that on 16 PEs is

found to be even worse, 1.34x. (We failed to parallelize this algorithm over 64 PEs,

which will be detailed below.) To explain such a low speedup, here we will use C

code for the extrinsic LLR algorithm [94] as shown in Figure 11. As shown in the

figure, this algorithm has a reasonable amount of parallelism. For example, the first

16 lines can be parallelized and even SIMDified over 16 PEs. (Note that although

different lines of the C code uses different offset values, we SIMDified this code by

precomputing a table that contains those different offset values and by making each

PE to use its PE ID to read a different entry of this table for its local computation.)

This is why we were not able to parallelize this algorithm over more than 16 PEs.

Such limited parallelism is originated from the fact that the number of states that

the Turbo coding algorithm of the CDMA 2000 standard maintains is only eight.

As well explained in the code, the amount of local (per core) computation is very

small (a single line of C code). As a result, the overhead of frequent communication

becomes relatively high, which resulted in a very low speedup shown in Figure 10.
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1: m00 1 = alpha[(k − 1) ∗ 8 + 0] + beta[k ∗ 8 + 0]; . Line 1 to 16: parallel execution on 16 cores

2: m00 2 = alpha[(k − 1) ∗ 8 + 1] + beta[k ∗ 8 + 4];

3: m00 3 = alpha[(k − 1) ∗ 8 + 6] + beta[k ∗ 8 + 7];

4: m00 4 = alpha[(k − 1) ∗ 8 + 7] + beta[k ∗ 8 + 3];

5: m01 1 = alpha[(k − 1) ∗ 8 + 2] + beta[k ∗ 8 + 5];

6: m01 2 = alpha[(k − 1) ∗ 8 + 3] + beta[k ∗ 8 + 1];

7: m01 3 = alpha[(k − 1) ∗ 8 + 4] + beta[k ∗ 8 + 2];

8: m01 4 = alpha[(k − 1) ∗ 8 + 5] + beta[k ∗ 8 + 6];

9: m10 1 = alpha[(k − 1) ∗ 8 + 2] + beta[k ∗ 8 + 1];

10: m10 2 = alpha[(k − 1) ∗ 8 + 3] + beta[k ∗ 8 + 5];

11: m10 3 = alpha[(k − 1) ∗ 8 + 4] + beta[k ∗ 8 + 6];

12: m10 4 = alpha[(k − 1) ∗ 8 + 5] + beta[k ∗ 8 + 2];

13: m11 1 = alpha[(k − 1) ∗ 8 + 0] + beta[k ∗ 8 + 4];

14: m11 2 = alpha[(k − 1) ∗ 8 + 1] + beta[k ∗ 8 + 0];

15: m11 3 = alpha[(k − 1) ∗ 8 + 6] + beta[k ∗ 8 + 3];

16: m11 4 = alpha[(k − 1) ∗ 8 + 7] + beta[k ∗ 8 + 7];

17: if(m00 2 > m00 1) m00 1 = m00 2; . Line 17 to 28: local (per row) result collection and local maximum
calculation

18: if(m00 3 > m00 1) m00 1 = m00 3;

19: if(m00 4 > m00 1) m00 1 = m00 4;

20: if(m01 2 > m01 1) m01 1 = m01 2;

21: if(m01 3 > m01 1) m01 1 = m01 3;

22: if(m01 4 > m01 1) m01 1 = m01 4;

23: if(m10 2 > m10 1) m10 1 = m10 2;

24: if(m10 3 > m10 1) m10 1 = m10 3;

25: if(m10 4 > m10 1) m10 1 = m10 4;

26: if(m11 2 > m11 1) m11 1 = m11 2;

27: if(m11 3 > m11 1) m11 1 = m11 3;

28: if(m11 4 > m11 1) m11 1 = m11 4;

29: m11 = m 11[k − 1]; . Line 29 to 37: global (among rows) result collection and final computation

30: m10 = m 10[k − 1];

31: m01 1 = m01 1−m10;

32: m00 1 = m00 1−m11;

33: m10 1 = m10 1 + m10;

34: m11 1 = m11 1 + m11;

35: if(m00 1 > m01 1) m01 1 = m00 1;

36: if(m11 1 > m10 1) m10 1 = m11 1;

37: ext[k − 1] = m10 1−m01 1 − Lu[k − 1];

Figure 11: Extrinsic LLR algorithm [94].

Note that the torus network of the POD architecture provides 2-cycle neighbor-to-

neighbor communication instructions. Thus, a local collection operation per row (Line

17 to 28) takes 6 cycles on 4x4 PEs. For the global collection among rows (Line 29

to 37), it also takes 6 cycles to transfer one local maximum value to other rows on

4x4 PEs. However, in spite of such low-latency communication operations, we need

to transfer many variables (four variables for the local collection and four variables

for the global collection) due to the aforementioned aggressive parallelization, which

makes communication overhead relatively high.

On the other hand, another important observation is that, although a target

application can be easily ported to POD for acceleration, and its performance can

be improved well, off-chip memory bandwidth can still be the greatest performance
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Figure 12: Effect of off-chip memory bandwidth.

bottleneck in the future many-core era. Figure 12 shows the simulation results of

five memory bandwidth-sensitive applications. The figure shows the performance im-

provement of different POD configurations with different off-chip memory bandwidth.

Here, x × 32 Gbytes/s means that the system has x on-chip memory controllers and

channels, and each memory controller can support up to 32 Gbytes/s. As Figure 12

shows, memory bandwidth can be a serious bottleneck with on-chip many-core ar-

chitectures when the number of cores is large. In these simulations, larger memory

bandwidth improves the performance of an 8× 8 POD rather substantially in several

benchmark programs. Once memory bandwidth is saturated, overall performance

does not scale or can even degrade, as we can observe from the simulation result

of the CollisionDetection with 1 × 32 Gbytes/s off-chip memory bandwidth. When

the performance does not scale well due to saturated off-chip memory bandwidth,

an intelligent mechanism to detect it and to disable some of the PEs to balance

computation power and memory bandwidth would be an improvement.
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Figure 13: Relative performance per mm2 (normalized to 1 × 1 POD).

To demonstrate the efficiency of POD as a snap-on accelerator, we used the fol-

lowing metrics for evaluation: performance per square millimeters and performance

per joule. Figure 13 shows the relative area efficiency of POD, represented by perfor-

mance per square millimeters. Because one PE consumes approximately 9 percent of

the host processor’s area, performance per square millimeters will keep improving as

the number of PEs increases, given the overall performance scales. In an SMP-style

many-core processor, this metric is at most one because n cores consume n times

space, and it can achieve n times speedup at the best scenario of linear speedup.

The performance per joule metric represents achievable speedup given a fixed

energy budget such as battery lifetime, and it is equivalent to a reciprocal of energy-

delay product [40]. Figure 14 shows that we can easily improve performance per

joule with parallelization. All cases show that the larger the PE array, the more

improvement this metric can achieve. Furthermore, performance per joule scales

super-linearly. In the case of an SMP-style many-core system, execution time can be

reduced by a factor of n times at most while it consumes n times more power. Thus,

the performance per joule of an SMP-style many-core system scales linearly in the

best scenario of linear speedup. The additional performance per joule benefit of POD

comes from the efficient design of PEs compared to the host processor.

In addition to computation efficiency, POD has an efficient communication archi-

tecture. A major problem with a conventional tile-based many-core architecture is

that we expect the interconnection architecture to consume a high percentage of space
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Figure 14: Relative performance per joule (normalized to 1 × 1 POD).

and unsustainable energy. For instance, the Raw processor consumes 40 percent of

die area in its crossbar and buffers [117]. On the other hand, according to estimates

reported for Raw and TRIPS, the interconnection-related circuits and wires can con-

sume approximately 36 and 25 percent of the overall chip power [66, 98]. Out of these

consumptions, input buffers and crossbar consumed 61 and 68 percent [124]. Without

any software hint, it is difficult to apply clock-gating to these systems because the

communication patterns are completely nondeterministic [11].

In contrast, each PE in POD requires only one multiplexer and one demultiplexer

for its 2D torus network. A PE requires neither crossbars nor input/output buffers

of a conventional packet-switched 2D torus network. The only buffer required is the

permutation queue, which is activated only during non-nearest-neighbor communi-

cation. In addition to this efficiency, a software-directed communication mechanism

along with its deterministic latency makes the 2D torus traffic predictable. Thus, we

can use clock-gating to further suppress the energy consumption of wires. Figure 15

shows the active time of inter-PE point-to-point links with respect to the overall

execution time for PODs with difference sizes. Although Viterbi is a well-known

communication-intensive application, the synchronized computation and communi-

cation model of POD makes it possible to disable its point-to-point links for more

than 85 percent of the total execution time, which minimizes the energy consumption

of communication links. (The high utilization of Turbo is caused by the aforemen-

tioned aggressive parallelization, which did not lead to a high speedup due to the
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nature of the algorithm.)

4.10 Summary

In this chapter, we propose a 3D-integrated broad-purpose accelerator architecture

called POD to address looming challenges and design constraints including power

efficiency, on-chip wire delay, efficient interaction with a superscalar host processor,

binary compatibility, and extensibility. POD integrates a SIMD array accelerator into

a superscalar host processor with minimally new instruction support. The POD de-

sign also has the advantage that it is a substantially good fit for implementing highly

parallel versions of CISC instruction sets without having to pay the CISC penalty in

power and complexity on every processing element. In other words, as one scales a

POD array to larger sizes, the inefficiencies of the base architecture will be largely hid-

den, which makes the designs compatible with existing ISAs and power/performance

competitive and flexible with more special-purpose acceleration engines. Further-

more, by leveraging emerging 3D die-stacking technology, POD provides extensibility

to a conventional processor while virtualizing the existence of an acceleration layer.
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CHAPTER V

CHAMELEON ARCHITECTURE

As shown in Chapter III and Chapter IV, heterogeneous computing has become more

attractive to address the growing concerns of energy efficiency and silicon area effec-

tiveness. Small-scale heterogeneous multi-processor system-on-chips (MPSoCs) have

been used in embedded systems for years [31, 8]. Meanwhile, general-purpose proces-

sor designers are also advocating such heterogeneous architectures for future multicore

or many-core processors to optimize a system’s energy efficiency (measured in perfor-

mance per joule) or area effectiveness (measured in performance per mm2). For exam-

ple, the first generation of the IBM Cell Broadband Engine (Cell/BE) [100] integrated

eight synergistic processing elements along with a superscalar PowerPC processor on

the same die. CUDA [15], CTM [50], RapidMind [83], OpenCL [88], PeakStream [96],

and Ct [39] serve as programming abstractions to enable heterogeneous computing

based on a cooperative computing model between the central processing units (CPUs)

and many-core graphics processing units (GPUs) and shield programmers from man-

aging the complexity of these heterogeneous components. Although some heteroge-

neous computing platforms have their resources distributed across multiple chips, the

trend of future technology is toward integrating them all onto the same die [85].

Unfortunately, an heterogeneous many-core processor has a drawback; While the

host processor executes the sequential code of a parallelized workload or unparallelized

legacy applications, the acceleration cores of a heterogeneous multicore become idle

contributing nothing to single-thread performance while consuming area and addi-

tional power if not completely turned off. From the standpoints of area and energy
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efficiency, the unused idle resources could dwarf the interests of adopting such a het-

erogeneous platform for general-purpose computing.

To address this under-utilization problem during sequential computation, we en-

vision that we could better utilize these idle PE resources to accelerate the sequential

execution on the host processor. In this chapter, we introduce Chameleon, a flexible

architecture with low-cost enabling techniques to provide several dynamic operation

modes for better resource allocation. Using Chameleon techniques, idle cores can be

virtualized into (1) a unified last-level cache, (2) a data prefetcher, or (3) a hybrid

caching/prefetching component. In addition, we propose an adaptive operation mode

that adapts Chameleon among different modes to find the best possible performance.

To justify the performance benefits of our Chameleon architecture, we perform a case

study using POD1 and present its hardware and power overheads as well as energy

implications in our evaluation.

5.1 C-Mode: Virtualizing Idle Cores for Caching

As shown in Chapter IV, the original purpose of integrating a heterogeneous PE

array onto general-purpose processor cores is to exploit data-level parallelism (DLP)

for maximizing energy- and area-efficiency. We call this operation mode A-mode (or

Acceleration mode) to differentiate it from the new modes we will introduce. Our first

goal is to virtualize this idled heterogeneous PE array into additional caching space

when the A-mode is not in use. This virtualization must be simple and should not

affect the efficiency of the A-mode. The idea is to configure the unused local scratch-

pad memories collectively into a last-level cache by using PEs’ basic operations for

caching control. We call this operation mode the C-mode (or Caching mode). Similar

to the A-mode, the PEs will be responsible for decoding instructions received from the

1We use the exactly same architecture except that PEs are connected through a mesh network.
A folded torus network mentioned in Chapter IV can be reconfigured to the mesh network using
simple switches [110]
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Figure 16: Chameleon Virtualizer (not scaled).

IBus, performing corresponding local computation, and routing computation results

back. For example, to calculate the cache index bits, the PE is programmed to

perform an SHR (logical shift-right) to eliminate the cache line offset and an AND

(logical and) to mask out tag bits. Using this calculated index bits, the PE can read

data from its local 128KB scratch-pad memory with a load instruction.

To control the PEs array and to have it function like a soft cache, we add a new

interface between the L2 cache of the host processor and the baseline PE array. As

shown in Figure 16, this new interface, called Chameleon Virtualizer, is in charge of

orchestrating memory management operations for implementing the virtualized last-

level cache using microcode stored inside the Chameleon microcode memory. The

microcode is written in the original PE ISA, and it consists of tens of PE instructions.

Upon a cache read miss in the L2 cache, for example, the miss address is forwarded

to the Chameleon controller. Once receiving the address, the Chameleon controller

forwards the miss address to the PEs via IBus and starts to broadcast a cache read

microcode to the PEs. To perform a cache read, PEs perform the following tasks:

(1) calculating cache index bits, (2) matching valid and tag bits, and (3) sending a
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hit/miss signal to the Chameleon Virtualizer. Upon a cache hit, the hit PE has to

perform the following additional tasks: (4) loading the cache line from the scratch-pad

memory, (5) routing the line back to the Chameleon Virtualizer, and (6) updating the

corresponding L2 LRU bits. Once the cache line reaches the Chameleon Virtualizer,

it is forwarded to the L2. On the other hand, upon a cache miss, the Chameleon

controller initiates an off-chip memory request through the MSHR of the Chameleon

Virtualizer. The Chameleon Virtualizer also contains a prefetch buffer to support the

virtualized prefetcher to be detailed in Section 5.2. Note that the overhead of the

Chameleon Virtualizer is only incurred in the C-mode because the controller will be

bypassed when operating in the conventional A-mode.

To facilitate the mechanisms for a cache line hitting in the PEs, we reuse the ex-

isting 128-bit wide ORTree bus, which was originally designed for obtaining the flag

status of the PE array, but which is idle when operating in the C-mode. Hence, we

hijack this bus to send hit/miss signals and transfer requested cache lines. However,

to use the ORTree bus for such purposes, we need to add a new instruction called xfer-

ortree into the PE’s ISA. This special move instruction drives a register value onto the

ORTree. This new instruction requires adding a mux in each PE for selecting either

the flag status (in the A-mode) or the output operand of an xferortree instruction (in

the C-mode) for ORTree. On the other hand, the Chameleon Virtualizer is connected

to the other end of the ORTree. Note that, in our implementation, only one PE in

the same column can transfer data to the Chameleon Virtualizer at any given time,

and the ORTree output value of all other PEs in the column is zero. Thus, ORTree

can safely deliver the data to the Chameleon Virtualizer without being corrupted by

OR operations.

In the following sections, we will address the challenges with respect to the styles

of cache line layout across the PE array. We also detail these design alternatives and

evaluate and quantify their trade-offs in our experiments. Furthermore, we investigate
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Figure 17: Way-level parallelism (8-way 4MB cache).

how we can optimize their access latency by adopting non-uniform cache architecture

(NUCA) and discuss the required architectural support.

5.1.1 Design for Way-Level Parallelism

Our first design is to distribute multi-way cache lines of the same set across PEs in

the same column. Figure 17 shows an example of an eight-way set-associative 4MB

cache. In this example, eight cache lines (each 64 bytes) mapped to the same cache

set are distributed across eight PEs in the same column (e.g., PE0, PE8, to PE56).

Also shown in the figure is how to index this cache. Out of the global index bits,

three least significant bits (LSBs) are used to find the x-coordinate of the target PE

column. The rest of the index bits (10 bits) are used as the local index for finding the

cache line from the eight local scratch-pad memories on the indexed column. (In this

50



design, up to 1,024 cache lines can be stored inside each PE. This will be clarified

later in this section.) Mask instructions are used to disable the other 56 PEs after

the x-coordinate is calculated. In this particular design, all eight active PEs on the

same column will perform a tag comparison in parallel. Hence, we say this design

exploits Way-Level Parallelism (WLP).

One challenge for having a functional WLP cache is how to perform LRU updates

across PEs in the same column. To solve this issue, we chose to implement the counter

LRU algorithm [61] and program Chameleon microcode to perform replacement oper-

ations. This software-based LRU replacement mechanism will read the LRU state of

the hit line and broadcast the outcome back to all PEs in the same column. The PEs

will then update their own LRU bits accordingly. Note that these updates simply

use subtract and compare instructions already provided by the PE ISA. Although a

software-based LRU may take longer than a hardware-based LRU update, we found

that properly scheduled microcode can hide much of this latency.

On the other hand, this WLP design has a space overhead for cache control bits.

To implement an eight-way 4MB cache with 64B line for a 64-bit host processor, we

need one valid bit, one dirty bit, 45 tag bits, three LRU state bits, and a few coherence

protocol bits for each cache line. These control bits amount to around 10% overhead.

Thus, for N cache lines, the total storage needed will be 1.1 × 64 × N bytes, and it

should fit into a 128KB scratch-pad space. Furthermore, the number of sets stored

in each PE should be a power-of-two for cache indexing. This explains why each PE

accommodates 1,024 cache lines in our WLP design.

In this design, once the set is determined, only one corresponding column is en-

abled to complete one cache operation. In other words, if the Chameleon Virtualizer

can provide eight instruction streams to decode eight returning messages, we can

build a virtualized eight-bank cache. To implement it, eight different IBuses and
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Figure 18: Way- and subblock-level parallelism (8-way 4MB cache).

eight different ORTree buses should be directly connected to the Chameleon Virtu-

alizer instead of using fan-out tree (IBus) and fan-in OR tree (ORTree) as in the

baseline processor.

5.1.2 Design for Way- and Subblock-level Parallelism

Since the 128-bit ORTree bus and the 96-bit IBus are used for reading and writing

cache lines in the WLP-style cache, it will take four and eight cycles to transfer an

entire 64B cache line on the buses.2 On the other hand, to prepare data transfer,

four SIMD load instructions (or eight regular store instructions) are used to load each

16B chunk into the XMM registers (or store 8B chunk to general purpose registers),

2The 96-bit IBus can only broadcast 64-bit data at each cycle due to instruction encoding
overhead.
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which adds extra overheads in accessing cache lines. This is an artifact caused by

mapping one entire cache line onto a single PE as shown in Figure 17. To alleviate

this issue, we investigate another design option in which a 64B cache line is split

across eight PEs on the same row as shown in Figure 18. To read a cache line in this

design, each PE in the same row will load an 8B subblock of the requested cache line.

All eight subblocks will be routed back to the Chameleon Virtualizer simultaneously

without modifying the PE microarchitecture. We call this design exploiting way- and

subblock-Level parallelism (WBLP). Due to subblocking, we only need one load and

one xferortree instruction for reading an entire cache line, and one 64-bit immediate

broadcast and one store for writing it. In this design, the Chameleon Virtualizer

is made to broadcast an immediate move operation with eight different immediate

values and to retrieve eight different data return values. In this design, as in the

eight-bank WLP-style cache, eight different IBuses and eight different ORTree buses

should have direct connection to the Chameleon Virtualizer instead of using fan-out

IBus and fan-in ORTree as in the baseline processor.

The primary challenge of such a WBLP design is the area overhead in keeping the

cache control bits. As a cache line is split into eight subblocks, all eight PEs that keep

a subblock of the same cache line need to have redundant valid, tag, LRU and coher-

ence bits. Otherwise, more delay will incur for communicating this information. We

found that each PE can accommodate this redundant information without sacrificing

the overall cache capacity. As explained in Section 5.1.2, at most 64b of overhead

is required per 64B cache line. In the WLP design, out of the 128KB scratch-pad

memory per PE, 64KB is consumed by its data array, and less than 8KB is consumed

by these cache control bits (i.e., each 128KB scratch-pad memory is quite under-

utilized.) In the WBLP design, at most 64b overhead is required per 8B subblock.

Thus, 64KB is used by its data array, and at most 64KB is consumed by the cache

control array with no further implication to utilizing the maximally available cache
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Figure 19: Decoupled WLP cache (7-way 7MB cache).

capacity.

5.1.3 Decoupled Design

The two designs discussed previously place the cache control array and data array in

one PE so that each PE can locally detect whether the request is a hit or a miss and

route the hit line back to the Chameleon Virtualizer. Such a local decision mechanism

allows these two transfer operations to be pipelined so that the overall lookup latency

can be reduced. However, as explained previously, these designs cannot utilize the

memory space efficiently because the number of sets in each PE must be a power of

two.
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Figure 20: Decoupled WBLP cache (7-way 7MB cache).

Instead, we study an alternative design style in which the cache control array and

data array are spread across different PEs. In this design, the Chameleon Virtualizer

needs to read the hit/miss signal first from PEs that store the cache control array, and

then it needs to request the target PE that stores the hit line to route the line back

to the Chameleon Virtualizer. Figure 19 and Figure 20 show such decoupled designs.

As shown in the figures, the cache control array is stored in seven PEs in row 0. The

Chameleon Virtualizer needs to look up these PEs’ local scratch-pad memory space

to see whether the requested block is a cache hit or miss. Upon a hit, it also needs to

request one (decoupled WLP) or eight (decoupled WBLP) PEs out of 56 PEs (row

1 to row 7) to route the hit data array back to the Chameleon Virtualizer. In our

decoupled design, PEn (0 ≤ n ≤ 6) keeps a cache control array for the data array of
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PEs in row n+1. For example, in case of a decoupled WBLP cache (Figure 20), PE6

stores the cache control array of way 6 while the cache data array of way 6 is stored

in PEs of row 7 (PE56 to PE63). Although the lookup latency of this style cache is

longer than that of previous two designs, 7-way set-associative 7MB cache (total 16k

sets) can be stored in 64 PEs — Each of seven PEs in row 0 stores the cache control

array of 16k cache lines of each way; Each PE in other rows stores the cache data

array of 2k lines (the decoupled WLP cache (Figure 19)) or the 8B subblock of 16k

lines (the decoupled WBLP cache (Figure 20)). Note that these 63 PEs fully utilize

their 128KB local scratch-pad memory. The only unused space is the local memory

space of PE7 as shown in the figures.

5.1.4 NUCA Cache Design

In the conventional A-mode, for synchronizing the computation for each PE, a PE lo-

cated at row i (where i ranges from 0 to 7) in an 8×8 PE array contains an instruction

queue with 7− i entries as shown in Figure 21(a). Instructions are broadcast through

IBus and queued prior to the execution by its designated PE. The delay units (shown

as D blocks) are inserted to synchronize each instruction broadcast in a SIMD-style

execution. With the instruction queue and pipelined IBus, PEs in different rows

will execute the same instruction at the same cycle, fully synchronized. Similarly, a

pipelined ORTree and flag queue are used to synchronize flag status globally. Such

a strictly synchronized execution model keeps the architecture and its programming

models simple. For example, neither the processor architects nor the programmers

have to deal with complicated synchronization issues such as live-locks or deadlocks.

However, if the PEs are collectively used as a virtualized last-level cache, it will

be beneficial to have non-uniform access latencies, i.e., accessing each PE row out-

of-sync. As shown in previous studies [65, 56, 23], a non-uniform cache architecture

(NUCA) helps reduce the average cache access latency, thereby improving the overall
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Figure 21: Execution model (column 0 only).

performance. As such, it will be more desirable to keep data with good temporal

locality in a nearby memory bank of a large NUCA structure. Although our base-

line PE array already has a partitioned array of 64 PEs that uses mesh topology,3

it requires certain changes in the architecture to enable non-uniform latencies across

PE rows. To eliminate the strictly synchronized execution nature of the baseline,

the instruction and flag queues, originally designed for synchronizing their broad-

casting, are bypassed when the NUCA model is enabled. As shown in Figure 21(b),

the NUCA path directly bypasses and does not buffer any incoming cache access

3In this section, we assume a mesh network for simplicity. The mesh network can be easily
reconfigured to a folded torus network using simple switches [27, 110].
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microcode instruction and outgoing requested cache lines. Consequently, in this exe-

cution model, different PEs in different rows execute different instructions at the same

cycle. However, the pipelined execution model could complicate the synchronization

of the ORTree values and that of northbound and southbound transfer instructions.

This is what we call time-zone effect. Fortunately, the ORTree time-zone effect is

not an issue in the C-mode because C-mode microcode uses the ORTree to obtain

a requested cache line. Furthermore, the Chameleon Virtualizer is allowed to issue

one memory lookup microcode at a time, so there is no concern of data corruption

between distinct memory accesses.

The next problem is synchronizing the northbound transfer instruction. The xfer.n

instruction is a special type of move instruction that copies a register value of a PE

into a register of its northern neighbor PE. In synchronized execution (Figure 22(a)),

the r0 value of PE48 reaches PE56 at cycle n + 3 when the xfer.n instruction being

executed by PE56 is in the write-back (WB) stage. In this example, PE56 expects

to have its r1 value from PE48 as the same xfer.n instruction is decoded and being

executed by PE56 itself. Therefore, PE56 will set up control signals prior to the

reception of the value. However, in the pipelined execution model (Figure 22(b)),

the r0 reaches PE56 at cycle n + 2 when the same xfer.n instruction is in the EX

stage. In other words, PE56 has not set up control signals to read the transferred

value from PE48 and to update its r1. Without any support, the r1 of PE56 will

not be correctly updated. To address this issue, we propose virtually synchronizing

this xfer.n instruction by adding one more pipeline register in the northbound output

mesh driver of PE48, so that the r0 value can reach PE56 at cycle n+3 (Figure 22(c)).

A similar problem is present in synchronizing the southbound transfer xfer.s in-

struction. Figure 23(a) shows the synchronized execution model. However, in the

pipelined execution model (Figure 23(b)), the r0 of PE56 reaches PE48 at cycle

n + 3. At this moment, the xfer.s is no longer in the pipeline of PE48. As such,
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the r1 of PE48 will not be correctly updated. Fortunately, as shown in Figure 23(c),

this problem can easily be solved by architecting the latency of this instruction as

two cycles. Any instruction that is dependent on the destination register of the xfer.s

instruction should be scheduled one cycle later, and this is the responsibility of a

programmer or a compiler.

Another NUCA design issue is with respect to how to implement the LRU policy

efficiently. Figure 24 illustrates an instance for our decoupled WLP cache. In this

example, the host processor issues to read line 2, and seven PEs have seven different

cache lines mapped to the same set as shown in Figure 24(a). Upon detecting the

requested line 2 in PE24, PE24 transfers it to the Chameleon Virtualizer, and those

PEs whose row numbers are smaller than PE24 will transfer their cache lines to the

north (Figure 24(b)). This movement allows PEs to maintain more recently used

cache lines closer to the Chameleon Virtualizer as shown in Figure 24(c).

The final design consideration of our NUCA C-mode is the placement of the cache

control array. In a decoupled design, the cache control array is located in row 0,

nearest to the Chameleon Virtualizer, reducing the tag lookup latency significantly.

Our NUCA design adopts a decoupled design as its base so that the Chameleon

Virtualizer can detect the location of the target data line early in its lookup stage.

By moving the cache control bits across PEs in row 0 as shown in Figure 24(d), we

can force the y-coordinate of a PE that keeps the target data line to be always bigger

by one than the x-coordinate of a PE that keeps the target control bits. For example,

if the x-coordinate of the PE that has the control bits of the requested cache line is

three, the Chameleon Virtualizer can find corresponding data line in row 4.

Furthermore, we added another special move instruction to optimize the access

latency of NUCA designs. This instruction is executed by PEs in row 1 but ignored

by PEs in other rows. Upon decoding this instruction, the PEs in row 1 snoop the

ORTree bus and store the values of the ORTree into a destination register. With
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this instruction, the PEs in row 1 can obtain the hit line directly when the line is

transferred to the Chameleon Virtualizer. Without this instruction, the Chameleon

Virtualizer has to read back this cache line and write it to the PEs using IBus, which

takes at least eight cycles in our baseline architecture.

5.2 P-Mode: Virtualizing Idle Cores as a Prefetcher

In addition to the C-mode, which supplies a virtualized last-level cache, we also in-

vestigate enabling mechanisms to reconfiguring idle PEs to work as a data prefetcher.

The rationale behind this is from the following observation— the off-chip bandwidth

of a heterogeneous multicore processor is typically very large for fulfilling the heavy

input demand of the acceleration cores. This bandwidth, when running single thread

applications, may be left unused. Reusing this bandwidth resource to perform data

prefetching can potentially improve performance. Even in the scenarios when the

prefetches issued are less accurate, they would unlikely affect the overall memory

performance if the amount of off-chip bandwidth can satisfy both demand fetches

and prefetches. We call this prefetching operation mode of the PE array P-mode (or

prefetching mode).

In this work, we evaluate two data prefetchers for Chameleon P-mode: a Markov

prefetcher [60] and a program counter (PC)-indexed delta correlation prefetcher [63,

92]. We chose these prefetchers because they use reasonably large prefetch tables

to track miss addresses. These are non-trivial overheads to the hardware if imple-

mented exclusively for prefetching purposes. Hence, even state-of-the-art processors

do not adopt such implementations, rather, they implemented a simpler next-line

prefetcher [48] or a stride prefetcher [118]. We will demonstrate that Chameleon can

realize such area-consuming schemes by virtualizing the resources in P-mode.

In the P-mode, the prefetch table is virtually laid out across PEs. Upon an L2

cache miss, the Chameleon Virtualizer checks its prefetch buffer first (Figure 16). If
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the requested line is not found, then the Chameleon Virtualizer broadcasts microcode

to look up the virtualized prefetch table. This microcode drives each PE to perform

index hashing, to match tag bits, and to route a target prefetch table entry back

to the Chameleon Virtualizer. Then, the Chameleon Virtualizer decodes the table

entry and generates prefetch requests. To support P-mode, we added a small data

prefetch buffer (a 32-entry buffer in this study) in the Chameleon Virtualizer as shown

in Figure 16. A prefetched cache line is temporarily stored in this buffer, which is

checked upon every L2 cache miss.

5.2.1 Virtualized Markov Prefetcher

Figure 25(a) shows the prefetch table design for a virtualized Markov prefetcher.

Although the original Markov prefetcher paper [60] showed that a prefetch table

with four next-miss addresses provides a reasonable balance between coverage and

accuracy, implementing a virtualized Markov prefetcher with four next-miss addresses

per entry is challenging because the number of entries per PE should be a power-of-two

for simpler PE indexing and because an entry with four next-miss addresses requires

at least 40B (larger than 32B but significantly smaller than 64B). In other words,

an entry with four next-miss addresses requires 64B with 24B of unused bits, which

results in area inefficiency. Thus, we evaluate a Markov prefetcher with three (instead

of four) next-miss addresses. As shown in the figure, the size of the prefetch table

entry is 32B, and one entry consists of the 8B current-miss address in the tag and three

8B next-miss addresses. Clearly, this design contains unused bits, i.e., table index

bits and line offset bits (Figure 25(a)), which results in area inefficiency. However, we

cannot compact the table entry because a 8B load or a 8B store instruction of a PE

is aligned at an 8B boundary. In our proposed design, 4,096 entries can be stored in

each PE’s local scratch-pad memory space.

The P-mode Markov prefetcher is indexed by taking a group of bits (e.g., 17 bits
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Figure 25: P-mode prefetcher.

on 32 PEs) from a miss address. These index bits consist of PE ID bits (e.g., 5 LSBs

on 32 PEs) and local index bits (e.g., 12 MSBs). The PE ID bits are used to select

only one PE that has the target prefetch table entry while the local index bits are

used to generate the memory address of the selected PE’s local scratch-pad memory.

Mapping between the logical table entries and PEs is shown in Figure 25(b). In this

example, each prefetch table entry is stored in one of the 32 PEs using the five LSBs

of the table index as shown in the figure. One design issue is the trade-off between

the size and latency of the P-mode prefetcher. If there is no need for a large prefetch

table, it would be better off to enable only eight PEs in the first row to reduce the

lookup latency. In this study, we vary the size of the prefetch table (one, two, four,
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and eight rows) and perform a sensitivity study in our result section.

The overall procedure is as follows: Upon an L2 cache miss, the Chameleon Vir-

tualizer broadcasts the current data miss address followed by microcode to perform

table lookup. This microcode retrieves the hit-prefetch table entry along with its three

next-miss addresses. Then, the Chameleon Virtualizer decodes this return message

and generates three prefetch requests.

5.2.1.1 Virtualized Delta Correlation Prefetcher

In addition to a Markov prefetcher, we also evaluate a delta correlation prefetcher [63,

92] that keeps the seven latest address delta values. In this delta correlation prefetcher,

we compare a pair of two consecutive delta values, (δi, δi+1) (2 ≤ i ≤ 5), with the pair

of two latest consecutive delta values, (δ0, δ1) where δn is the nth latest delta value.

Figure 25(c) shows a prefetch table entry of a P-mode delta correlation prefetcher.

The size of each entry is 64B: 8B for tag bits, 8B for the last miss address, and six

pairs of 4B delta values. As shown in the figure, instead of keeping seven distinct

delta values, our implementation keeps six pairs of two consecutive delta values. In

other words, we keep redundant delta values between neighboring pairs. For exam-

ple, the first pair consists of δ0 and δ1 while the second pair consists of δ1 and δ2

(Figure 25(c)). Clearly, such data layout is inefficient in terms of area. However, we

found that, with this layout, we can accelerate the correlation matching process by

performing an 8B comparison operation instead of performing two 4B comparison

operations or concatenating two delta values. Furthermore, this layout is not perfect

in terms of the number of bits due to those unused bits, i.e., table index bits and line

offset bits (Figure 25(c)). However, due to the same reason as the P-mode Markov

prefetcher, the overall table size will be no larger even if we compact the table entry.

As mentioned earlier, the P-mode delta correlation prefetcher is indexed by taking

several LSBs from the PC. As in the P-mode Markov prefetcher, these index bits are
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Figure 26: Hybrid design (cache + prefetcher).

used to locate a target PE and to locate a target table entry within the selected PE’s

local scratch-pad memory. Upon an L2 miss, the Chameleon Virtualizer broadcasts

the instruction’s PC followed by the microcode to perform the table lookup. This

microcode retrieves a corresponding prefetch table entry from one of the PEs, and the

Chameleon Virtualizer calculates the next miss address(es) based on the miss address

and the delta values stored in this table entry.

5.3 HybridCP-Mode: Virtualizing Idle Cores for Caching

and Prefetching

Instead of dedicating all idle cores as either a last-level cache or a prefetcher, in this

section, we propose a hybrid design that virtualize idle cores as a last-level cache

backed by a prefetcher. We call this operation mode the HybridCP-mode.

Figure 26(a) shows a design of the HybridCP-mode based on a 7MB NUCA WBLP

cache and a 128KB prefetch table. As explained earlier, in a NUCA design, 7 PEs

in row 0 are filled with cache control bits, while PEs in row 1 to row 7 are filled

with cache data. The example shown in the figure places its prefetch table in PE7,
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which is not utilized in the NUCA WBLP cache. In this example, upon an L2 cache

miss, the Chameleon Virtualizer broadcasts cache lookup microcode to all PEs, and

it handles returning messages. Once it detects a miss in a virtualized last-level cache,

it looks up its prefetch buffer first and broadcasts prefetch table lookup microcode if

the target line has not been prefetched. However, because the C-mode microcode and

the P-mode microcode share IBus bandwidth, their operations cannot be overlapped.

Figure 26(b) shows another example of the HybridCP-mode in which a 6-way 6MB

cache is co-located with a 1MB delta correlation prefetcher table. In this example,

the virtualized last-level cache is shrunk, but the prefetch table is enlarged. Note that

certain partitioning such as a 4MB cache and a 3MB prefetch table may be infeasible

due to PE indexing.

5.4 AdaptiveCP-Mode: Mode Adaptation in Chameleon

Although we have a wide spectrum of Chameleon design space, it is unlikely that

any single design choice will prevail in performance for all applications due to the

unpredictability of the characteristics in the algorithms and their workloads. A hybrid

design will perform better when the host processor runs an application with good

locality and a reasonable size of working set. However, when the host processor runs

a streaming application (high L3 miss rate), due to its additional cache lookup latency,

a hybrid design may perform worse than one with data prefetching capability only.

Furthermore, some applications are purely computation-intensive, thus Chameleon

will not help to improve the overall performance but consume more power. To obtain

the best breed of all, we propose an adaptive mode that dynamically selects one of

these Chameleon modes. As Chameleon itself is built on microcode-controlled PEs,

an adaptive mode can be implemented at mild hardware cost: changing the microcode

PC to be executed, adding a couple of performance counters, and adding additional

control logic in the Chameleon Virtualizer.
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Figure 27: AdaptiveCP-mode (MPKC: misses per kilo cycles).

Figure 27 shows an example mode transition of our adaptive mechanism. Once

an application is launched, Chameleon is operated in the HybridCP-mode. If the

application does not show good locality or has a large working set resulting in a low hit

rate, then Chameleon will disable its cache functionality completely and use only its

data prefetching functionality. If the application does not have many L2 cache misses

(i.e., measured by MPKC, misses per kilo cycles), then Chameleon disables both

caching and prefetching to save power. We do not include cache-only mode as the P-

mode prefetcher does not harm the overall performance as will be shown in Section 5.5

because it does not pollute the regular cache hierarchy. To implement an adaptive

mechanism, two performance counters are added: an L3 cache hit counter and an L3

cache access counter (equivalent to the L2 cache miss counter). After launching a new

process and warming up the C-mode cache, the Chameleon Virtualizer can monitor

these two performance counters to make a decision of what mode is more appropriate

for the running application.

5.5 Experimental Results

5.5.1 Simulation Environment

Two simulators were used in our analysis. The first one is a cycle-level simulator

we developed for the baseline SIMD engine. In addition to an accurate model of PE
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Table 2: Host processor configuration.
Clock frequency 3.0 GHz
Processor model out-of-order
Machine width 3 (fetch) / 3 (issue) / 3 (retire)
The number of pipeline
stages

1 (fetch) / 4 (decode) / 2 (rename) / 4 (wakeup) / 1 (schedule)

ROB size 128
Physical register file size 96 (INT) / 96 (FP)
Branch predictor Hybrid branch predictor (16k global / local / meta tables), 2k BTB,

32-entry RAS
ITLB dual-port, 4-way set-associative, 64-entry
DTLB dual-port, 4-way set-associative, 64-entry
L1 instruction cache dual-port, 2-way set-associative, 32KB cache with 64B line; 1 cycle hit

latency; 1 cycle throughput
L1 data cache dual-port, 2-way set-associative, 32KB cache with 64B line; 1 cycle hit

latency; 1 cycle throughput
L2 cache single-port, 8-way set-associative, 512KB (1MB, 2MB) cache with 64B

line; 15 cycle hit latency; 3 cycle throughput; a stride prefetcher with a
256 entry prefetch table

Memory Four 64-bit channels, 800MHz double data rate, 350 cycle latency

microarchitecture pipeline, it models latency and bandwidth of the interconnection

network among PEs including the IBus, ORTree, MBus, and mesh network. Addi-

tionally, we integrated the Chameleon functionality into this simulator. The second

simulator is SESC [105], a cycle-level architectural simulator. SESC is used to model

the host processor, its conventional cache hierarchy, and the off-chip DRAM memory.

SESC retrieves latency and throughput4 information measured by the baseline SIMD

simulator and uses them to simulate the entire heterogeneous architecture. Table 2

lists the configuration of the simulated host processor. Unless otherwise stated, the

capacity of our baseline L2 cache is 512KB. We also show simulation results with 1MB

and 2MB baseline models later. Throughout this section, the baseline performance

is measured with this host processor model without any Chameleon capability unless

stated otherwise.

To evaluate the effectiveness of the Chameleon architecture for improving sequen-

tial performance, we used the SPEC2006 benchmark suite. The entire SPEC2006

benchmark suite was used except 434.zeusmp, 465.tonto, and 470.lbm, which incurred

4In this article, throughput is defined as the number of cycles a cache port is occupied by a cache
operation. For example, the throughput of a fully-pipelined cache is one, while the throughput of
an non-pipelined cache is generally equal to its access latency.
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Table 3: Latency and throughput of different C-mode designs.

Legend Description LRU State of
the Hit Line

Read Write Replace
Latency Throughput Latency Throughput

Throughput
Hit Miss Hit Miss Hit Miss Hit Miss

wlp
WLP-style
8-way 4MB

MRU
43 40

44
40 40 40

44
40 37non-MRU 46 49

wblp
WBLP-style
8-way 4MB

MRU
37 36

37
36 36 36

37
36 18non-MRU 42 42

wlp nuca
Decoupled
WLP-style
7-way 7MB

row1 (MRU) 39

21

29

21 20 20

43

20 45

row2 41 44

57

row3 43 46
row4 45 48
row5 47 50
row6 49 52

row7 (LRU) 51 54

wblp nuca
Decoupled

WBLP-style
7-way 7MB

row1 (MRU) 35

20

24

20 20 20

25

20 23

row2 37 37

36

row3 39 39
row4 41 41
row5 43 43
row6 45 45

row7 (LRU) 47 47

wlp 8banks 8-bank wlp Latency and throughput of each bank is same as wlp

issues such as cross-compiling failure and unsupported system calls in our simulators.

For all simulations, we fast-forwarded the first 10 billion instructions and simulated

next two billion instructions.

5.5.2 Evaluation of C-Mode

First of all, we measured the latency and throughput of each C-mode design. Unlike

a conventional cache where its latency and throughput are solely determined by the

characteristics of transistors and wires, the latency and throughput of a C-mode

cache are determined by the number of instructions that control PEs and the order

of these instructions. For example, for a cache read operation, the read latency can

be reduced if instructions routing a read-hit line back to the Chameleon Virtualizer

are scheduled earlier than instructions that updates LRU bits. On the other hand,

the number of instructions to perform a single cache operation will determine the

throughput of a C-mode cache (in a single-bank design) because they consume the

IBus bandwidth for the same number of clock cycles. In this work, we wrote microcode

using PE assembly code to implement different designs and scheduled them carefully

to minimize the latency. The throughput is measured by counting the number of PE
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instructions to perform a cache operation, and the latency is measured by monitoring

the time when a hit/miss signal or a requested cache line is returned to the Chameleon

Virtualizer. We assume the PE array operated in the A-mode and C-mode runs at

the same frequency of the host processor, 3GHz.

Table 3 summarizes each cache design and their latency/throughput studied in

this section. As shown in Table 3, the latency and throughput of NUCA models vary

depending on which row an access hits5. Furthermore, even in non-NUCA designs, the

throughput can vary depending on whether a hit line is located at an MRU position

or not. When hitting an MRU line, we do not need to update the LRU bits, so the

Chameleon Virtualizer does not need to broadcast instructions to update the LRU

state.

Not surprisingly, the latency of a WBLP-style cache is lower than that of its

WLP-style counterpart. In the case of a WLP-style cache, if the row number of a

hit PE is greater than three, the latency of the NUCA design will be worse. In a

WBLP-style cache, this threshold will be two. The sophisticated LRU management

of NUCA designs is found to be the main reason for this effect.

The table also shows the read throughput of each design. As shown, there exists

a trade-off in throughput between a NUCA design and its counterpart. In the WLP-

and WBLP-style caches, not updating the LRU status upon hitting an MRU line

helps reduce their throughput by two and five cycles, respectively. A similar trend

is observed for the latency and throughput of a write and replacement operation as

well.

Now we evaluate and quantify the performance potential for single-thread applica-

tions by using the C-mode on a heterogeneous multicore processor. Figure 28 shows

the performance impact of different C-mode designs. To show the theoretical limit,

5In this study, we use an expression, a hit PE, to address a PE which has a requested cache line
in its local scratch-pad memory space. Similarly, a hit row is defined as the number of a row to
which the hit PE belongs.
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Figure 28: Relative performance of different C-mode designs.

we also simulated a perfect memory model in which the L2 cache is assumed perfect.

This model also reveals those benchmark programs that are memory-intensive. In this

article, we define memory-intensive applications as applications whose performance

can be improved more than 10% with a perfect L2.

Not surprisingly, the C-mode improves the performance of memory-intensive appli-

cations, e.g., 401.bzip2, 429.mcf, 464.h264ref, 471.omnetpp, 473.astar, 483.xalancbmk,

450.soplex, 454.calculix, and 482.sphinx3. For example, the NUCA WBLP-style (wblp nuca)

C-mode improves the performance of 483.xalancbmk by 175%. Overall, it is found that

the NUCA WBLP-style C-mode is the most effective design. On average (geomet-

ric mean), it improves the performance of SPECint06 applications and SPECfp06

by 18% and 7%, respectively. For the memory-intensive application category, the

average performance improvements for them are 27% and 10%, respectively.

However, the performance of some memory-intensive applications was degraded

including 462.libquantum, 410.bwaves, 433.milc, 437.leslie3d, and 459.GemsFDTD. We

found that the hit rates of the C-mode cache were very low when the host processor
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Figure 29: Distribution of hit rows.

runs these applications, so an additional cache level will only introduce extra latency

in bringing data back.

Apparently, the NUCA models are effective despite their longer latency when a hit

PE is located far from the Chameleon Virtualizer. Figure 29 shows the distribution

of hit rows. Note that 416.gamess is extremely computation-intensive and generates a

small number of cold misses, which results in a 100% L3 miss rate. Therefore, no bar

is shown in Figure 29 for it. As shown in the figure, most of the cache hits are found

in the PEs close to the Chameleon Virtualizer, which justifies the hardware/software

effort for addressing the time-zone effect.

Another interesting result is that a multi-banked WLP-style cache (wlp 8banks) is

not as effective as its counterpart: a single-bank WBLP-style cache (wblp). As shown

in Figure 28, the performance improvement by a single-bank WBLP-style cache is

always higher than or close to that of its multi-banked WLP-style counterpart. This

implies that a C-mode cache is accessed infrequently so that designing a faster C-mode

cache is more favorable than designing a slower but multi-banked C-mode cache.

We also performed simulations with a baseline with a larger L2 cache. On aver-

age (geometric mean), when a 1MB L2 cache is used, a NUCA WBLP-style cache

improves the performance of SPECint06 and SPECfp06 by 14% and 3%, respectively

(21% and 5% for memory-intensive applications). When a 2MB L2 cache is used, the
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Table 4: Latency and throughput of different P-mode designs.
Legend Description Latency Throughput

Markov1 1MB Markov prefetcher table on 8 PEs in row 0 21

22
Markov2 2MB Markov prefetcher table on 16 PEs in row 0 and 1 23
Markov4 4MB Markov prefetcher table on 32 PEs in row 0 to 3 27
Markov8 8MB Markov prefetcher table on 64 PEs in row 0 to 7 35

delta1 1MB delta correlation prefetcher table on 8 PEs in row 0 37

29
delta2 2MB delta correlation prefetcher table on 16 PEs in row 0 and 1 39
delta4 4MB delta correlation prefetcher table on 32 PEs in row 0 to 3 43
delta8 8MB delta correlation prefetcher table on 64 PEs in row 0 to 7 51

NUCA WBLP-style cache improves the performance of SPECint06 and SPECfp06 by

11% and 2%, respectively (17% and 3% for memory-intensive applications).

5.5.3 Evaluation of P-Mode

Table 4 describes each prefetcher design used in this section and shows its table

lookup latency and throughput. As expected, we found a trade-off between the table

lookup latency and the table size. For example, the lookup latency is 21 cycles for a

1MB Markov prefetcher table while it is 35 cycles for an 8MB table. This trade-off

is represented in the overall performance graphs shown in Figure 30. For brevity, we

show only the performance result of some prefetcher designs that reveal the trade-off

well. For the P-mode Markov prefetcher, a large table is more useful as shown in the

simulation results of 483.xalancbmk. This is intuitive because a Markov prefetcher is

indexed by a miss address, so a larger table will be able to cover more miss addresses.

However, we found that a 1MB P-mode delta correlation prefetcher is sufficiently

large because it is indexed by a PC.

In most cases, a P-mode delta correlation prefetcher performs better than a P-

mode Markov prefetcher. Seven exceptions are 445.gobmk, 471.omnetpp, 473.astar,

483.xalancbmk, 435.gromacs, 447.dealII, and 454.calculix. However, we also found that

the performance improvements achieved by a P-mode Markov prefetcher on these

applications are actually lower than those by a C-mode cache. In brief, the P-mode

Markov prefetcher is less appealing compared to other C-mode caches or the P-mode

delta correlation prefetcher. On average, the 1MB P-mode delta correlation prefetcher
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Figure 30: Relative performance of different P-mode designs.

improved the performance of SPECint06 and SPECfp06 applications by 16% and 13%,

respectively. Their average improvements for memory-intensive applications are 25%

and 23%.

5.5.4 Evaluation of HybridCP-Mode and AdaptiveCP-Mode

As shown previously, certain applications benefit more from a C-mode cache while

some show more improvement when a P-mode prefetcher is used. For example,

the NUCA WBLP-style C-mode cache improves the performance of 483.xalancbmk

by 175%, but no improvement is obtained with a 1MB P-mode delta correlation

prefetcher. In contrast, the 1MB P-mode delta correlation prefetcher improves the

performance of 462.libquantum by 225%, but using the NUCA WBLP-style C-mode

cache degrades it by 7%. More interestingly, Figure 31 shows that the HybridCP-

mode and the AdaptiveCP-mode can provide reasonable performance improvement

across applications with different characteristics. For easier comparisons, the figure

also show their best performing C-mode (wblp nuca) and P-mode (delta1).
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Figure 31: Relative performance of HybridCP-mode and AdaptiveCP-mode.

Two HybridCP-mode designs were evaluated: a hybrid design with a 7MB NUCA

WBLP cache and a 128KB delta correlation prefetcher (hybrid 7MB 128KB of Fig-

ure 26(a)) and a hybrid design with a 6MB NUCA WBLP cache and a 1MB delta

correlation prefetcher (hybrid 6MB 1MB of Figure 26(b)). In most cases, the per-

formance difference between these two hybrid designs is small except two applica-

tions: 483.xalancbmk and 482.sphinx. As shown in Figure 28, their performance is

improved a lot with a bigger cache, and that is why their performance is improved

more with the hybrid design with a 7MB NUCA WBLP cache and a 128KB delta

correlation prefetcher. On average, this hybrid design improves the performance of

SPECint06 and SPECfp06 by 31% and 15%. The average performance improvements

for memory-intensive ones are 49% and 24%. (For the remaining of the article, the

HybridCP-mode refers to the hybrid design with a 7MB cache and 128KB prefetcher

unless explicitly stated otherwise.)

On the other hand, we found an AdaptiveCP-mode can perform as well as the

HybridCP-mode. This adaptive one is based on the previous HybridCP-mode with
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a 7MB NUCA WBLP cache and a 128KB delta correlation prefetcher. However, we

disable its cache functionality to behave as a 128KB delta correlation prefetcher based

on the algorithm shown in Figure 27. In this evaluation, we modeled the AdaptiveCP-

mode to make decisions after warming up the cache during the first 30 million cycles

(0.1 ms) and then monitoring the number of cache accesses and hits for the next 30

million cycles. In this set of simulations, we perform this sampling every 600 million

cycles (2 ms) to find a better Chameleon mode just in case a program phase changes.

The model in Figure 31 uses 30% for the threshold of the cache hit rate and 0.5 for

the number of L2 misses (= L3 accesses) per kilo cycles (MPKC), which are found

to provide the highest average improvement (although not significantly) according to

our sensitivity study. As shown in the figure, the AdaptiveCP-mode performs at least

as well as the HybridCP-mode. In particular, it prevails when the host processor runs

applications favoring a prefetcher, e.g., 462.libquantum and 433.milc. On average, the

AdaptiveCP-mode improves the performance of SPECint06 and SPECfp06 by 31%

and 15%, repectively. For memory-intensive applications, it improves by 50% and

26% on average.

Furthermore, this adaptive design does not degrade the performance of any ap-

plication. (Note that the only application whose performance is degraded by the

HybridCP-mode is 433.milc with a 7% degradation.)

We also performed a sensitivity study with different L2 sizes and summarize their

average performance improvements as follows. Using a 1MB L2 cache baseline, the

AdaptiveCP-mode improved the performance of SPECint06 and SPECfp06 by 27%

and 12%, respectively (43% and 23% for memory-intensive applications). When in-

creasing the capacity to 2MB, it improved the performance of them by 25% and 11%,

respectively (40% and 21% for memory-intensive applications).
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5.5.5 Hardware and Power Overhead

The hardware overhead to support Chameleon is insignificant. First of all, the

Chameleon Virtualizer requires a prefetch buffer, an MSHR, a Chameleon microcode

memory, and corresponding control logic changes. In our simulations, we modeled a

32-entry prefetch buffer and an 8-entry MSHR. In case of the HybridCP-mode, for

example, less than 128 PE instructions are required. Thus, a 128-entry Chameleon

microcode memory is sufficient to implement both the cache and the prefetcher. Con-

servatively assuming that supplementary control logic requires the same amount of

space of these memory components, the area overhead compared to a baseline SIMD

engine is estimated to be 0.01%. In this estimation, we used Intel’s data [46] and

Penryn die to estimate the sizes of the Chameleon Virtualizer and the baseline SIMD

engine. Second, to support Chameleon, we added two new special “move” instruc-

tions explained in Section 5.1 and Section 5.1.4. Third, to provide a NUCA model,

we added two sets of mux and demux as shown in Figure 21(b) as well as additional

pipeline registers to solve the time-zone effect of the northbound transfer instruc-

tion. Fourth, to widen the datapath in a WBLP-style cache, we directly connected

IBus and ORTree to the Chameleon Virtualizer without using conventional fan-out

and fan-in trees. Note that this new wiring does not require any wiring change in

each PE. Lastly, to support the AdaptiveCP-mode, we need to add two performance

counters that count the number of accesses and the number of hits in the Chameleon

cache.

We also evaluated the extra dynamic power dissipation for the AdaptiveCP-mode

using Wattch [14] model. We additionally modeled the global interconnect (IBus, OR-

Tree, Mesh) power consumption using the Berkeley Predictive Technology Model [17].

We conservatively modeled the power by assuming the worst-case power consumption

in the cache and prefetch operations. For example, if a cache read hits in row 0 of

the NUCA model, no data and cache control array migration is required. However,
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Figure 32: Performance, power, and performance per joule of the AdaptiveCP-mode.

for convenience, we conservatively modeled that all 56 PEs are active regardless of

the LRU state of a hit line.

Figure 32 shows the relative power consumption and performance per joule of

the Adaptive-CP mode. Note that the performance improvement is also shown for

easier reference. Although Chameleon consumes a considerable amount of energy by

running microcode on 64 PEs, because Chameleon is accessed very infrequently (on

an L2 miss), Chameleon will consume only 69% (SPECint06) and 37% (SPECfp06)

more power (Figure 32) than the baseline host processor with a conventional L1 and

L2 caches. Note that the baseline SIMD engine is already designed to accommo-

date the power consumption of 64 active PEs. Thus, the power consumption of the

AdaptiveCP-mode is still below the total chip power budget. This indicates that

Chameleon is more power-efficient than other thread-level speculation techniques for

improving sequential performance [2, 75]. Although power overhead analysis was not

reported in these prior works, their power overhead is likely to exceed the power over-

head of Chameleon due to their full utilization of all high performance cores while
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Chameleon is only accessed upon an L2 cache miss.

Figure 32 also shows the energy efficiency represented in performance per joule,

which represents achievable speedup under the same energy budget or energy effi-

ciency. Overall, the AdaptiveCP-mode degrades the performance per joule of SPECint06

and SPECfp06 by 2% and 5% (0.98x and 0.95x in the geomeans). Interestingly,

there are some applications whose performance per joule is improved a lot, such as

462.libquantum, 483.xalancbmk, and 437.leslie3d. In other words, as their performance

is improved a lot, their energy efficiency can be improved in spite of Chameleon’s

power overhead. Another interesting observation is that if the application does not

get any benefits using Chameleon, their energy efficiency is not affected as well for

Chameleon is rarely accessed. However, energy efficiency of some applications, such as

429.mcf, 456.hmmer, 471.omnetpp, 450.soplex, and 482.sphinx3, is degraded as shown

in the figure. We found that they prefer the HybridCP-mode, so they consume much

energy upon an L2 cache miss. If one is particularly interested in energy efficiency

rather than the performance itself, she or he can tune the threshold values of the

adaptive Chameleon so that Chameleon is not turned on when the host processor

runs other applications. However, optimizing for energy efficiency is out of scope of

this study, and it remains as our future work.

5.6 Summary

In this study, we propose Chameleon, a flexible heterogeneous multicore processor

that virtualizes idle acceleration cores for improving the memory performance of se-

quential code. To address the under-utilization issue when these cores are not used

for DLP processing, Chameleon can virtualize these idle cores collectively into a last-

level cache (C-mode) or a table-based data prefetcher (P-mode). for single-thread

applications running on the host processor. We studied the trade-off between perfor-

mance and architectural complexity of several caching designs. For data prefetching,
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we demonstrated the mechanisms to reconfiguring these acceleration cores into a

Markov prefetcher and a delta correlation prefetcher. Moreover, we introduce a hy-

brid mode to enable caching and data prefetching simultaneously using the collective

acceleration cores. To achieve the highest efficiency for performance versus energy,

we devise an adaptive mode to migrate the functionality of Chameleon between the

hybrid mode and prefetch-only mode by monitoring the cache behavior.

We used the POD architecture for our case study. Using the SPEC2006 bench-

mark suite, we found that, on average, the Chameleon C-mode can improve the per-

formance of SPECint06 and SPECfp06 by 18% and 7% while the Chameleon P-mode

can improve them by 16% and 13%. Furthermore, our hybrid mode shows a 31% and

15% improvement, respectively. In the adaptive mode, 31% and 15% are observed

for SPECint06 and SPECfp06. Finally, when accounting for memory-intensive appli-

cations only from the suite, the average speedups of the adaptive mode are increased

to 50% and 26% for SPECint06 and SPECfp06, respectively.
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CHAPTER VI

COMPASS: COMPUTE SHADER ASSISTED

PREFETCHING

6.1 Introduction

In the previous chapter, we have demonstrated that idle accelerator cores can be

used to improve the memory performance of the host processor. However, techniques

proposed in the previous chapter were tightly coupled with our baseline architecture

proposed in Chapter IV. In this chapter, we design and evaluate such an idea in a more

generic heterogeneous computing platform, an integrated CPU and GPU platform.

To meet the modern needs of game developers, a traditional fixed-function graphics

accelerator has evolved into a programmable graphics processing unit (GPU), which

allows game developers to write their own shaders for specific special effects. For its

vast computational capability, a modern GPU is also designed to run non-graphics,

compute-intensive applications, referred to as general-purpose GPU (GPGPU) [77].

Recently, Intel and AMD announced their integrated solutions to encompass the

GPU, the memory controller, and the CPU onto a single die for netbook, laptop, and

desktop products [85, 112]. Although the integrated chip is not likely to be as powerful

as a standalone CPU or GPU due to several reasons such as power budget, it lowers

the overall system cost and reduces the form factor with reasonable performance for

its particularly aimed applications and market. Furthermore, the performance can

be compensated to some extent due to the substantially reduced latency between the

host CPU and the integrated GPU.

Unfortunately, while the host CPU executes the sequential part of a parallelized

application or an unparallelized legacy application, the integrated GPU will sit idle
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contributing nothing to the single-thread performance. Unlike symmetric multicore

processors in which many sequential processes can concurrently run on multiple cores,

an idle GPU cannot run a conventional CPU process due mainly to the heterogeneity

between the ISAs. Moreover, an idle GPU cannot take advantage of other types of

techniques, such as speculative multi-threading or helper threads [113, 45, 30, 25,

78, 6, 73, 89], to boost single-thread performance unless the GPU is completely re-

designed to support it, which could unnecessarily complicate the entire design and

lead to performance degradation when running conventional graphics applications.

One way to improve the performance of a CPU while an on-chip GPU is idle

is to exploit the remaining power budget. Because an idle GPU only consumes a

small amount of idle power compared to an active GPU, the CPU can then be given

the unused power by increasing its supply voltage and clock frequency, similar to

the Turbo mode employed in Intel’s Core i7 (Nehalem) processor [59]. Nonetheless,

this method will not improve the performance of memory-intensive, single-thread

applications, which are typically unscalable and insensitive to clock frequency.

Instead of letting the GPU sit idle, we envision that the OS can utilize the idle

GPU to run compute shaders to enhance the memory performance for single-thread

applications. In this study, we propose COMPASS, a compute shader-assisted

prefetching scheme, to achieve our goal. With very lightweight architectural sup-

port, we demonstrate that COMPASS can enhance the single-thread performance

of an integrated CPU by emulating the function of a hardware prefetcher using the

programmable shader.

6.2 Baseline GPU Architecture

Figure 33 illustrates the baseline GPU architecture used in this study. Because the

details of modern GPU architectures are not completely open to the public, we em-

ployed a baseline architecture that resembles an abstract GPU from several publicly
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available documents [1, 55, 80, 81, 107]. As shown in the figure, at the front-end

of a GPU pipeline, a programmable command processor interprets command stream

from a graphics driver. The command processor executes a RISC-based microcode

with its computation logic and memory. Then, a setup engine prepares data for a

different shader (e.g., a vertex, a fragment, a geometry, and a compute shader) and

submits threads of each shader code to an ultra-threaded dispatch processor (or a

thread scheduler). The ultra-threaded dispatch processor maintains separate com-

mand queues for different shader codes. It also has two arbiters for 16 cores of each

SIMD array as well as an arbiter for each vertex/texture fetch unit. Furthermore,

the ultra-threaded dispatch processor has a shader instruction cache and a shader

constant cache to supply instructions and constant values.

The next pipeline stage of the baseline GPU executes a given shader code. As

shown, the GPU consists of several SIMD arrays (four SIMD arrays in the figure),
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each of which consists of 16 shader cores forming a 16-way SIMD array. Each shader

core is a five-way VLIW machine, each execution unit of which is referred to as a

streaming processing unit (SPU). An additional branch execution unit of each shader

core handles flow control and conditional operations.

In the right-most column of the SIMD array, a specialized vertex/texture unit

(labeled as a TEX Unit in the figure) is connected to a vertex and a texture cache,

each of which supplies requested memory values to the SIMD array. (In the figure,

only the L1 texture cache is shown for brevity.) Furthermore, 16KB local data share

(LDS) is placed between the 16 shader cores and the vertex/texture unit. LDS enables

efficient data sharing between threads mapped to the same SIMD array. In addition

to LDS, another 16KB global data share (not shown in the figure) is present to

allow data shared among different SIMD arrays, but we will not use it in this study.

Additionally, the baseline GPU has other hardware units such as a render back-end

unit for color blending, alpha blending, depth testing, and stencil testing, but we do

not elaborate them here as they are not essential to the main idea of this study.

With these hardware resources, the baseline GPU is able to tolerate long cache

miss latency (often in hundreds of cycles) by executing many threads alternately.

Upon a cache miss of a thread, the ultra-threaded dispatch processor suspends the

execution of the thread and schedules another thread to sustain the overall through-

put. To achieve this, the ultra-threaded dispatch processor forms a group of 64 threads

and uses this group as a thread scheduling unit. It essentially dispatches a group of

64 threads to the SIMD array simultaneously and later dispatches another group of

64 threads upon a cache miss of the previous group. This group is referred to as a

wavefront (or a warp in NVIDIA terminology [36]). A wavefront (64 threads) executes

one VLIW bundle on a 16-way SIMD array over four cycles as shown in Figure 34.

In other words, one VLIW bundle of the first 16 threads is dispatched to the SIMD

array at cycle 4n, the same bundle of the next 16 threads is dispatched to the SIMD
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Figure 34: Thread scheduling at SIMD core i of a 16-way SIMD engine.

array at cycle 4n + 1, and so on. As the ultra-threaded dispatch processor has two

arbiters per SIMD array, two wavefronts compete to dispatch their instructions to

the SIMD array. In this study, we assume that the same wavefront can be dispatched

only after another wavefront is dispatched as shown in Figure 34.

To support such a large number of threads on four 16-way SIMD arrays, the GPU

requires large register files. Following a speech from AMD [107], we assume that the

capacity of the register file of each SIMD array is split into 256 sets, each consisting

of 64 128-bit registers. It amounts to a total of 256KB (256 × 64 × 16) register

space evenly split across 16 shader cores of each SIMD array. The total capacity of

register files can vary according to target market or over different GPU generations.

For different market segments, the GPU industry used to design its products with a

different number of shader cores. For example, ATI Radeon HD 4890 (for the most

enthusiastic gamers’ market) consists of ten 16-way SIMD arrays while ATI Radeon

HD 4600 (for the mainstream market) contains only four 16-way SIMD arrays. In this

study, we employ a baseline GPU of four 16-way SIMD arrays for the integrated chip.

Considering the number of SIMD arrays will continue to soar in the future GPU, our

results based on this assumption of four SIMD arrays can be considered conservative.

Such a large pool of registers is shared by threads executed on the same SIMD
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array. It also implies that more registers each thread uses, fewer threads can be

simultaneously active. Such register partitioning is managed by GPU itself using

a relative indexing scheme [1]. Because the details on register partitioning is not

disclosed, we assume a simple indexing scheme— a global register index is the sum

of a base register of a thread and a relative register index within the thread. For

example, if we have a pool of 32 registers and if each thread uses four registers, only

eight threads can be active simultaneously. In this example, the global index of a

physical register is calculated by adding the register identifier to the base register

index of the thread, which can be calculated by simply shifting the thread ID to the

left by two.

Lastly, in this study, we assume that the integrated CPU cores and the GPU share

a four-bank L2 cache as shown in Figure 35. Such architecture proposals have been

considered in an early, scratched integrated solution, e.g., Intel’s Timna processor,

and the upcoming Intel’s Sandy Bridge microarchitecture (shared L3). Such inte-

grated chips, to our firm belief, will emerge and gain more interests for the following

reasons: (1) saving the overall cost, (2) providing efficient and coherent communi-

cation between the host and the accelerator, and (3) giving more flexibility in cache

space consumption, similar to the rationale of the Advanced Smart Cache in Intel’s

multicore processors. Note that, although our baseline architecture assumes a shared

L2, COMPASS does not necessarily need a shared L2. In the case of a private L2
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cache, our proposed mechanism can still be used if a very small design hook is im-

plemented to forward an L1 miss request of the GPU to the L2 of the CPU when

COMPASS is enabled. Using a private L2 (as employed by the recent IBM Power7)

should not affect the overall results at all since COMPASS shaders do not generate

any memory traffic except prefetch requests (will be detailed later). In addition, we

also assume that memory controllers are integrated on-die as they are already in a

current discrete GPU product.

6.3 COMPASS

Although data prefetching techniques have been widely researched, state-of-the-art

commercial processors only either employ simple schemes such as a next-line prefetcher [48]

or a stride prefetcher [118], or push it to the software side by providing prefetch in-

structions and let the compilers or programmers insert them at appropriate locations

inside the code. Most of the advanced complex hardware schemes remain in litera-

ture due to their prohibitively expensive hardware cost [54, 60, 92, 114]. Furthermore,

different applications may favor different types of prefetchers. Thus, a one-size-fits-

all hardware-based prefetcher may not be in the best of interests of all applications.

More importantly, the GPU consumes enormous memory bandwidth when active,

which competes the same bandwidth shared by a dedicated hardware prefetcher for

the CPU. Such scenarios, in effect, will deteriorate the performance of both the CPU

and the GPU, diminishing the purpose of GPU acceleration.

To ameliorate the shortcomings of prior art, in this study, we propose COMPASS,

a compute shader-assisted prefetching scheme, which uses the idle GPU to achieve the

functionality of hardware prefetchers for improving single-thread performance on an

integrated single-chip system. The rationale behind our design is as follows: (1) An

on-chip GPU has large register files and rich computational logic, so it can emulate

the behavior of hardware prefetchers, (2) While a GPU is idle, much of memory
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bandwidth originally designed to meet the requirement of a GPU, will be left unused

and can be re-harnessed to assist the CPU cores, in particular, for data prefetching,

and (3) The tight coupling of the CPU and the GPU on a single die facilitates efficient,

prompt communication leading to synergistic outcome.

Note that one of COMPASS design goals is to reuse existing hardware as much as

possible to minimize the overall hardware cost. Also, the overheads incurred by COM-

PASS should not affect and compromise the massive parallel computation capability

in a GPU originally designed for 3D rendering and high-performance computing. To-

ward these objectives, we describe how to emulate different types of data prefetchers

in subsequent sections.

6.3.1 Miss Address Provider

Because COMPASS is based on a compute shader, which is programmable, it provides

much more flexibility than conventional hardware prefetchers. As such, instead of im-

plementing COMPASS with a fully automatic hardware mechanism, we opted for an
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OS or application vendors to offer and enable COMPASS prefetch capabilities. In this

respect, we propose to add the Miss Address Provider (MAP), a hardware/software

interface bridging the L2 cache, the GPU, and the OS. MAP is located between the

L2 cache and the GPU as shown in Figure 36.

The operation of MAP is described step-by-step in the following. (1) Once the

OS has no pending job to run on the GPU, the OS provides MAP a pointer to a

compute shader for prefetching, referred to as a COMPASS shader. (2) Upon an

L2 miss or the first hit to a prefetched line,1 the program counter (PC) generating

this memory request and its physical address are forwarded to MAP for prefetching.

(3) Upon receiving these two values, MAP sends a GPU command to trigger the

execution of a COMPASS shader. These two values, a PC and a physical address, are

stored in the constant cache and read by the COMPASS shader. Furthermore, the

command also indicates which value, the PC or the physical address, should be used

to index a thread. (More details will be explained in Section 6.3.2.) (4) The role of

the COMPASS shader is to read miss history from GPU’s register files to predict the

subsequent miss addresses, to update history information, and to execute prefetch

instructions that bring data back to the L2. (5) Prior to a new job to be scheduled

onto the GPU by the OS, MAP will be disabled. Note that the OS intervenes in

COMPASS only when it needs to enable or disable a COMPASS shader upon context

switching. The OS can change a COMPASS shader more often, e.g., upon a program

phase change, but such fine-grained execution is outside the scope of this study.

6.3.2 Threads and Register Files

A COMPASS shader triggered by MAP emulates a hardware prefetcher in the follow-

ing manner. Basically, we emulate each entry of a prefetch table with one GPU thread

(or with a set of GPU threads when using a multi-threaded COMPASS shader.) For

1Here, as in many previous prefetch studies, we assume that an L2 cache has a tag bit per cache
line for prefetch. It is set when a line is prefetched in but not consumed.
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Figure 37: Hardware prefetcher vs. COMPASS.

example, as shown in Figure 37, GPU thread4 emulates the behavior of a prefetch

operation that accesses the 5th entry of the prefetch table. In other words, the reg-

isters of a GPU thread (or a set of GPU threads) are used to record miss history

information across the application’s lifetime to emulate the same bookkeeping in a

hardware prefetch table.

To allow such mapping, the setup engine assigns a hardware thread ID using the

same index function as the index function of a hardware prefetcher. Such thread

mapping circuit is not currently implemented in the setup engine of the GPU archi-

tecture. Clearly, this is an additional hardware overhead but is rather insignificant

for the indexing requires only simple masking.
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Because a typical hardware prefetcher table has a power-of-two entries to facilitate

PC indexing, we also force the number of concurrently active hardware threads to be

in power-of-two. Also, we wrote our COMPASS shader to always use power-of-two

registers. With this simple trick, we do not need to modify the register partitioning

hardware of the baseline GPU, but the requirement of using power-of-two registers is

clearly a storage constraint.

Those registers allocated to a thread (or a set of threads in a multi-threaded

COMPASS shader) are used for two different purposes. One group of registers stores

miss history information of each table entry, and the others are used as temporary

registers for calculating the next prefetch addresses and for updating miss history. For

example, to store miss history of a stride prefetcher, each thread uses three registers

to keep a tag value, a last address value, and a stride value, corresponding to an entry

of a conventional stride prefetcher (Figure 37). To calculate future prefetch addresses

and update the emulated table, the thread needs several temporary registers.

6.3.3 An Example of a COMPASS Shader

Figure 38 shows an example shader code for stride prefetching. This shader code uses

three general-purpose registers to store a tag, a last miss address, and a stride value

while using one more register as a temporary register. Two other values, a current

PC and a current miss address, are provided by MAP in the form of constant values

stored in the constant cache.

1: if tag == currentPC then

2: tmp← lastAddr + stride

3: if currentAddr == tmp then

4: tmp ← currentAddr + stride

5: prefetch tmp

6: end if

7: end if

8: tag ← currentPC

9: stride← currentAddr − lastAddr

10: lastAddr ← currentAddr

Figure 38: Stride prefetching.

As shown in the code, one run of a COMPASS shader emulates one lookup of a

93



conventional hardware prefetcher. Such design necessitates the registers keeping the

miss history information to remain unmodified until the thread that emulates the

same prefetch table entry is dispatched. Such integrity of register files is enforced

by the setup engine, which uses the same index function of a hardware prefetcher to

allocate a hardware thread ID to each COMPASS lookup as we explained previously.

6.3.4 A Prefetch Instruction

To perform a prefetching operation, we can use a conventional load instruction of a

GPU. However, the load instruction requires a destination register, which consumes

one more register per prefetch request. As explained previously, more registers each

thread uses, a smaller number of threads can be executed simultaneously. In other

words, using a load instruction reduces the capacity of a prefetch table being emulated

by a COMPASS shader. Hence, to reduce the number of required registers in each

thread, we propose to add a prefetch instruction in the GPU. (Note that a GPU is

unlikely to support a prefetch instruction given cache misses can always be hidden

by the execution of a plethora of independent threads.) Implementing a prefetch

instruction does not incur much hardware overhead because the prefetch instruction

can be supported by disabling the write-back path of a load instruction.

6.3.5 Usage Model

We design a COMPASS shader to be selected by an OS. Through profiling, the OS

can select the best matched COMPASS shader and enables it by setting a pointer to

the selected COMPASS shader. On the other hand, the OS can also provide an API

call to allow an individual application to select an appropriate COMPASS shader

from a COMPASS library provided by the OS. Furthermore, an application vendor

can provide an application-specific COMPASS shader through another API call. This

API call provides the OS a pointer to their custom COMPASS shader. When the

OS schedules the target application, the OS can read this pointer value and store the
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pointer in the shader pointer register of the MAP (Figure 36). This execution model

implies that even if the application has nothing to do with graphics rendering, the

application developers can still use the GPU to enhance its performance by writing

a prefetcher shader code and having it loaded by the runtime system.

6.4 Different COMPASS Shader Designs

In this section, we describe different COMPASS shader designs and analyze their de-

sign trade-offs. First of all, we evaluate three table-based prefetchers: a PC-indexed

stride prefetcher [19], a Markov prefetcher [60], and a PC-indexed delta correlation

prefetcher [63, 92]. On the other hand, we also evaluate a region prefetching tech-

nique [74]. In addition to these generic prefetchers, to demonstrate the unique feature

of COMPASS, we also design and evaluate a custom-designed prefetcher for 429.mcf,

which is known to be memory-bound. As mentioned earlier, an application vendor

can write its own custom COMPASS prefetcher and pass it to the OS via an API

call.

One issue to be addressed is the long latency of instructions in a GPU shader code.

Notice that the design principle of GPUs is to optimize for high throughput. They

exploit a large amount of thread-level parallelism to hide the instruction latency. As

illustrated in Figure 34, if read-after-write dependency exists between two successive

instructions of a COMPASS shader, the dependent instruction will be dispatched

eight GPU cycles after its producer instruction is dispatched. This is certainly not a

performance bottleneck for throughput-oriented graphics rendering algorithms, it is,

however, clearly a performance issue for a data prefetcher to bring in missing cache

lines in advance. On the other hand, a GPU clock can be slower than a CPU clock

(1
2

CPU frequency assumed in this study), albeit an integrated design could bring the

GPU up to the CPU’s speed. In our more pessimistic assumption, we could waste 16

CPU cycles between two successive VLIW bundles of a COMPASS shader.
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On the other hand, one limitation of COMPASS is its throughput. COMPASS

is based on a compute-shader, which may need tens of instructions to emulate a

hardware prefetcher. Before a shader code completes its execution, another run of

the shader code mapped to the same hardware thread ID cannot be dispatched.

Furthermore, a GPU may not have enough command queue to have many different

shaders. (Note that this is not a queue for threads spawned from a single shader

execution command, but a queue for different shader execution commands.) The

maximal number of shader codes that can be queued in our baseline GPU is 16. Once

this queue is full, the shader execution command from MAP is ignored until the queue

releases a slot for a new shader execution. These two issues, if left unaddressed, will

make the idea of COMPASS less useful. We will focus on them in describing our

COMPASS shaders.

6.4.1 Stride COMPASS

In the implementation of PC-indexed stride COMPASS, we use three registers to

keep a PC tag, its associated last miss address, and stride. Upon a cache miss,

the setup engine uses a PC given by MAP to generate an index, which is used as a

hardware thread ID for our COMPASS shader. Once a thread is selected, it compares

whether a requested PC matches to the tag value and whether a current miss address

is equivalent to a previously predicted miss address. If both conditions are met, the

shader code generates next d prefetch addresses where d is the prefetch depth.2 To

avoid branch instructions, we use predication for condition checking and unroll the

loop to generate d prefetch addresses.

We have two different types of stride COMPASS shaders to trigger d prefetches.

One is a single-threaded stride COMPASS, which activates only one thread upon a

2In this study, we follow the prefetching terminology used in [92]. For example, a prefetcher with
a prefetch depth of four prefetches four cache lines that will likely be requested by four consecutive
misses in the future. On the other hand, a prefetcher with a prefetch width of four prefetches four
potential cache line candidates that will likely be requested by the next miss.
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miss. In this case, each entry of the prefetch table is modeled with one thread. This

thread consumes three registers to maintain miss history and generates d prefetches

itself. The utilization of the GPU that runs this shader code is very low since we

only enable one out of 64 threads in a wavefront. The second design is a multi-

threaded stride COMPASS, which activates d threads within a wavefront. Although

these d threads emulate just one prefetch table entry, the same miss history (e.g.,

tag, last miss address and stride stored in three registers) needs to be duplicated

for each thread. Since each thread only generates one prefetch request, it requires

only one temporary register for the prefetch address of the thread compared to d

temporary registers of a single-threaded stride COMPASS shader. Thus, the number

of temporary registers required per thread is smaller, and the multi-threaded stride

COMPASS shader can be completed sooner, thereby reducing the latency and increas-

ing the throughput. When d is not in power-of-two, we made a group of D threads

to emulate a prefetch table entry where D is the smallest number in power-of-two

greater than d. For example, to emulate a stride prefetcher with a prefetch depth of

five, we group eight threads into one group so that this group can emulate a prefetch

table entry. In this case, three remaining threads are never activated. Such inactive

threads are found to be another source of storage inefficiency.

6.4.2 Markov COMPASS

In contrast to a PC-indexed stride prefetcher, a Markov prefetcher [60] uses a miss

address to index a prefetch table. Thus, the setup engine uses a current miss address

to index a thread (for prefetching) and the last miss address to index another thread

(for updating the table) (Figure 39). Here, the command processor stores the miss

address of the last execution and provide it as the last miss address to the setup

engine for updating the table upon receiving a new miss address from the MAP.

Each thread of our Markov COMPASS shader maintains w next addresses, where w
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denotes the prefetch width. Our Markov COMPASS maintains these w next addresses

in a FIFO manner. One advantage of Markov COMPASS over a hardware Markov

prefetcher is its programmability for using different prefetch width. For example, an

application that heavily uses a binary tree favors a Markov prefetcher with a prefetch

width of two (or three if a pointer to a parent node is required). On the other hand,

another application that heavily uses a singly-linked list favors a Markov prefetcher

with a prefetch width of one because reducing the size of each entry allows more

entries to be emulated. Therefore, an application vendor can configure (dynamically)

the appropriate prefetch width of their own COMPASS shader according to program

behavior.

1: if tag == currentAddr then . Prefetch shader

2: prefetch nextAddr0

3: prefetch nextAddr1

4: prefetch nextAddr2

5: end if

6: tag ← currentAddr

1: nextAddr2← nextAddr1 . State update shader

2: nextAddr1← nextAddr0
3: nextAddr0← currentAddr

Figure 39: Markov prefetching (prefetch width: 3).

6.4.3 Delta COMPASS

The third prefetcher we evaluated is a PC-indexed delta prefetcher [63, 92]. The

pseudo code is depicted in Figure 40. As shown, implementing delta COMPASS is

found to be more challenging because the process of delta correlation matching is

complicated, and we have to accumulate delta values to calculate prefetch addresses.

Considering that a minimum interval for dispatching two successive VLIW bundles

of a thread is eight GPU clock cycles, the latency of delta COMPASS implemented

with a single thread will be very high.

To improve its efficiency, we implemented multi-threaded delta COMPASS. For

example, to emulate a delta prefetcher with eight delta buffers, we use eight threads;

each has a part of the delta buffer and performs delta correlation matching in parallel.

98



1: for i← depth− 1 to 1 do . State update

2: δi ← δi−1

3: end for

4: δ0 ← currentAddr − lastAddr

5: lastAddr ← currentAddr
6:
7: for i← depth− 1 to 2 do . Delta correlation matching

8: if (δ0 == δi)&&(δ1 == δi+1) then

9: break
10: end if

11: end for

12:
13: prefAddr ← currentAddr . Prefetch address calculation

14: for j ← i− 1 to 0 do

15: prefAddr ← prefAddr + δj

16: prefetch prefAddr

17: end for

Figure 40: Delta prefetching (δi: ith entry of a delta buffer).

In particular, thread i (0 ≤ i ≤ 7) keeps δ0, δ1, δi, and δi+1 where δn is the nth entry

of the delta buffer. To update the state, thread i passes δi+1 to thread (i+1) through

LDS (Figure 33), so that the delta buffer can be synchronized globally. To perform

correlation matching, thread i compares a pair of δ0 and δ1 against a pair of δi and

δi+1. Once a thread finds a match, it broadcasts its thread ID3.

However, calculating a prefetch address in each thread is still challenging because

thread j (j < i) requires the shader code to perform a reduction of
∑i−1

n=j δn, which

should be accumulated after finding a match. This accumulation requires sequential

scanning among threads, leading to elongated latency and lowered throughput. To

avoid this loop, we contrive the delta COMPASS shader so that thread j also main-

tains another value,
∑j−1

n=0 δn, which we call delta sum. Basically, delta sum is a sum

of the last j delta values. Thread j can easily maintain this value by accumulating

(δ0−δj) upon a miss or upon the first hit to the prefetched line. Once thread i finds a

correlation match, this thread broadcasts its own delta sum,
∑i−1

n=0 δn, along with its

thread ID. Once thread j receives this value, it can calculate
∑i−1

n=j δn by subtracting

its own delta sum,
∑j−1

n=0 δn, from broadcast thread i’s delta sum,
∑i−1

n=0 δn. With this

modified algorithm, we can eliminate the iterative accumulation process from each

3Multiple threads may find a match when the length of a correlation sequence is short, but
here we use a special broadcast instruction that broadcasts a value from the first valid thread in a
wavefront to all threads of the wavefront [1].
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Table 5: A modified delta prefetch address calculation algorithm (miss address =
1024).

thread 0 thread 1 thread 2 thread 3 thread 4 thread 5 thread 6 thread 7

Delta (δj) 1 2 1 2 1 2 3 4

Delta Sum (
Pj−1

n=0
δn) 0 1 3 4 6 7 9 12

Match? O X O X O (i = 4) X X X
Pi−1

n=j
δn 6 5 3 2 disabled disabled disabled disabled

Prefetch Address 1030 1029 1027 1026 disabled disabled disabled disabled

shader execution.

A detailed example is shown in Table 5. If we use the original algorithm (Fig-

ure 40), thread4 finds a match and broadcasts its thread ID to all other threads. After

receiving the thread ID of four, thread1, for example, needs to accumulate the delta

value of thread3 (= 2), that of thread2 (= 1), and that of thread1 (= 2). The sum of

these values, 5 (= 2 + 1 + 2), are added to a current miss address, 1024, to calculate

a prefetch address, 1029. On the other hand, in our modified algorithm, each thread

keeps updating the delta sum when it updates its local delta values. When thread4

finds a match, it broadcasts its thread ID and its own delta sum (= 6) to all other

threads. Upon receiving this value, thread1 subtracts its own delta sum (= 1) from

the receive delta sum (= 6) and adds this difference (= 5) to the miss address, 1024,

to calculate the prefetch address, 1029.

6.4.4 A Simplified Region Prefetcher

Additionally, we also evaluated a simplified version of a region prefetcher [74]. Al-

though the original region prefetching technique monitors the utilization of a memory

channel and prefetches an entire page while the channel is idle, we cannot perform

such fine-grained monitoring and prefetching because we do not want to heavily mod-

ify the GPU design. Thus, in this study, we simplified the design by fetching a page

upon the first touch of a certain page. Basically, the setup engine uses a miss address

to index a group of 64 threads or a wavefront. In particular, as shown in Figure 41,

100



thread i of a wavefront prefetches P + 64 × i where P denotes the base address of a

page to which a requested miss belongs. In other words, 64 threads of the wavefront

prefetches 64 cache lines that belongs to the same page. (In this study, the L2 cache

line size is 64B, and a page size is 4KB.) Such a brute-force, non-controlled prefetching

technique cannot be used in a conventional prefetcher, which will affect the perfor-

mance of all applications. However, due to its flexibility, a COMPASS shader enables

such an aggressive technique whenever an algorithm has a demand for.

1: pageAddr ← currentAddr & 0xfffff000

2: for i← 0 to 63 do

3: prefAddr ← pageAddr + 64× i

4: prefetch prefAddr

5: end for

Figure 41: Region prefetching.

6.4.5 Custom COMPASS Design for 429.mcf

To demonstrate and evaluate a custom COMPASS shader, we selected 429.mcf from

SPEC2006 for our case study. It is known that 429.mcf demonstrated a peculiar

memory access pattern [28, 109]. The address strides of several PCs missing the L2

are increased exponentially as shown in Table 6 making them hard to be recognized

by most hardware prefetchers. To capture the exponential stride pattern, we designed

a COMPASS shader that performs exponential stride prefetching. The pseudo code is

given in Figure 42. Our exponential stride prefetcher maintains the last miss address

and the last stride value. If a current stride value meets the condition shown in

line 1 of the figure, we prefetches multiple cache lines using exponential strides. We

multi-threaded this COMPASS shader so that thread i can fetch three lines that are

fetched by iteration i of a loop shown in Figure 42. To reduce the latency of this

computation, we avoid the accumulation process in this loop by designing thread i to

compute the accumulated sum of exponential strides by itself. Basically, instead of

calculating Σi
n=12

nδ0, each thread calculates 2× (2i − 1)δ0 which is equivalent to the

previous equation, where δ0 is a current stride value.
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Table 6: A sample stride pattern of 429.mcf (cache line size: 64B).

Miss Address 0x4b19ba40 0x4b19e080 0x4b1a2d40 0x4b1ac680 0x4b1bf900 0x4b1e5e40 0x4b2328c0

Stride (δj) 9792 19648 39232 78464 156992 313984

δj − 2× δj−1 64 -64 0 64 0

Note that, prior research [109] had attempted to capture such access patterns in

a hardware prefetcher, yet often resulting in prohibitively large hardware structure,

thus is impractical. Again, the programmable COMPASS shader will enable such

prefetching in an economical manner.

1: δ1 ← δ0

2: δ0 ← currentAddr − lastAddr

3: lastAddr ← currentAddr
4:
5: if (δ0 ≥ 2δ1 − 64)&&(δ0 ≤ 2δ1 + 64) then

6: stride ← δ0

7: prefAddr ← currentAddr

8: for i ← 0 to depth− 1 do

9: stride ← stride × 2
10: prefAddr ← prefAddr + stride

11:
12: prefetch prefAddr

13: prefetch prefAddr + 64

14: prefetch prefAddr − 64

15: end for

16: end if

Figure 42: Exponential stride prefetching (δ0: a current stride, δ1: the last stride).

6.5 Experimental Results

In this section, we will first describe our simulation framework and evaluate each

COMPASS design. For each design, we will employ one or two applications that

clearly reveals the difference (or the design trade-off) between different COMPASS

shaders. After that, we will show overall results with our benchmark applications.

Lastly, we will discuss hardware, software, and power overhead of COMPASS.

6.5.1 Simulation Framework

We evaluate COMPASS by extending the SESC simulator [105]. In particular, we

use an existing CPU model of SESC as well as its memory back-end. In addition, we

integrated a GPU pipeline to perform cycle-level simulation. Our GPU simulation
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Table 7: Platform configurations.

CPUs

Processor model
Two 3.0GHz, 14-stage, out-of-order,

4-wide fetch/issue/retire superscalar processors,

192 ROB entries, 128 (INT) + 128 (FP) physical register file

Branch Hybrid branch predictor (16K global / local / meta tables),

predictor 2K BTB, 32-entry RAS

L1 instruction cache
dual-port 2-way set-associative, 64B-line, 32KB cache,

LRU policy, 1 cycle latency, 1 cycle throughput, 8-entry MSHR

L1 data cache
dual-port 4-way set-associative, 64B-line, 32KB write-back cache,

LRU policy, 2 cycle latency, 1 cycle throughput, 8-entry MSHR

GPU

Clock frequency 1.5 GHz

Front- Command Processor (4 GPU cycle latency)

End + Setup Engine (3 GPU cycle latency)

Ultra-Threaded 2 arbiters per SIMD array, 1 arbiter per TEX unit,

Dispatch Processor minimum 1 GPU cycle latency, FIFO scheduling policy

Array Size 4 SIMD arrays, 16 shader cores per SIMD array, 5 SPUs per shader core

Register file 4-banked, 16KB per shader core (or 256KB per SIMD array)

TEX unit One per SIMD array, 4 address processors per TEX unit

TEX L1 Cache
1 cycle latency, 4-way set-associative, 64B-line 32KB

(tightly coupled with a TEX unit)

Memory

Back-End

Shared L2 cache

dual-port, 4-banked, 8-way set-associative, 64B-line,

2MB inclusive write-back cache, LRU policy,

6 cycle latency, 1 cycle throughput, 8-entry MSHR per bank

Baseline prefetcher Next-line prefetcher in the L2 cache

Memory 350-cycle minimum latency, four 8B-wide buses, 800 MHz clock, double-data-rate

model includes the latency model of GPU front-end, the FIFO scheduling policy and

the limited queue entries of the ultra-threaded dispatch processor, the latency and

throughput model of VLIW execution inside each shader core, and the latency and

throughput model of L1 TEX caches that are connected to the shared L2 cache.

Figure 35 illustrates the overall system architecture of our CPU-GPU integrated

platform, and its details are listed in Table 7.

To quantify the performance advantage of COMPASS, we use memory-intensive

applications from SPEC2006. We define a memory-intensive application as an ap-

plication whose speedup with a perfect L2 cache is greater than 1.1x compared to

a baseline CPU with a next-line prefetcher. For computation-intensive applications,

as COMPASS is fully programmable, an OS can opt for not using it. As such,

COMPASS will not adversely affect the performance for these applications. We also

excluded 434.zeusmp, 465.tonto, and 470.lbm due to cross-compilation issues or unsup-

ported syscalls in SESC. For each experiment, we fast-forwarded the first 10 billion

instructions and measured the performance for the next billion instructions unless
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Figure 43: Evaluation of Stride COMPASS (ST: single-threaded, MT: multi-
threaded, ZI: zero-latency, infinite-throughput).

otherwise mentioned. Throughout this study, the baseline has a next-line prefetcher

associated with its L2 cache.

6.5.2 Evaluation of Stride COMPASS

To evaluate the stride COMPASS, we performed a vast number of simulations with

different types of shader codes and different prefetch depth. First of all, Figure 43(a)

and Figure 43(b) show the number of required registers per thread and the number

of threads required for simulating one prefetch table entry, respectively. As shown,

as the prefetching depth increases, a single-threaded (ST) stride COMPASS shader

requires more registers per thread. On the other hand, a multi-threaded (MT) stride

COMPASS shader requires more threads to emulate one entry while the number of
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required registers per thread remains constant. This trade-off results in different num-

bers of table entries that can be emulated with COMPASS as shown in Figure 43(c).

The figure suggests that, in general, an ST stride COMPASS shader can emulate more

table entries than an MT stride COMPASS shader. Note that both stride COMPASS

shaders can emulate at least 4096 entries. Assuming that an entry of a hardware-

based stride prefetcher table is 12B wide (including a tag, a last address, and a stride

value), our stride COMPASS with four SIMD arrays can emulate the behavior of a

48KB hardware stride prefetch table.

Although both of stride COMPASS shaders, ST and MT, emulate a larger stride

prefetcher than a typical hardware-based counterpart, their performance may not be

as high due to the longer latency and lower throughput. To observe this effect, we per-

formed another set of simulations with a zero-latency, infinite-throughput (ZI) model

that has the same number of table entries as the MT stride COMPASS. Figure 43(d)

shows the speedup of these three models that run 459.GemsFDTD. As can be seen,

both ST and MT models underperform slightly but will catch up with the ZI model

if their prefetching depth is deep enough. This can be explained by analyzing Fig-

ure 43(e), which shows the average latencies of ST and MT models, and Figure 43(f),

which shows the number of discarded requests due to queue overflow (explained in Sec-

tion 6.4). We do not show the latency and the number of discarded requests for the ZI

model since both are zero by their definition. As shown in these figures, when a GPU

emulates a stride prefetcher for 459.GemsFDTD, the latency of the COMPASS shader

is low enough to make both ST and MT models to catch up with the ZI model when

they prefetches more deeply. Besides, the queue occupied by pending miss requests

hardly overflows, thus lost miss history due to discarded requests does not affect the

overall performance of 459.GemsFDTD significantly.

In contrast, when running 462.libquantum, we found that the ST and the MT stride

COMPASS shader cannot achieve the performance of the ZI model as illustrated
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in Figure 43(g). Moreover, the ST stride COMPASS shader performs worse than the

MT because of its longer latency as shown in Figure 43(h) even though there is no

hurdle for ST to emulate a large prefetch table. Also shown in Figure 43(g), once the

prefetch depth of the MT stride COMPASS exceeds nine, its improvement levels off

with a increasing higher latency shown in Figure 43(h) due to a longer queuing delay

within the GPU. After analyzing the simulation trace, we found that a single PC

of 462.libquantum constantly generates a cache miss. Consequently, our PC-indexed

stride COMPASS shader is serialized, failing to use four SIMD arrays or other threads

available in the same SIMD array. The following analysis quantitatively explains this

phenomenon well. First of all, we found that the saturated IPC is 1.05, and the

corresponding L2 misses per kilo instructions (MPKI) is 19.77. In other words, it

takes 952.38 cycles to execute 1000 instructions that generate 19.77 misses. Thus,

the average time interval between two successive misses is 48.17 cycles while it takes

48 cycles to execute three VLIW bundles for our stride COMPASS shader. In short,

our COMPASS shader cannot prefetch cache lines in a timely manner once the IPC

of 462.libquantum reaches 1.05.

To mitigate this problem due to address aliasing, we also evaluated a different

index function that concatenates the PC with two bits from a cache miss address (bit

7 and bit 6 of the miss address). As we use four different entries for a single PC,

the stride of each entry will be 256 while the commonly observed stride of a stride

prefetcher with the conventional index function was 64. Figure 43(g) also shows the

speedup of a zero-latency, infinite-throughput (ZI4) and MT stride COMPASS shader

(MT4) that use this new indexing method. As shown, the speedup has been largely

improved compared to our previous design. The reason why the speedup of ZI4 with

a prefetch depth of four approaching that of ZI with a prefetch depth of 16 is due to

their functional equivalence, i.e., ZI4 prefetches a line 4 (depth) × 256 (stride) byte

away from the current miss address while ZI prefetches a line 16 (depth) × 64 (stride)
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Figure 44: Evaluation of Markov COMPASS (ST: single-threaded, ZI: zero-latency,
infinite-throughput).

byte away.

Another noteworthy function is that an L1 TEX cache attached to each SIMD ar-

ray can combine redundant prefetch requests issued by COMPASS. For the MT stride

COMPASS with a prefetch depth of 16 for 462.libquantum, the total number of L1

TEX cache accesses is 316.3 million while the total number of actual prefetches reach-

ing the L2 is 19.8 million. Note that all these memory accesses are prefetch requests

because our COMPASS shader code relies only on its own registers for other compu-

tation such as recording prefetch history and computing next prefetch addresses.

6.5.3 Evaluation of Markov COMPASS

In contrast to the stride COMPASS for which we varied the prefetch depth, we eval-

uate the Markov COMPASS shaders by varying their prefetching width. Because a

Markov COMPASS shader is very simple, we only evaluate a single-threaded Markov

prefetcher. The cost of emulating those different Markov prefetchers are shown in Fig-

ure 44(a) and Figure 44(b), in which the number of required registers and the capacity

of the emulated Markov prefetch table are plotted with the prefetch width. Due to

the fact that the number of registers or the number of entries must be in power-of-two

for indexibility, a Markov prefetcher with a prefetch width of two will contain unused
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resources while consuming the same resources with the one with a prefetch width

of three as shown in Figure 44(b). In our experiments, a Markov prefetcher with a

prefetch width of three turns out to be the most effective for two applications: 471.om-

netpp and 483.xalacbmk that benefit from a Markov prefetcher. The speedup of these

two applications are found to be 1.22 and 1.18, respectively while the performance

of the other applications are degraded. For 471.omnetpp shown in Figure 44(c), a

Markov COMPASS shader with a prefetch width of one did not outperform the cases

with wider prefetch width although it can emulate more table entries. On the other

hand, a Markov COMPASS shader with a prefetch width of four reduces the speedup

since the number of table entries that can be emulated has significantly dropped. The

average latencies of these Markov COMPASS with different prefetch width are found

to be similar as shown in Figure 44(d).

When comparing the capability of our Markov COMPASS to a conventional

hardware-based prefetcher, our scheme has a huge advantage. For example, a Markov

COMPASS with a prefetch width of three emulates 65,536 table entries, each con-

taining 16B (a tag plus three next miss addresses). That amounts to a prohibitively

expensive 1MB hardware prefetch table.

6.5.4 Evaluation of Delta COMPASS

As explained in Section 6.4.3, we evaluate only a multi-threaded delta COMPASS

shader due to the computation complexity of a delta prefetcher. In our delta COM-

PASS implementation, each thread uses 16 registers. As shown in Figure 45(a),

the capacity of emulated prefetch tables is much larger (at least 1024 entries) than

that of a conventional hardware delta prefetcher. Figure 45(b) shows the speedup of

450.soplex using delta COMPASS shaders with varying prefetch depth. Like a stride

COMPASS shader, as the prefetch depth increases, the MT delta COMPASS shader

can catch up with the ZI delta COMPASS in spite of increasing latency (Figure 45(c)).
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Figure 45: Evaluation of Delta COMPASS (MT: multi-threaded, ZI: zero-latency,
infinite-throughput).

Meanwhile, because a delta COMPASS shader executes a rather large shader code,

its throughput is low. Thus, due to overflow, more miss requests are discarded as the

prefetch depth gets larger as shown in Figure 45(d). Notwithstanding the discarded

misses, Figure 45(b) shows that a delta prefetcher trains itself pretty rapidly resulting

in high performance.

6.5.5 Evaluation of Region COMPASS

Unlike previous COMPASS designs, a simplified version of a region prefetcher requires

a small number of registers with a lightweight COMPASS shader code. To fetch 64

cache lines mapped to the same page, our region COMPASS uses 64 threads of a

wavefront, each of which calculates a corresponding cache line using its own thread

ID. This computation is extremely simple and requires only four registers per thread.

Similar to Markov COMPASS, we use the miss address to index a thread. This

decision is to efficiently prefetch cache lines even if a single PC constantly generates

cache misses very frequently. Because there is not much trade-off in this design, we do

not show further in-depth sensitivity study for it. Its overall benefit will be discussed

in Section 6.5.7.
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Figure 46: Evaluation of custom COMPASS for 429.mcf (MT: multi-threaded, ZI:
zero-latency, infinite-throughput).

6.5.6 Evaluation of Custom COMPASS

We also evaluated a custom COMPASS shader for 429.mcf. This shader code is

PC-indexed and uses 16 registers per thread. We varied the prefetch depth for this

multi-threaded COMPASS shader. The number of table entries that can be emulated

is shown in Figure 46(a). With such a custom COMPASS shader, the performance of

429.mcf is improved by 61% when the prefetching depth of this custom COMPASS

shader is four (Figure 46(b)). On the other hands, as shown in Figure 46(c) and Fig-

ure 46(d), the latency of this COMPASS shader is around 130 cycles, and the number

of discarded requests accounts for around 2% of L2 cache misses.

6.5.7 COMPASS vs. GHB Stride Prefetchers

Table 8 summarizes our simulation results. Instead of showing all results with different

prefetching depth or width, we selected the best performing COMPASS shader in each

type of COMPASS. Here, we also show the performance of a conventional hardware-

based stride global history buffer (GHB) prefetcher (denoted as HW GHB) that has a

256-entry global history buffer, the same size used in the original paper [92]. We use

three stride GHB prefetchers with prefetch depth of 4, 8, and 16. Note that a stride

GHB prefetcher was found to be the most efficient prefetcher in a previous study [99].
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Table 8: Overall results (d: prefetch depth, w: prefetch width).

Speedup

SPECint06 SPECfp06

Geo-

mean

429. 462. 471. 473. 483. 410. 433. 437. 450. 454. 459.

mcf lib-

quan-

tum

omnet-

pp

astar xalan-

cbmk

bwaves milc leslie-

3d

soplex cal-

culix

Gems-

FDTD

HW GHB

Stride (d=4) 0.89 1.44 1.15 1.00 0.96 1.80 1.11 1.27 1.06 1.11 1.05 1.15

Stride (d=8) 0.89 2.85 1.17 1.04 0.93 1.89 1.11 1.28 1.11 1.11 1.10 1.24

Stride (d=16) 0.89 4.79 1.15 1.05 0.93 1.80 1.09 1.27 1.14 1.11 1.10 1.29

COMPASS

Stride (d=16) 1.06 2.69 1.15 1.07 0.93 1.84 1.15 1.27 1.34 1.12 1.11 1.28

Markov (w=3) 0.97 0.74 1.22 0.82 1.18 0.73 0.87 0.69 0.86 0.91 0.60 0.85

Delta (d=16) 1.33 1.13 1.15 1.05 0.93 1.61 4.22 1.26 1.31 1.10 1.70 1.38

Region 2.00 3.49 0.25 1.09 0.82 1.46 1.59 1.23 1.47 1.12 0.30 1.07

Custom (429.mcf) (d=4) 1.61 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

Perfect Perfect L2 2.56 4.82 1.72 1.52 4.07 1.93 4.61 1.30 2.08 1.12 2.08 2.25

COMPASS Geomean (when properly selected) 1.68

As shown in the table, the stride GHB prefetchers work pretty well with 462.libquan-

tum and 410.bwaves, however, they may also degrade performance, e.g., 429.mcf. This

is where the strength comes from by employing our programmable COMPASS. As

mentioned earlier, COMPASS allows an application vendor or the OS to select the

best performing prefetcher by customizing a GPU prefetch shader code according to

the peculiar behavior of an application. Even with the small benchmark program

sample shown in Table 8, there exists no one-size-fits-all best prefetcher for them.

Flexibility of a programmable COMPASS facilitates the choice of the best prefetch-

ing strategy. As shown in the table, for the majority of the benchmark applications,

flexibility allows COMPASS to perform better than a GHB prefetcher. Three ex-

ceptions are 462.libquantum, 410.bwaves, and 437.leslie3d, all of which are in favor

of a stride prefetching technique. As explained in Section 6.5.2, for 462.libquantum,

a stride COMPASS fails to catch up with a stride GHB prefetcher with prefetching

depth 16 due to its low throughput. (Note that this stride COMPASS design is based

on the PC-only indexing scheme. As mentioned in Section 6.5.2, the stride COM-

PASS shader with a different index function (MT4) can improve the performance as

much as the GHB prefetcher does.) For 410.bwaves and 437.leslie3d, the performance

difference is negligible. On the other hand, our custom COMPASS shader based on
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Table 9: Dual-core simulation results.

Speedup

Benchmark pair

Geomean410 410 433 471 410

462 450 459 483 433

HW GHB

Stride (d=4) 1.69 1.54 0.94 1.00 1.48 1.30

Stride (d=8) 2.00 1.63 0.98 1.01 1.57 1.38

Stride (d=16) 2.30 1.59 0.94 1.00 1.53 1.39

COMPASS

1.86 1.64 2.01 1.05 2.09

1.68(stride) (stride) (delta) (markov) (delta)

(d=16) (d=16) (d=16) (w=3) (d=16)

Perfect L2 2.81 2.22 2.82 2.44 2.88 2.62

exponential increased stride for 429.mcf outperforms all other table-based prefetchers,

although a brute-force, region COMPASS is found to perform even better than the

custom COMPASS shader.

On average (geometric mean), the stride GHB prefetchers with the prefetching

depth of 4, 8, and 16 improve performance by 15%, 24%, and 29%, respectively. In

contrast, if an application vendor or an OS chooses the application-specific COMPASS

shader, we can improve performance by 68% on average.

6.5.8 Multicore Effects

The majority of data prefetching techniques have been focused on improving the

performance of single programs. It is not well understood whether we need to partition

a prefetch table into several sub-tables or we should allow different processes to share

one table but potentially interfere the miss history of each other. Clearly, this study

is a separate piece of work. Thus, in this section, we only briefly discuss how the OS

can use COMPASS in a platform with two CPU cores and a GPU. For this platform,

obviously, the best way to handle this problem is to co-schedule a computation-

intensive application and a memory-intensive application [121]. This is not only good

for reducing pollution in a prefetch table but also good for reducing contention in

the L2. Several shared cache-aware scheduling methods have been investigated [35,

34, 103, 68]. Another way to address this problem is to prioritize one application.

In this case, the highest priority application will run COMPASS alone while other
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concurrent applications will not benefit.

On the other hand, we can schedule two memory-intensive applications that ben-

efit from the same type of COMPASS. For example, we can schedule 433.milc and

459.GemsFDTD, the performance of which is significantly improved by delta COM-

PASS. Even though these two applications share COMPASS, their performance can

still be improved because the capacity of a prefetch table that delta COMPASS emu-

lates is a lot larger than that of a conventional delta prefetcher. Table 9 shows results

using this policy. Here, the baseline is again a system without COMPASS support

(but with a next-line prefetcher as shown in Table 7). For these simulations, we

fast-forwarded the first 20 billion instructions and measured the performance of the

next two billion instructions. Here again, we also show simulation results with the

hardware-based stride GHB prefetchers for comparison. The first set of applications,

410.bwaves and 462.libquantum, in the table represents two applications that benefit

a lot from a stride COMPASS shader. As shown in the table, a stride COMPASS

shader can improve performance significantly. As explained previously, because a PC

of 462.libquantum constantly generates cache misses very frequently, the speedup of

COMPASS is not as high as that of the GHB prefetchers. However, when we simu-

late another two applications, 410.bwaves and 450.soplex, the performance of a stride

COMPASS is as good as that of GHB prefetchers. In contrast, when we schedule two

applications, 433.milc and 459.GemsFDTD, that benefit from a delta COMPASS, our

COMPASS clearly outperforms GHB prefetchers by simply programming the GPU.

On the other hand, when 471.omnetpp and 483.xalancbmk, which benefit from

the Markov COMPASS, are scheduled together, the Markov COMPASS outperforms

the GHB prefetchers. However, the speedup of these two applications are actually

lower than the speedup of each application measured in a single-core simulation.

This outcome is not surprising because a Markov prefetcher usually requires a large
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table and because these applications share the same capacity as the previous single-

core simulations. Lastly, when 410.bwaves and 433.milc, which benefit most from

the stride COMPASS and delta COMPASS, respectively, are scheduled together, the

delta COMPASS can still improve performance significantly. This is because a typical

delta prefetcher can do the same job as a stride prefetcher by simply consuming larger

table space.

In summary, COMPASS has potentials to improve the performance of multiple

cores if the OS schedules applications wisely. As mentioned, an OS-level scheduling

policy is out of scope of this study, and it remains as our future work. Note that as

the number of CPU cores scales in the future, the number of SIMD arrays will scale

as well, thus a GPU will be able to provide enough throughput for prefetching and

to emulate a larger prefetch table.

6.5.9 Hardware, Software, and Power Overhead

The hardware overhead of COMPASS includes the following. (1) The MAP requires

three registers to temporarily store a shader pointer, a miss PC, and a miss address.

(2) It needs a command buffer, which stores the GPU execution command. Note that

the command buffer stores the command itself, not the code for COMPASS shader.

Thus, this buffer is extremely small. (3) The command processor of a GPU needs to be

modified to understand the new GPU execution command. This overhead is basically

a microcode patch because the command processor is a programmable processor. (4)

The setup engine should be able to index a thread based on a value retrieved from the

command. The overhead of this index function is minimal because it is basically a

simple masking operation. (5) Each TEX unit should support a prefetching operation.

This is also a negligible change because we just need to disable the write-back path

of a conventional GPU load operation. (6) The address translation process through a

GPU’s TLB should be disabled because MAP is forwarding a physical address from
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the L2 cache and we can simply use it without address translation.

On the other hand, to provide a COMPASS shader to MAP, an OS needs to

have one or multiple COMPASS shaders built-in so that it can use one of these

COMPASS shaders along with CPU processes. Optionally, the OS can provide an

API function that allows an individual application vendor to provide its custom-

designed COMPASS shaders. Second, the task scheduler of the OS should be able to

enable the MAP.

Furthermore, to evaluate the energy implication of COMPASS, we first modeled

the utilization of GPU as follows:

(Utilization) = (# of COMPASS shader execution)

× (# of required threads per COMPASS shader execution)

× (# of required VLIW bundles per thread)

/(total execution time in cycle)

/(the number of VLIW cores)

Table 10 shows the utilization of different COMPASS shaders. Here, the gray

boxes represent the best performing COMPASS shaders as explained earlier. As

shown in the table, the utilization of COMPASS is extremely low. The highest

utilization is 1.49%, and the average (geometric mean) utilization is found to be

0.20%. Because a COMPASS shader is executed upon an L2 cache miss, which is

a very rare event, and because a COMPASS shader relies on a very small subset of

available hardware threads, utilization is very low.

Based on these utilization results, we also estimated the average power of the

GPU. Here, we modeled the leakage power of the total 1MB register file using CACTI

5.3 [119]. According to this method, we estimated that the 1MB register file will con-

sume 0.96W of leakage power. On the other hand, we estimated the average dynamic
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Table 10: GPU utilization.

%

SPECint06 SPECfp06

429. 462. 471. 473. 483. 410. 433. 437. 450. 454. 459.

mcf lib-

quan-

tum

omnet-

pp

astar xalan-

cbmk

bwaves milc leslie-

3d

soplex cal-

culix

Gems-

FDTD

Stride (d=16) 0.0616 0.3906 0.1496 0.0620 0.0733 0.5656 0.1780 0.1435 0.2197 0.0370 0.2670

Markov (w=3) 0.0039 0.0066 0.0085 0.0031 0.0060 0.0186 0.0084 0.0051 0.0108 0.0019 0.0095

Delta (d=16) 0.2336 0.4931 0.3884 0.1862 0.2148 1.4880 1.9442 0.4245 0.6123 0.1105 1.1845

Region 0.3289 1.3398 0.1420 0.1715 0.2368 1.1980 0.6575 0.3712 0.8548 0.0986 0.3109

Custom (429.mcf) (d=4) 0.0411 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

Table 11: GPU average power.

W

SPECint06 SPECfp06

429. 462. 471. 473. 483. 410. 433. 437. 450. 454. 459.

mcf lib-

quan-

tum

omnet-

pp

astar xalan-

cbmk

bwaves milc leslie-

3d

soplex cal-

culix

Gems-

FDTD

Stride (d=16) 0.99 1.17 1.04 0.99 1.00 1.27 1.06 1.04 1.08 0.98 1.11

Markov (w=3) 0.96 0.96 0.97 0.96 0.96 0.97 0.97 0.96 0.97 0.96 0.97

Delta (d=16) 1.09 1.23 1.17 1.06 1.08 1.77 2.01 1.19 1.29 1.02 1.60

Region 1.14 1.69 1.04 1.05 1.09 1.61 1.32 1.16 1.42 1.01 1.13

Custom (429.mcf) (d=4) 0.98 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

power of the GPU based on TDP number of a real product, ATI Radeon 4650, which

is 55W. To estimated the average dynamic power, we subtracted the leakage power

number from the TDP number and multiplied this result by the utilization of the

GPU. Note that this is a conservative approach because COMPASS shaders rely on

simple integer operations rather than heavy floating point operations. Based on our

model, as shown in Table 11, we found that GPU average power is very low due to

the aforementioned low utilization. Note that leakage power accounts for most of the

GPU power. Based on these results, we calculated energy additionally consumed by

COMPASS shaders as shown in Table 12.

Furthermore, we also estimated energy consumed by the off-chip bus between

an L2 cache and DRAM. For this estimation, we assumed that 32bit off-chip data

transfer consumes 1300 pJ based on measurement data from Stanford University [97].

Based on this assumption, we estimated the energy consumption of the off-chip bus as

shown in Table 13. From these results, we made a few interesting observations. First

116



Table 12: GPU energy consumption.

J

SPECint06 SPECfp06

429. 462. 471. 473. 483. 410. 433. 437. 450. 454. 459.

mcf lib-

quan-

tum

omnet-

pp

astar xalan-

cbmk

bwaves milc leslie-

3d

soplex cal-

culix

Gems-

FDTD

Stride (d=16) 0.88 0.37 0.42 0.56 1.28 0.23 0.66 0.21 0.42 0.20 0.36

Markov (w=3) 0.91 1.13 0.37 0.70 0.98 0.44 0.80 0.36 0.58 0.24 0.59

Delta (d=16) 0.76 0.92 0.47 0.60 1.36 0.36 0.35 0.24 0.51 0.21 0.34

Region 0.53 0.41 1.90 0.58 1.61 0.36 0.60 0.24 0.51 0.21 1.39

Custom (429.mcf) (d=4) 0.57 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

Table 13: Off-chip bus energy consumption.

J

SPECint06 SPECfp06

429. 462. 471. 473. 483. 410. 433. 437. 450. 454. 459.

mcf lib-

quan-

tum

omnet-

pp

astar xalan-

cbmk

bwaves milc leslie-

3d

soplex cal-

culix

Gems-

FDTD

Nextline (baseline) 0.28 0.54 0.59 0.22 0.55 0.37 0.59 0.13 0.40 0.04 0.43

GHB (d=16) 0.26 0.54 0.22 0.23 0.33 0.37 0.90 0.13 0.38 0.04 0.53

Stride (d=16) 0.26 0.54 0.22 0.24 0.33 0.37 0.91 0.13 0.44 0.04 0.53

Markov (w=3) 0.32 0.54 0.17 0.19 0.33 0.56 0.49 0.14 0.59 0.04 0.51

Delta (d=16) 0.26 0.54 0.18 0.26 0.31 0.37 0.50 0.13 0.41 0.04 0.44

Region 0.79 0.54 8.82 1.34 6.98 0.37 2.08 0.15 0.99 0.04 6.21

Custom (429.mcf) (d=4) 0.53 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

of all, region COMPASS may consume a significant amount of energy in some cases

(471.omnetpp, 483.xalancbmk, and 459.GemsFDTD), but interestingly enough, they

are not the best performing configurations (represented in gray boxes). In these cases,

region COMPASS clearly prefetches lots of unused data consuming lots of energy

in the bus. However, those unused data not only consumes more energy but also

pollutes the L2 cache seriously, which results in bad performance. This explains why

those cases that consume a significant amount of energy in the bus is not a favorable

configuration for the target application. Secondly, due to more accurate prefetching,

COMPASS consumes less energy in the bus in some applications (471.omnetpp and

433.milc). In other words, the baseline prefetchers bring more unused data than the

best performing COMPASS.

Additionally, we also modeled dynamic energy consumption of a CPU and L2

cache using the Wattch model [14] as shown in Table 14. Note that we did not model
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Table 14: CPU and L2 cache energy consumption.

J

SPECint06 SPECfp06

429. 462. 471. 473. 483. 410. 433. 437. 450. 454. 459.

mcf lib-

quan-

tum

omnet-

pp

astar xalan-

cbmk

bwaves milc leslie-

3d

soplex cal-

culix

Gems-

FDTD

Nextline (baseline) 16.16 16.51 15.05 12.76 19.92 15.39 17.99 10.51 14.58 10.33 14.69

GHB (d=16) 16.22 21.66 11.17 13.13 18.01 18.82 22.17 11.33 15.60 10.51 18.42

Stride (d=16) 15.54 14.03 11.15 12.91 17.95 14.65 20.62 10.25 14.08 10.19 15.47

Markov (w=3) 16.47 17.33 10.81 13.03 17.04 17.63 17.17 11.11 16.65 10.49 16.33

Delta (d=16) 14.74 16.00 10.72 13.12 17.72 14.81 14.43 10.26 13.98 10.21 14.00

Region 20.56 13.55 117.60 26.56 101.35 19.78 38.41 10.78 21.13 10.24 86.61

Custom (429.mcf) (d=4) 17.08 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

Table 15: CPU, GPU, L2 cache, and off-chip bus energy consumption.

J

SPECint06 SPECfp06

429. 462. 471. 473. 483. 410. 433. 437. 450. 454. 459.

mcf lib-

quan-

tum

omnet-

pp

astar xalan-

cbmk

bwaves milc leslie-

3d

soplex cal-

culix

Gems-

FDTD

Nextline (baseline) 16.44 17.05 15.65 12.97 20.47 15.76 18.58 10.63 14.98 10.37 15.12

GHB (d=16) 16.47 22.20 11.39 13.36 18.34 19.18 23.08 11.45 15.98 10.55 18.95

Stride (d=16) 16.67 14.94 11.79 13.71 19.56 15.24 22.20 10.59 14.94 10.43 16.36

Markov (w=3) 17.70 19.00 11.34 13.92 18.35 18.63 18.46 11.60 17.82 10.77 17.43

Delta (d=16) 15.76 17.76 11.37 13.98 19.40 15.54 15.27 10.63 14.90 10.46 14.78

Region 21.88 14.51 128.33 28.48 109.94 20.51 41.09 11.17 22.62 10.48 94.21

Custom (429.mcf) (d=4) 18.18 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

the leakage energy consumption of the CPU and L2 cache, but this is a conserva-

tive approach because COMPASS reduces execution time, which is helpful to reduce

leakage energy consumption (compared to the baseline) in the CPU and L2 cache.

Also note that, in our baseline model, we assumed that the GPU is completely turned

off without consuming any leakage energy. Based on these results along with afore-

mentioned GPU and bus energy results, we estimated overall energy consumption

as shown in Table 15. As shown in the table, compared to the baseline, COMPASS

often consumes more energy due to aggressive prefetching while it often consumes

less energy due to more accurate prefetching.

In addition to the energy itself, we also calculated performance per joule to esti-

mate energy efficiency. Normalized performance per joule is shown in Table 16. As

shown in the table, in most cases, the best-performing COMPASS shader improves
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Table 16: CPU, GPU, L2 cache, and off-chip bus energy efficiency (normalized
perf/joule).

SPECint06 SPECfp06

429. 462. 471. 473. 483. 410. 433. 437. 450. 454. 459.

mcf lib-

quan-

tum

omnet-

pp

astar xalan-

cbmk

bwaves milc leslie-

3d

soplex cal-

culix

Gems-

FDTD

Nextline (baseline) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

GHB (d=16) 0.89 3.68 1.58 1.02 1.04 1.48 0.88 1.18 1.07 1.09 0.88

Stride (d=16) 1.04 3.07 1.53 1.01 0.97 1.91 0.96 1.28 1.35 1.11 1.03

Markov (w=3) 0.90 0.67 1.69 0.77 1.31 0.61 0.87 0.63 0.72 0.88 0.52

Delta (d=16) 1.39 1.10 1.59 0.98 0.98 1.63 5.13 1.26 1.32 1.09 1.74

Region 1.50 4.10 0.03 0.50 0.15 1.12 0.72 1.17 0.97 1.11 0.05

Custom (429.mcf) (d=4) 1.46 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

performance per joule mainly due to its superior performance. We found two excep-

tional cases, 450.soplex and 473.astar. In case of 450.soplex, while region COMPASS

improves performance a lot, it consumes much energy in the L2 cache. On the other

hand, in case of 473.astar, performance gain is marginal. In this case, we may want

to develop a better prefetching method. Note that, in both cases, the OS may select

stride COMPASS to improve performance per joule when better energy efficiency is

desired. Overall, we found that, for the configurations that provide the best perfor-

mance, COMPASS can improve performance per joule by 59% on average (geometric

mean). Furthermore, if the OS opts for optimizing the system performance for energy

efficiency (better performance per joule), COMPASS can improve performance per

joule by 74% on average.

6.6 Summary

In this chapter, we proposed COMPASS, a compute shader-assisted prefetching scheme,

to improve the memory performance of an integrated chip while the on-chip GPU is

idle. With very lightweight architectural support, COMPASS shaders can emulate

various hardware prefetchers for improving performance of single-thread applications.

Moreover, due to its programmability and flexibility, one can implement or select the

best performing prefetching algorithm specially tailored for a specific application to
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exploit its particular memory access behavior. We designed, evaluated, and ana-

lyzed different COMPASS shaders and also performed a case study to demonstrate a

custom-designed COMPASS shader. Our simulation results showed that COMPASS

can improve the single-thread performance of memory-intensive applications by 68%

on average. With COMPASS, we envision that application vendors can supply an

application-specific COMPASS shader bundled with their software in the future and

have it loaded at runtime to improve memory performance.
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CHAPTER VII

CONCLUSION

In this dissertation, we propose and evaluate different heterogeneous many-core pro-

cessor designs to provide higher performance under the limited chip power budget.

Achieving such a goal is often highly application-dependent, thus we propose various

architectural techniques to further utilize on-chip resources even when an applica-

tion that runs on a many-core processor is not necessarily a target application. The

contribution of this dissertation includes the followings.

First of all, we proposed an analytical framework that helps computer architects to

understand the energy efficiency of different types of many-core processor design styles

in an early design stage, so that the large design space of a many-core processor can

be effectively reduced. From this study, we found that, as the number of cores scales

in the future, a heterogeneous many-core processor that consists of many energy-

efficient cores along with one high-performance processor can achieve the best energy

efficiency because it can provide highly energy-efficient parallel computing capability

without losing its sequential computing capability.

Second, based on the previous observation, we proposed a heterogeneous many-

core acceleration layer, called POD, that can be snapped on top of a conventional

x86 processor layer with an emerging 3D-integration technology. By snapping such an

acceleration layer on demand, industry can easily provide the acceleration function-

ality in addition to its general-purpose capability. Such a novel design reveals several

challenges such as binary compatibility, efficient recovery from misspeculation, and

an energy-efficient interconnection network. With these new challenges in mind, we
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designed and evaluated the POD layer. From this study, we found that a hetero-

geneous many-core processor can outperform a symmetric, homogeneous many-core

processor when they are constrained by the same single-chip power budget.

Third, while such a heterogeneous many-core processor can improve the perfor-

mance of data-parallel applications, the heterogeneous many-core processor itself may

not be highly utilized when the host processor executes the sequential code of a par-

allelized workload or unparallelized legacy applications. To address this issue, we

propose Chameleon, low-cost architectural techniques that can virtualize the idle

POD layer into a last-level cache memory, a prefetcher, or a hybrid between these

two memory-enhancement techniques. By providing these additional functionalities

with extremely low-cost hardware, we found that Chameleon can significantly im-

prove the performance of memory-intensive sequential code in a very cost-effective

manner.

Last but not least, without being satisfied with such a win in our POD architec-

ture, we extended the idea of Chameleon to a more general architecture platform,

a platform with integrated CPUs and GPUs, which is the most promising future

heterogeneous many-core processor. Unlike the POD architecture, GPUs do not

have a large cache memory or a scratch-pad memory, thus techniques proposed by

Chameleon are not very useful for the integrated GPU. To address this issue, we

proposed COMPASS, a compute-shader assisted prefetching scheme, in which we

use the idle GPU into a programmable prefetcher by utilizing a large register file

of a GPU, which is originally designed for heavy multi-threading for graphics or

high-performance computation. From this study, we found several unique features

of GPUs such as throughput-oriented pipeline may make prefetching less effective.

However, we found that those problems can be mitigated by several architectural

techniques such as deeper prefetching and using different indexing functions. Fur-

thermore, we found that the programmability of COMPASS allows us to predict miss
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addresses more accurately than a conventional hardware prefetchers. As a result, we

found that such a software-hardware cooperative approach can utilize a GPU to im-

prove the memory performance of an integrated CPU even providing the capability

of application-specific prefetching.

123



REFERENCES

[1] Advanced Micro Devices Inc., “R700-Family Instruction Set Ar-
chitecture,” March 2009. http://developer.amd.com/gpu assets/R700-
Family Instruction Set Architecture.pdf Date accessed: August 2009.

[2] Agarwal, M., Malik, K., Woley, K. M., Stone, S. S., and Frank,

M. I., “Exploiting postdominance for speculative parallelization,” in Proceed-
ings of the International Symposium on High Performance Computer Architec-
ture, (Washington, DC, USA), pp. 295–305, IEEE Computer Society, 2007.

[3] AGEIA, “Physx product overview.” http://www.ageia.com Date accessed:
March 2008.

[4] Ahn, J. H., Dally, W. J., Khailany, B., Kapasi, U., and Das, A., “Eval-
uating the Imagine System Architecture,” in Proceedings of the International
Symposium on Computer Architecture, 2004.

[5] Amdahl, G. M., “Validity of the Single Processor Approach to Achieving
Large-Scale Computing Capabilities,” in AFIPS Spring Joint Computer Con-
ference, 1967.

[6] Annavaram, M., Patel, J., and Davidson, E., “Data Prefetching by De-
pendence Graph Precomputation,” in Proceedings of the International Sympo-
sium on Computer Architecture, 2001.

[7] Arevalo, A., Matinata, R. M., Pandian, M., Peri, E., Ruby, K.,
Thomas, F., and Almond, C., Programming the Cell Broadband Engine Ar-
chitecture: Examples and Best Practices. IBM Publications Center, 2008.

[8] Artieri, A., “Nomadik: an MPSoC solution for advanced multimedia,” in Pro-
ceedings of the 5th International Forum on Application-Specific Multi-Processor
SoC, 2005.

[9] Bahl, L., Cocke, J., Jelinek, F., and Raviv, J., “Optimal decoding of
linear codes for minimizing symbol error rate,” IEEE Trans. Inform. Theory,
vol. 20, no. 2, pp. 284–287, 1974.

[10] Blank, T., “The MasPar MP-1 Architecture,” in Proceedings of COMPCON,
Spring 1990.

[11] Borkar, S., “Networks for Multi-core Chip–A Controversial View,” in 2006
Workshop on On- and Off-Chip Interconnection Networks for Multicore Sys-
tems, 2006.

124



[12] Borkar, S., Cohn, R., Cox, G., Gleason, S., Gross, T., Kung, H. T.,
Lam, M., Moore, B., Peterson, C., Pieper, J., Rankin, L., Tseng,

P. S., Sutton, J., Urbanski, J., and Webb, J., “iWarp: An integrated
solution to high-speed parallel computing,” in Supercomputing ’88, pp. 330–
339, 1988.

[13] Bouknight, W. J., Denenberg, S. A., McIntyre, D. F., Randall,

J. M., Sameh, A. H., and Slotnick, D. L., “The Illiac IV System,” in
Proceedings of IEEE, April 1972.

[14] Brooks, D., Tiwari, V., and Martonosi, M., “Wattch: A framework for
architectural-level power analysis and optimizations,” in Proceedings of the In-
ternational Symposium on Computer Architecture, pp. 83–94, 2000.

[15] Buck, I., “GPU computing with NVIDIA CUDA,” in SIGGRAPH ’07: ACM
SIGGRAPH 2007 courses, (New York, NY, USA), p. 6, ACM, 2007.

[16] Callahan, D., Kennedy, K., and Porterfield, A., “Software Prefetch-
ing,” in Proceedings of the International Conference on Architectural Support
for Programming Languages and Operating Systems, 1991.

[17] Cao, Y., Sato, T., Orshansky, M., Sylvester, D., and Hu, C., “New
paradigm of predictive MOSFET and interconnect modeling for early circuit
simulation,” in Proceedings of the IEEE Custom Integrated Circuits Conference,
pp. 201–204, 2000.

[18] Chang, J. and Sohi, G. S., “Cooperative caching for chip multiprocessors,”
in ISCA ’06: Proceedings of the 33rd annual international symposium on Com-
puter Architecture, (Washington, DC, USA), pp. 264–276, IEEE Computer So-
ciety, 2006.

[19] Chen, T.-F. and Baer, J.-L., “Reducing Memory Latency via Non-blocking
and Prefetching Caches,” in Proceedings of the International Conference on
Architectural Support for Programming Languages and Operating Systems, 1992.

[20] Chen, T., Zhang, T., Sura, Z., and Tallada, M. G., “Prefetching irregu-
lar references for software cache on cell,” in CGO ’08: Proceedings of the sixth
annual IEEE/ACM international symposium on Code generation and optimiza-
tion, (New York, NY, USA), pp. 155–164, ACM, 2008.

[21] Chen, W. Y., Mahlke, S. A., Chang, P. P., and Hwu, W.-m. W., “Data
Access Microarchitectures for Superscalar Processors with Compiler-Assisted
Data Prefetching,” in Proceedings of the International Symposium on Microar-
chitecture, 1991.

[22] Cheriton, D. R., Slavenburg, G. A., and Boyle, P. D., “Software-
controlled caches in the vmp multiprocessor,” in ISCA ’86: Proceedings of the
13th annual international symposium on Computer architecture, (Los Alamitos,
CA, USA), pp. 366–374, IEEE Computer Society Press, 1986.

125



[23] Chishti, Z., Powell, M. D., and Vijaykumar, T. N., “Distance associa-
tivity for high-performance energy-efficient non-uniform cache architectures,”
in MICRO 36: Proceedings of the 36th annual IEEE/ACM International Sym-
posium on Microarchitecture, (Washington, DC, USA), p. 55, IEEE Computer
Society, 2003.

[24] Cho, S. and Melhem, R., “Corollaries to amdahl’s law for energy,” IEEE
Compututer Architecture Letters, vol. 7, no. 1, pp. 25–28, 2008.

[25] Collins, J., Wang, H., Tullsen, D., Hughes, C., Lee, Y., Lavery,

D., and Shen, J., “Speculative Precomputation: Long-range Prefetching of
Delinquent Loads,” in Proceedings of the International Symposium on Computer
Architecture, 2001.

[26] Cooksey, R., Jourdan, S., and Grunwald, D., “A Stateless, Content-
Directed Data Prefetching Mechanism,” in Proceedings of the International
Conference on Architectural Support for Programming Languages and Operating
Systems, 2002.

[27] Dally, W. J. and Towles, B., “Route Packets, Not Wires: On-Chip Inter-
connection Networks,” in Proceedings of the 38th Design Automation Confer-
ence, 2001.

[28] Dimitrov, M. and Zhou, H., “Combining Local and Global History for High
Performance Data Prefetching,” in The Journal of Instruction-Level Parallelism
Data Prefetching Championship, 2009.

[29] Duller, A., Panesar, G., and Towner, D., “Parallel processing-the pic-
ochip way,” Communicating Processing Architectures, pp. 125–138, 2003.

[30] Dundas, J. and Mudge, T., “Improving Data Cache Performance by Pre-
executing Instructions Under a Cache Miss,” in Proceedings of the International
Conference on Supercomputing, 1997.

[31] Dutta, S., Jensen, R., and Rieckmann, A., “Viper: A multiprocessor soc
for advanced set-top box and digital tv systems,” IEEE Des. Test, vol. 18, no. 5,
pp. 21–31, 2001.

[32] Eichenberger, A. E., O’Brien, K., O’Brien, K., Wu, P., Chen, T.,
Oden, P. H., Prener, D. A., Shepherd, J. C., So, B., Sura, Z., Wang,

A., Zhang, T., Zhao, P., and Gschwind, M., “Optimizing compiler for
the cell processor,” in Proceedings of the International Conference on Parallel
Architectures and Compilation Techniques, (Washington, DC, USA), pp. 161–
172, IEEE Computer Society, 2005.

[33] Espasa, R., Ardanaz, F., Emer, J., Felix, S., Gago, J., Gramunt,

R., Hernandez, I., Juan, T., Lowney, G., Mattina, M., and A., S.,
“Tarantula: a vector extension to the alpha architecture,” in Proceedings of the
International Symposium on Computer Architecture, 2002.

126



[34] Fedorova, A., Seltzer, M., and Smith, M., “Improving Performance Iso-
lation on Chip Multiprocessors via an Operating System Scheduler,” in Proceed-
ings of the International Conference on Parallel Architectures and Compilation
Techniques, 2007.

[35] Fedorova, A., Seltzer, M., Small, C., and Nussbaum, D., “Performance
of Multithreaded Chip Multiprocessors and Implications for Operating System
Design,” in Proceedings of the annual conference on USENIX Annual Technical
Conference, 2005.

[36] Fung, W. W. L., Sham, I., Yuan, G., and Aamodt, T. M., “Dynamic
Warp Formation and Scheduling for Efficient GPU Control Flow,” in Proceed-
ings of the International Symposium on Microarchitecture, 2007.

[37] Ganusov, I. and Burtscher, M., “Efficient Emulation of Hardware Prefetch-
ers via Event-Driven Helper Threading,” in Proceedings of the International
Conference on Parallel Architectures and Compilation Techniques, 2006.

[38] Gebis, J., Williams, S., Patterson, D., and Kozyrakis, C., “VIRAM1:
A Media-Oriented Vector Processor with Embedded DRAM,” 41st DAC Stu-
dent Design Contest, 2004.

[39] Ghuloum, A., Smith, T., Wu, G., Zhou, X., Fang, J., Guo, P., So,

B., Rajagopalan, M., Chen, Y., and Chen, B., “Future-Proof Data Par-
allel Algorithms and Software on IntelTM Multi-Core Architecture,” in Intel
Technology Journal, Vol. 11, Issue 4 2007.

[40] Gonzalez, R. and Horowitz, M., “Energy dissipation in general pur-
pose microprocessors,” Solid-State Circuits, IEEE Journal of, vol. 31, no. 9,
pp. 1277–1284, 1996.

[41] Grammatikakis, M. D., Hsu, D. F., Kraetzl, M., and Sibeyn, J. F.,
“Packet routing in fixed-connection networks: A survey,” Journal of Parallel
and Distributed Computing, vol. 54, no. 2, pp. 77–132, 1998.

[42] Guo, F., Solihin, Y., Zhao, L., and Iyer, R., “A framework for provid-
ing quality of service in chip multi-processors,” in MICRO ’07: Proceedings of
the 40th Annual IEEE/ACM International Symposium on Microarchitecture,
(Washington, DC, USA), pp. 343–355, IEEE Computer Society, 2007.

[43] Halfhill, T., “Massively Parallel Digital Video.” Microprocessor Report, Jan-
uary 2006.

[44] Hammond, L., Nayfeh, B. A., and Olukotun, K., “A Single-Chip Multi-
processor,” vol. 30, no. 9, pp. 79–85, 1997.

[45] Hammond, L., Willey, M., and Olukotun, K., “Data Speculation Support
for a Chip Multiprocessor,” in Proceedings of the International Conference on
Architectural Support for Programming Languages and Operating Systems, 1998.

127



[46] Hamzaoglu, F., Zhang, K., Wang, Y., Ahn, H., Bhattacharya, U.,
Chen, Z., Ng, Y., Pavlov, A., Smits, K., Bohr, M., and others, “A
153Mb-SRAM Design with Dynamic Stability Enhancement and Leakage Re-
duction in 45nm High-K Metal-Gate CMOS Technology,” in IEEE International
Solid-State Circuits Conference Digest of Technical Papers, pp. 376–621, 2008.

[47] Harris, S., SYNERGISTIC CACHING IN SINGLE-CHIP MULTIPROCES-
SORS. PhD thesis, stanford university, 2005.

[48] Hegde, R., “ Optimizing Application Performance on Intel r© CoreTM Microar-
chitecture Using Hardware-Implemented Prefetchers.” Intel Software Network
http://software.intel.com/en-us/articles/optimizing-application-performance-
on-intel-coret-microarchitecture-using-hardware-implemented-prefetchers Date
accessed: August 2009.

[49] Held, J., Bautista, J., and Koehl, S., “From a Few Cores to Many: A
Tera-scale Computing Research Overview,” Intel Whitepaper, 2006.

[50] Hensley, J., “AMD CTM overview,” in SIGGRAPH ’07: ACM SIGGRAPH
2007 courses, (New York, NY, USA), p. 7, ACM, 2007.

[51] Hill, M. and Marty, M., “Amdahl’s Law in the Multicore Era,” Computer,
vol. 41, no. 7, pp. 33–38, 2008.

[52] Hofstee, H. P., “Power Efficient Processor Architecture and The Cell Pro-
cessor,” in Proceedings of the International Symposium on High Performance
Computer Architecture, 2005.

[53] Hsu, L. R., Reinhardt, S. K., Iyer, R., and Makineni, S., “Communist,
utilitarian, and capitalist cache policies on cmps: caches as a shared resource,”
in PACT ’06: Proceedings of the 15th international conference on Parallel archi-
tectures and compilation techniques, (New York, NY, USA), pp. 13–22, ACM,
2006.

[54] Hu, Z., Kaxiras, S., and Martonosi, M., “Timekeeping in the Memory
System: Predicting and Optimizing Memory Behavior,” in Proceedings of the
International Symposium on Computer Architecture, 2002.

[55] Huddy, R., “ATI RadeondTM HD 2000 SeriesTechnology Overview,” in AMD
Technical Day, The Develop Conference & Expo, 2007.

[56] Huh, J., Kim, C., Shafi, H., Zhang, L., Burger, D., and Keckler,

S. W., “A nuca substrate for flexible cmp cache sharing,” in ICS ’05: Pro-
ceedings of the 19th annual international conference on Supercomputing, (New
York, NY, USA), pp. 31–40, ACM, 2005.

[57] Hwu, W.-M., Ryoo, S., Ueng, S.-Z., Kelm, J. H., Gelado, I., Stone,

S. S., Kidd, R. E., Baghsorkhi, S. S., Mahesri, A. A., Taso, S. C.,

128



Navarro, N., Lumetta, S. S., Frank, M. I., and Patel, S. J., “Implicitly
Parallel Programming Models for Thousand-Core Microprocessors,” 2007.

[58] Intel Corporation, “http://processorfinder.intel.com/details.aspx?sSpec5=SLANR
Date accessed: March 2008.”

[59] Intel Corporation, “Intel r© CoreTM i7-900 Desktop Processor Extreme Edi-
tion Series and Intel r© CoreTM i7-900 Desktop Processor Series,” October 2009.

[60] Joseph, D. and Grunwald, D., “Prefetching using markov predictors,” in
Proceedings of the International Symposium on Computer Architecture, (New
York, NY, USA), pp. 252–263, ACM, 1997.

[61] Kadota, H., Miyake, J., Okabayashi, I., Maeda, T., Okamoto, T.,
Nakajima, M., and Kagawa, K., “A 32-bit CMOS microprocessor with on-
chip cache and TLB,” IEEE Journal of Solid-State Circuits, vol. 22, no. 5,
pp. 800–807, 1987.

[62] Kandemir, M., Ramanujam, J., Irwin, M., Vijaykrishnan, N., Ka-

dayif, I., and Parikh, A., “Dynamic management of scratch-pad memory
space,” in Design Automation Conference, 2001. Proceedings, pp. 690–695,
2001.

[63] Kandiraju, G. B. and Sivasubramaniam, A., “Going the Distance for TLB
Prefetching: An Application-driven Study,” in Proceedings of the International
Symposium on Computer Architecture, 2002.

[64] Kapasi, U. J., Dally, W. J., Rixner, S., Owens, J. D., and Khailany,

B., “The Imagine Stream Processor,” in Proceedings of the International Con-
ference on Computer Design, 2002.

[65] Kim, C., Burger, D., and Keckler, S., “An adaptive, non-uniform cache
structure for wire-delay dominated on-chip caches,” ACM SIGPLAN Notices,
vol. 37, no. 10, pp. 211–222, 2002.

[66] Kim, J. S., Taylor, M. B., Miller, J., and Wentzlaff, D., “Energy
Characterization of a Tiled Architecture Processor with On-Chip Networks.,”
in Proceedings of the 8th International Symposium on Low Power Electronics
and Design, 2003.

[67] Kim, S., Chandra, D., and Solihin, Y., “Fair Cache Sharing and Partition-
ing in a Chip Multiprocessor Architecture,” pp. 111–122, Sept. 2004.

[68] Knauerhase, R., Brett, P., Hohlt, B., Li, T., and Hahn, S., “Using
OS Observations to Improve Performance in Multicore Systems,” IEEE Micro,
vol. 28, no. 3, pp. 54–66, 2008.

[69] Kumar, M., Baransky, Y., and Denneau, M., “The GF11 Parallel Com-
puter,” Parallel Computing, vol. 19, no. 12, pp. 1393–1412, 1993.

129



[70] Kung, H. T., “Why Systolic Architectures,” IEEE Computer, vol. 15, no. 1,
pp. 37–46, 1982.

[71] Lee, C., Potkonjak, M., and Mangione-Smith, W. H., “MediaBench:
A Tool for Evaluating and Synthesizing Multimedia and Communications Sys-
tems,” in Proceedings of the International Symposium on Microarchitecture,
1997.

[72] Leighton, F. T., Introduction to parallel algorithms and architectures : ar-
rays, trees, hypercubes. Morgan Kaufmann, 1992.

[73] Liao, S. S., Wang, P. H., Wang, H., Hoflehner, G., Lavery, D., and
Shen, J. P., “Post-Pass Binary Adaptation for Software-Based Speculative
Precomputation,” in Proceedings of the ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, 2002.

[74] Lin, W., Reinhardt, S., and Burger, D., “Reducing DRAM Latencies with
an Integrated Memory Hierarchy Design,” in Proceedings of the International
Symposium on High Performance Computer Architecture, 2001.

[75] Liu, W., Tuck, J., Ceze, L., Ahn, W., Strauss, K., Renau, J., and
Torrellas, J., “Posh: a tls compiler that exploits program structure,” in Pro-
ceedings of the eleventh ACM SIGPLAN symposium on Principles and practice
of parallel programming, (New York, NY, USA), pp. 158–167, ACM, 2006.

[76] Lucas, B. and Kanade, T., “An iterative image registration technique with
an application to stereo vision,” in International joint conference on artificial
intelligence, vol. 3, pp. 674–679, 1981.

[77] Luebke, D., Harris, M., Krüger, J., Purcell, T., Govindaraju, N.,
Buck, I., Woolley, C., and Lefohn, A., “GPGPU: general purpose compu-
tation on graphics hardware,” in Proceedings of the conference on SIGGRAPH
2004 course notes, ACM Press New York, NY, USA, 2004.

[78] Luk, C.-K., “Tolerating Memory Latency through Software-Controlled Pre-
Execution in Simultaneous Multithreading Processors,” in Proceedings of the
International Symposium on Computer Architecture, 2001.

[79] Madan, N. and Balasubramonian, R., “Leveraging 3D Technology for Im-
proved Reliability,” in Proceedings of the International Symposium on Microar-
chitecture, 2007.

[80] Mantor, M., “Radeon R600, a 2nd Generation Unified Shader Architecture,”
in Proceedings of the 19th Hot Chips Conference, August, 2007.

[81] Mantor, M., “Entering the Golden Age of Heterogeneous Computing,” in
Performance Enhancement on Emerging Parallel Processing Platforms, 2008.

130



[82] MasPar, “Maspar programming language (ansi c compatible mpl) reference
manual.”

[83] McCool, M. D., Wadleigh, K., Henderson, B., and Lin, H.-Y., “Per-
formance evaluation of gpus using the rapidmind development platform,” in SC
’06: Proceedings of the 2006 ACM/IEEE conference on Supercomputing, (New
York, NY, USA), p. 181, ACM, 2006.

[84] Miller, J. E. and Agarwal, A., “Software-based instruction caching for
embedded processors,” in ASPLOS-XII: Proceedings of the 12th international
conference on Architectural support for programming languages and operating
systems, (New York, NY, USA), pp. 293–302, ACM, 2006.

[85] Moore, C., “The Role of Accelerated Computing in the Multi-core Era,” in
Workshop on Manycore and Multicore Computing: Architectures, Applications
And Directions, 2007.

[86] Moritz, C., Frank, M., Lee, W., and Amarasinghe, S., “Hot Pages:
Software Caching for Raw Microprocessors,” 1999.

[87] Mudge, T., “Power: a First-class Architectural Design Constraint,” IEEE
Computer, vol. 34, pp. 52–58, 2001.

[88] Munshi, A., “Opencl: Parallel computing on the gpu and cpu,” in SIGGRAPH
’08: ACM SIGGRAPH 2008 classes, 2008.

[89] Mutlu, O., Stark, J., Wilkerson, C., and Patt, Y., “Runahead Exe-
cution: An Alternative to Very Large Instruction Windows for Out-of-order
Processors,” in Proceedings of the International Symposium on High Perfor-
mance Computer Architecture, 2003.

[90] Mysore, S., Agrawal, B., Srivastava, N., Lin, S., Banerjee, K., and
Sherwood, T., “Introspective 3D chips,” in Proceedings of the International
Conference on Architectural Support for Programming Languages and Operating
Systems, pp. 264–273, ACM Press New York, NY, USA, 2006.

[91] Narayanan, R., Ozisikyilmaz, B., Zambreno, J., Pisharath, J.,
Memik, G., and Choudhary, A., “MineBench: A Benchmark Suite for Data
Mining Workloads,” in Proceedings of the International Symposium on Work-
load Characterization, 2006.

[92] Nesbit, K. and Smith, J., “Data Cache Prefetching Using a Global History
Buffer,” in Proceedings of the International Symposium on High Performance
Computer Architecture, 2004.

[93] Nickolls, J. R., “The Design of the MasPar MP-1: a Cost Effective Massively
Parallel Computer,” in Compcon Spring 90’, 1990.

131



[94] Nikolic-Popovic, J., “Implementing a MAP Decoder for cdma2000TM Turbo
Codes on a TMS320C62xTM DSP Device.” Texas Instruments Application Re-
port, May 2000.

[95] NVIDIA, “Tesla - GPU Computing Solution for HPC.”
http://www.nvidia.com/object/tesla computing solutions.html Date accessed:
March 2008.

[96] Papakipos, M., “PeakStream Platform,” 2006. SUPERCOMPUTING 2006
Tutorial on GPGPU, Course Notes.

[97] Patti, R., “3D-ICs: The Evolution and Direction of a New Technology, IEEE
International 3D Systems Integration Conference.” 2009.

[98] Peh, L.-S., “Chip-scale networks: Power and thermal impact.”
http://www.princeton.edu/ peh/talks/stanford nws.pdf Date accessed:
March 2008.

[99] Perez, D. G., Mouchard, G., and Temam, O., “Microlib: A case for the
quantitative comparison of micro-architecture mechanisms,” in Proceedings of
the International Symposium on Microarchitecture, (Washington, DC, USA),
pp. 43–54, IEEE Computer Society, 2004.

[100] Pham, D., Asano, S., Bolliger, M., Day, M. N., Hofstee, H. P.,
Johns, C., Kahle, J., Kameyama, A., Keaty, J., Masubuchi, Y., Ri-

ley, M., Shippy, D., Stasiak, D., Suzuoki, M., Wang, M., Warnock,

J., Weitzel, S., Wendel, D., Yamazaki, T., and Yazawa, K., “The De-
sign and Implementation of a First-Generation CELL Processor,” in Proceedings
of the 2005 IEEE International Solid-State Circuits Conference, 2005.

[101] Pollack, F. J., “New Microarchitecture Challenges in the Coming Genera-
tions of CMOS Process Technologies (Keynote address),” 1999.

[102] Qureshi, M. K. and Patt, Y. N., “Utility-based cache partitioning: A low-
overhead, high-performance, runtime mechanism to partition shared caches,” in
MICRO 39: Proceedings of the 39th Annual IEEE/ACM International Sympo-
sium on Microarchitecture, (Washington, DC, USA), pp. 423–432, IEEE Com-
puter Society, 2006.

[103] Rafique, N., Lim, W.-T., and Thottethodi, M., “Architectural Support
for Operating System-Driven CMP Cache Management,” in Proceedings of the
International Conference on Parallel Architectures and Compilation Techniques,
2006.

[104] Ranger, C., Raghuraman, R., Penmetsa, A., Bradski, G., and
Kozyrakis, C., “Evaluating MapReduce for Multi-core and Multiprocessor
Systems,” in Proceedings of the International Symposium on High Performance
Computer Architecture, 2007.

132



[105] Renau, J., Fraguela, B., Tuck, J., Liu, W., Prvulovic, M., Ceze,

L., Sarangi, S., Sack, P., Strauss, K., and Montesinos, P., “SESC
simulator,” January 2005. http://sesc.sourceforge.net Date accessed: August
2009.

[106] Rixner, S., Dally, W. J., Kapasi, U., Khailany, B., Lopez-Lagunas,

A., Mattson, P., and Owens, J. D., “A Bandwidth-Efficient Architecture
for Media Processing,” in Proceedings of the International Symposium on Mi-
croarchitecture, 1998.

[107] Rubin, N., “Issues And Challenges In Compiling for Graphics Processors
(Keynote speech),” in Proceedings of the International Symposium on Code
Generation and Optimization, 2008.

[108] Sankaralingam, K., Nagarajan, R., Liu, H., Kim, C., Huh, J.,
Burger, D., Keckler, S. W., and Moore, C. R., “Exploiting ILP, TLP,
and DLP with the Polymorphous TRIPS Architecture,” in Proceedings of the
International Symposium on Computer Architecture, 2003.

[109] Sharif, A. and Lee, H.-H. S., “Data Prefetching Mechanism by Exploit-
ing Global and Local Access Patterns,” in The Journal of Instruction-Level
Parallelism Data Prefetching Championship, 2009.

[110] Siegel, H. J., Schwederski, T., Nathaniel J. Davis, I., and Kuehn,

J. T., “Pasm: a reconfigurable parallel system for image processing,”
SIGARCH Computer Architecture News, vol. 12, no. 4, pp. 7–19, 1984.

[111] Slotnick, D. L., Borck, W. C., and McReynolds, R. C., “The Solomon
Computer,” in Proceedings of the AFIPS Fall Joint Computer Conference,
vol. 22, pp. 97–107, 1962.

[112] Smith, S. L., “Intel Roadmap Overview,” in Intel Developer Forum, 2008.

[113] Sohi, G. S., Breach, S. E., and Vijaykumar, T. N., “Multiscalar Proces-
sors,” in Proceedings of the International Symposium on Computer Architecture,
1995.

[114] Solihin, Y., Lee, J., and Torrellas, J., “Using a User-Level Memory
Thread for Correlation Prefetching,” in Proceedings of the International Sym-
posium on Computer Architecture, 2002.

[115] Taveniku, M., Ahlander, A., Jonsson, M., and Svensson, B., “The
VEGA Moderately Parallel MIMD, Moderately Parallel SIMD, Architecture
for High Performance Array Signal Processing,” in International Parallel Pro-
cessing Symposium, 1998.

[116] Taylor, M., Amarasinghe, S., and Agarwal, A., “Scalar Operand Net-
works,” IEEE Transactions on Parallel and Distributed Systems, 2005.

133



[117] Taylor, M. B., Kim, J., Miller, J., Wentzlaff, D., Ghodrat, F.,
Greenwald, B., Hoffmann, H., Johnson, P., Lee, J.-W., Lee, W.,
Ma, A., Saraf, A., Seneski, M., Shnidman, N., Strumpen, V., Frank,

M., Amarasinghe, S., and Agarwal, A., “The Raw Microprocessor: A
Computational Fabric for Software Circuits and General Purpose Programs,”
IEEE Micro, Mar/Apr, 2002.

[118] Tendler, J., Dodson, S., Fields, S., Le, H., and Sinharoy, B.,
“POWER4 System Microarchitecture.” IBM Technical White Paper, October
2001.

[119] Thoziyoor, S., Muralimanohar, N., Ahn, J., and Jouppi, N., “CACTI
5.1,” tech. rep., HP Laboratories, Palo Alto, 2008.

[120] Tilera Corporation, “TILE64 Processor Family.”
http://www.tilera.com/products/processors.php Date accessed: March
2008.

[121] Tuck, N. and Tullsen, D., “Initial Observations of the Simultaneous Multi-
threading Pentium 4 Processor,” in Proceedings of the International Conference
on Parallel Architectures and Compilation Techniques, 2003.

[122] Tucker, L. W. and Robertson, G. G., “Architecture and Applications of
the Connection Machine,” IEEE Computer, August 1988.

[123] Udayakumaran, S., Dominguez, A., and Barua, R., “Dynamic allocation
for scratch-pad memory using compile-time decisions,” Trans. on Embedded
Computing Sys., vol. 5, no. 2, pp. 472–511, 2006.

[124] Wang, H., Peh, L.-S., and Malik, S., “Power-driven Design of Router
Microarchitectures in On-Chip Networks,” in Proceedings of the International
Symposium on Microarchitecture, 2003.

[125] Woo, D. H., Fryman, J. B., Knies, A. D., Eng, M., and Lee, H.-

H. S., “POD: A 3D-Integrated Broad-Purpose Acceleration Layer,” IEEE Mi-
cro, vol. 28, no. 4, pp. 28–40, 2008.

[126] Woo, D. H., Fryman, J. B., Knies, A. D., and Lee, H.-H. S.,
“Chameleon: Virtualizing Idle Acceleration Cores of A Heterogeneous Multi-
Core Processor for Caching and Prefetching,” ACM Transactions on Architec-
ture and Code Optimization, vol. 7, no. 1, 2010.

[127] Woo, D. H. and Lee, H.-H. S., “Extending Amdahl’s Law for Energy-
Efficient Computing in the Many-Core Era,” Computer, vol. 41, no. 12, pp. 24–
31, 2008.

[128] Woo, D. H. and Lee, H.-H. S., “COMPASS: a programmable data prefetcher
using idle GPU shaders,” in Proceedings of the International Conference on

134



Architectural Support for Programming Languages and Operating Systems,
pp. 297–310, 2010.

[129] Yeh, T. Y., Faloutsos, P., Patel, S. J., and Reinman, G., “ParallAX:
An Architecture for Real-Time Physics,” in Proceedings of the International
Symposium on Computer Architecture, 2007.

[130] Zhang, M. and Asanovic, K., “Victim replication: Maximizing capacity
while hiding wire delay in tiled chip multiprocessors,” in Proceedings of the
International Symposium on Computer Architecture, (Washington, DC, USA),
pp. 336–345, IEEE Computer Society, 2005.

135


